Jule G. Charney
Affiliation
From Computer Pioneers:
As early as May 1946, von Neumann had envisaged meteorology as a major component of his newly formed Electronic Computer Project at the Institute for Advanced Study (Goldstine 1972; Platzman 1979). Charney's 1946 doctoral thesis had suggested to him that the large-scale circulations in the atmosphere could only be analyzed in a physically appealing and mathematically tractable way, if certain specific approximations were used to distinguish those circulations from sound waves and gravity waves of higher frequency (Charney 1947). After being exposed to von Neumann's hopes for numerical meteorology in an August 1946 meeting (Platzman 1979), Charney spent most of the following year in Oslo. There he extended his ideas and arrived at the "quasi-geostrophic prediction equations" (Charney 1948). These equations predicted only the slow large-scale motions and were free of the sensitivity to high-frequency motion that had plagued Richardson.
On Charney's return he joined von Neumann at Princeton as leader of the Meteorology Group. He then set about answering a series of critical technical questions such as: How important are friction and heating? From how large an atmospheric volume must one have data in order to make a 24-hour forecast for the US? What is the simplest formulation that might have some predictive skill?
The first computations were made in 1950 with the ENIAC and were gratifyingly successful (Charney, Fjörtoft, and von Neumann 1950; Platzman 1979). Similar research was quickly started in other countries, and more elaborate and accurate formulations were used at Princeton as soon as the new IAS computer was ready in 1952 (Goldstine 1972).
Lee, J.A.N. "Jule G. Charney," (1995)