On structure results for intertwining operators

The intertwining wave operators are basic objects in the scattering theory of a Hamiltonian given as the sum of a Laplacian with a potential. These Hamiltonians are the classical Schroedinger operators of quantum mechanics. For the three dimensional case we will discuss a new representation of the wave operators as superpositions of reflections and translations. This is joint work with Marius Beceanu, Albany.

Date

Affiliation

University of Chicago

Files & Media