Microstates of the 2d Non-Supersymmetric Black Hole

We identify the microstates of the non–supersymmetric, asymptotically flat 2d black hole in the dual c = 1 matrix quantum mechanics (MQM). We calculate the partition function of the theory using Hamiltonian methods and reproduce one of two conflicting results found by Kazakov and Tseytlin. We find the entropy by counting states and the energy by approximately solving the Schrödinger equation. The dominant contribution to the partition function in the double-scaling limit is a novel bound state that can be considered an explicit dual of the black hole microstates. This bound state is long-lived and evaporates slowly, exactly like a black hole in asymptotically flat space. Based on arXiv:2110.11493.

Date

Speakers

Ronak Soni

Affiliation

University of Cambridge