Joint IAS/Princeton University Symplectic Geometry Seminar
Monotone Lagrangians in cotangent bundles
We show that there is a 1-parameter family of monotone Lagrangian tori in the cotangent bundle of the 3-sphere with the following property: every compact orientable monotone Lagrangian with non-trivial Floer cohomology is not Hamiltonian-displaceable from either the zero-section or one of the tori in the family. The proof involves studying a version of the wrapped Fukaya category of the cotangent bundle which includes monotone Lagrangians. Time permitting, we may also discuss an extension to other cotangent bundles. This is joint work with Mohammed Abouzaid.
Date & Time
October 11, 2016 | 1:30pm – 2:30pm
Location
S-101Speakers
Luis Diogo
Affiliation
Columbia University