The standard \(L\)-function for \(G_2\): a "new way"
We consider a Rankin-Selberg integral representation of a cuspidal (not necessarily generic) representation of the exceptional group G2. Although the integral unfolds with a non-unique model, it turns out to be Eulerian and represents the standard L-function of degree 7. We discuss a general approach to the integrals with non-unique models. The integral can be used to describe the representations of G2 for which the (twisted) L-function has a pole as functorial lifts. This is a joint work with Avner Segal.
Date
Affiliation
Ben-Gurion University of the Negev