There are several broad insights we can draw from computational
models of human cognition in order to build more human-like forms
of machine learning. (1) The brain has a great deal of built-in
structure, yet still tremendous need and potential for...
Standard machine learning produces models that are highly
accurate on average but that degrade dramatically when the test
distribution deviates from the training distribution. While one can
train robust models, this often comes at the expense of...
Physical processes in the world often have a modular structure,
with complexity emerging through combinations of simpler
subsystems. Machine learning seeks to uncover and use regularities
in the physical world. Although these regularities manifest...
Despite the success of deep learning, much of its success has
existed in settings where the goal is to learn one, single-purpose
function from data. However, in many contexts, we hope to optimize
neural networks for multiple, distinct tasks (i.e...
In this talk, I will first introduce our recent work on the Deep
Equilibrium Model (DEQ). Instead of stacking nonlinear layers, as
is common in deep learning, this approach finds the equilibrium
point of the repeated iteration of a single non-linear...
While the trend in machine learning has tended towards more
complex hypothesis spaces, it is not clear that this extra
complexity is always necessary or helpful for many domains. In
particular, models and their predictions are often made easier
to...
Implicit generative models such as GANs have achieved remarkable
progress at generating convincing fake images, but how well do they
really match the distribution? Log-likelihood has been used
extensively to evaluate generative models whenever it’s...
In this talk, I would like to share some of my reflections on
the progress made in the field of interpretable machine learning.
We will reflect on where we are going as a field, and what are the
things that we need to be aware of to make progress...
Existing generative models are typically based on explicit
representations of probability distributions (e.g., autoregressive
or VAEs) or implicit sampling procedures (e.g., GANs). We propose
an alternative approach based on modeling directly the...
Genomics has revolutionized biology, enabling the interrogation
of whole transcriptomes, genome-wide binding sites for proteins,
and many other molecular processes. However, individual genomic
assays measure elements that interact in vivo as...