Special Seminar on Hilbert’s 13th Problem

The Geometry of Hilbert's 13th problem

Given a polynomial in one variable, what is the simplest formula for the roots in terms of the coefficients? Hilbert conjectured that for polynomials of degree 6,7 and 8, any formula must involve functions of at least 2, 3 and 4 variables respectively (such formulas were first constructed by Hamilton). In a little-known paper, Hilbert sketched how the 27 lines on a cubic surface should give a 4-variable solution of the general degree 9 polynomial. In this talk I’ll recall Klein and Hilbert's geometric reformulation of solving polynomials, explain the gaps in Hilbert's sketch and how we can fill these using modern methods. As a result, we obtain best-to-date upper bounds on the number of variables needed to solve a general degree n polynomial for all n, improving results of Segre and Brauer.

Date & Time

December 05, 2019 | 1:00pm – 1:55pm

Location

Simonyi Hall 101

Speakers

Jesse Wolfson

Affiliation

University of California, Irvine

Event Series

Categories