Post-inflationary QCD axion is an attractive solution to the
Strong CP problem because of the possibility to uniquely predict
the axion mass if axion makes up all of dark matter. On the other
hand, QCD axion models often suffer from the so-called...
My plan is to explain how complex projective spaces can be
identified with components of totally elliptic representations of
the fundamental group of a punctured sphere into PLS(2,R). I will
explain how this identification realizes the pure mapping...
Studying symplectic structures up to deformation equivalences is
a fundamental question in symplectic geometry. Donaldson asked:
given two homeomorphic closed symplectic four-manifolds, are they
diffeomorphic if and only if their stabilized...
Accretion-powered X-ray pulsars are neutron stars that accrete
matter from a companion star in a binary system, which exhibit
fascinating dynamics. The strong magnetic field of the neutron star
guides material onto the magnetic poles, which are...
Etale cohomology of Fp-local systems does not behave nicely on
general smooth p-adic rigid-analytic spaces; e.g., the
Fp-cohomology of the 1-dimensional closed unit ball is
infinite.
However, it turns out that the situation is much better if
one...
We find ourselves at a pivotal era in the study of cosmology and
galaxy formation. The dark energy + cold dark matter (ΛCDM)
paradigm is firmly established as the default cosmological model,
owing in large part to its incredible success in...
Coboundary expansion and cosystolic expansion are
generalizations of edge expansion to hypergraphs. In this talk, we
will first explain how the generalizations work. Next we will
motivate the study of such hypergraphs by looking at their...
String stars, or Horowitz-Polchinski solutions, are string
theory saddles with normalizable condensates of thermal-winding
strings. In the past, string stars were offered as a possible
description of stringy (Euclidean) black holes in
asymptotically...
The Breuil-Mezard Conjecture predicts the existence of
hypothetical "Breuil-Mezard cycles" that should govern congruences
between mod p automorphic forms on a reductive group G. Most of the
progress thus far has been concentrated on the case G = GL...
Translational tiling is a covering of a space (such as Euclidean
space) using translated copies of one building block, called a
"translational tile'', without any positive measure
overlaps.
Can we determine whether a given set is a translational...