Princeton University Thunch Talk

Probing Young Planet Population with 3D Self-Consistent Thermodynamics

Protoplanetary disks are the birthplaces of planets. Over the past decade, there have been significant advancements in disk observations thanks to the Atacama Large Millimeter Array (ALMA) and extreme adaptive optics (ExAOs). Hundreds of disks have been observed at high angular resolutions, revealing rich substructures (e.g., gaps/rings) at various layers, some of which are perturbed by planets. A better understanding of disk physics holds great potential for unveiling more young planets within these substructures and distinguishing them from non-planet origins.

In this presentation, I will discuss how we can constrain the young planet population using statistical and machine learning techniques applied to these substructures. Additionally, I will explain the critical role of self-consistent dust and thermal structures in shaping disk morphology and kinematics, as well as why state-of-the-art radiation-hydrodynamic simulations are crucial for understanding substructures, planet formation, and the precise prediction of young planets.

Date & Time

October 26, 2023 | 12:15pm – 1:15pm

Location

Peyton Hall, Grand Central

Speakers

Shangjia Zhang, University of Nevada, Las Vegas