Symplectic Geometry Seminar

Locally Maximal Closed Orbits of Reeb Flows

A compact invariant set of a flow is called locally maximal when it is the largest invariant set in some neighborhood. In this talk, based on joint work with Erman Cineli, Viktor Ginzburg, and Basak Gurel, I will present a "forced existence" result for the closed orbits of certain Reeb flows on spheres of arbitrary odd dimension:

 - If the contact form is non-degenerate and dynamically convex, the presence of a locally maximal closed orbit implies the existence of infinitely many closed orbits. 

- If the locally maximal closed orbit is hyperbolic, the assertion of the previous point also holds without the non-degeneracy and with a milder dynamically convexity assumption. 

These statements extend to the Reeb setting earlier results of Le Calvez-Yoccoz for surface diffeomorphisms, and of Ginzburg-Gurel for Hamiltonian diffeomorphisms of certain closed symplectic manifolds. 
 

Date & Time

November 06, 2023 | 12:30pm – 1:45pm

Location

Simonyi 101 and Remote Access

Speakers

Marco Mazzucchelli, École normale supérieure de Lyon

Categories