Migration in Dusty Protoplanetary Disks
Fast inward migration of planetary cores embedded in gaseous disks is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been considered until recently. In this talk, I will show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. Building on the results or a large suite of numerical simulations for measuring this dust torque under a wide range of conditions, I will present the first study showing that dust torques can have a significant impact on the migration and formation history of planetary embryos.