Classical Verification of Quantum Computations

We present the first protocol allowing a classical computer to interactively verify the result of an efficient quantum computation. We achieve this by constructing a measurement protocol, which allows a classical string to serve as a commitment to a quantum state. The protocol forces the prover to behave as follows: the prover must construct an n qubit state of his choice, non-adaptively measure each qubit in the Hadamard or standard basis as directed by the verifier, and report the measurement results to the verifier. The soundness of this protocol is enforced based on the assumption that the learning with errors problem is computationally intractable for efficient quantum machines.

Date

Speakers

Urmila Mahadev

Affiliation

UC Berkeley