Institute for Advanced Study Informal Astrophysics Seminar - NOTE DAY

The Explosion Mechanism of Core-Collapse Supernovae and its Observational Signatures

Many massive stars explode as core-collapse supernovae. Supernova simulations show that the shock wave accompanying formation of the proto-neutron star evolves into a quasi-static accretion shock and it proves difficult to revive its outward propagation. The stalled accretion shock turns into explosion when the neutrino luminosity from the collapsed core exceeds a critical value L_crit (the "neutrino mechanism"). I will show the connection between the steady-state isothermal accretion flows with bounding shocks and the neutrino mechanism: there is a maximum, critical sound speed above which it is impossible to maintain accretion with a standoff shock. I will derive the "antesonic" condition, which characterizes the transition to explosion over a broad range in accretion rate, PNS properties and microphysics. Additionally, I will characterize the effects of accretion luminosity and collective neutrino oscillations on L_crit. The physics of the explosion mechanism and the progenitor structure are imprinted in the observed distribution of neutron star masses. I will use Bayesian analysis to model the double neutron star mass distribution to infer the properties of the progenitor binary population, fallback during the explosion, and constrain the mass coordinate where the explosion develops.

Date & Time

November 16, 2012 | 11:00am – 12:00pm

Location

Bloomberg Hall, Astrophysics Library

Speakers

Ondrej Pejcha

Affiliation

The Ohio State University

Event Series

Categories