Convergence and Riemannian bounds on Lagrangian submanifolds
Recent years have seen the appearance of a plethora of possible metrics on spaces of Lagrangian submanifolds. Indeed, on top of the better-known Lagrangian Hofer metric and spectral norm, Biran, Cornea, and Shelukhin have constructed families of so-called weighted fragmentation metrics on these spaces. I will explain how — under the presence of bounds coming from Riemannian geometry — all these metrics behave well with respect to the set-theoretic Hausdorff metric.
Date
Speakers
Jean-Philippe Chassé
Affiliation
UdeM