A Non-Commutative Analog of the 2-Wasserstein Metric for which the Fermionic Fokker-Planck Equation is Gradient Flow for the Entropy

The Fermionic Fokker-Planck equation is a quantum-mechanical analog of the classical Fokker-Planck equation with which it has much in common, such as the same optimal hypercontractivity properties. In this paper we construct a Riemannian metric on the space of density matrices that we show to be a natural analog of the classical $2$-Wasserstein metric, and we show that, in analogy with the classical case, the Fermionic Fokker-Planck equation is gradient flow in this metric for the relative entropy with respect to the ground state. We derive a number of consequences of this, such as a sharp Talagrand inequality for this metric, and we prove a number of results pertaining to this metric. Several open problems are raised. This is joint work with Jann Maas.

Date

Speakers

Eric Carlen

Affiliation

Rutgers, The State University of New Jersey