Joint IAS/Princeton/Montreal/Paris/Tel-Aviv Symplectic Geometry Zoominar

Three 20 Minute Research Talks

  • Francesco Morabito: Hofer Norms on Braid Groups and Quantitative Heegaard-Floer Homology

    Given a lagrangian link with k components it is possible to define an associated Hofer norm on the braid group with k strands. In this talk we are going to detail this definition, and explain how it is possible to prove non degeneracy if k=2 and certain area conditions on the lagrangian link are met. The proof is based on the construction, using Quantitative Heegaard-Floer Homology, of a family of quasimorphisms which detect linking numbers of braids on the disc.

     

  • Filip Brocic: Riemannian distance and symplectic embeddings in cotangent bundle:

    In the talk, I will introduce a distance-like function on the zero section of the cotangent bundle using symplectic embeddings of standard balls inside an open neighborhood of the zero section. I will provide some examples which illustrate the properties of such a function. The main result that I will present is a relationship between the length structure associated to the introduced distance and the usual Riemannian length. Time permitting, I will explain a connection with the strong Viterbo conjecture for certain domains.

     

  • Valentin Bosshard: The Lagrangian cobordism group of Weinstein manifolds

    Lagrangian cobordisms induce exact triangles in the Fukaya category. But how many exact triangles can be recovered by Lagrangian cobordisms? One way to measure this is by comparing the Lagrangian cobordism group to the Grothendieck group of the Fukaya category. In this talk, we discuss the setting of exact conical Lagrangian submanifolds in Liouville manifolds and compute Lagrangian cobordism groups of Weinstein manifolds. We conclude that in this setting not always all exact triangles come from Lagrangian cobordisms.