On the geometry and topology of zero sets of Schrödinger eigenfunctions

In this talk I will present some new results on the structure of the zero sets of Schrödinger eigenfunctions on compact Riemannian manifolds. I will first explain how wiggly the zero sets can be by studying the number of intersections with a fixed curve as the eigenvalue grows to infinity. Then, I will discuss some results on the topology of the zero sets when the eigenfunctions are randomized. This talk is based on joint works with John Toth and Peter Sarnak.

Date

Affiliation

Member, School of Mathematics