Joint IAS/Princeton/Montreal/Paris/Tel-Aviv Symplectic Geometry Zoominar

Three 20-min Research Talks

Pierre-Alexandre Mailhot (Université de Montréal): The Spectral Diameter of a Liouville Domains and its Applications

The spectral norm provides a lower bound to the Hofer norm. It is thus natural to ask whether the diameter of the spectral norm is finite or not. During this short talk, I will give a sketch of the proof that, in the case of Liouville domains, the spectral diameter is finite if and only if the symplectic cohomology of the underlying manifold vanishes. With that relationship in hand, we will explore applications to symplecticaly aspherical symplectic manifolds and Hofer geometry.

Nicole Magill (Cornell University):  A Correspondence Between Obstructions and Constructions for Staircases in Hirzebruch Surfaces

The ellipsoidal embedding function of a symplectic four manifold M measures how much the symplectic form on M must be dilated in order for it to admit an embedded ellipsoid of some eccentricity. It generalizes the Gromov width and ball packing numbers. In most cases, finitely many obstructions besides the volume determine the function. If there are infinitely many obstructions determining the function, M is said to have an infinite staircase. This talk will give a classification of which Hirzebruch surfaces have infinite staircases. We will focus on explaining the correspondence between the obstructions coming from exceptional classes and the constructions from almost toric fibrations. We define a way to mutate triples of exceptional classes to produce new triples of exceptional classes, which corresponds to mutations in almost toric fibrations. This is based on various joint work with Dusa McDuff, Ana Rita Pires, and Morgan Weiler.

Ofir Karin (Tel Aviv University):  Approximation of Generating Function Barcode for Hamiltonian Diffeomorphisms

Persistence modules and barcodes are used in symplectic topology to define new invariants of Hamiltonian diffeomorphisms, however methods that explicitly calculate these barcodes are often unclear. In this talk I will define one such invariant called the GF-barcode of compactly supported Hamiltonian diffeomorphisms of R2n by applying Morse theory to generating functions quadratic at infinity associated to such Hamiltonian diffeomorphisms and provide an algorithm (i.e a finite sequence of explicit calculation steps) that approximates it along with a few computation examples. This is joint work with Pazit Haim-Kislev.

Date & Time

October 28, 2022 | 9:15am – 10:45am

Location

Remote Access

Speakers

Pierre-Alexandre Mailhot
Nicole Magill
Ofir Karin

Affiliation

Université de Montréal; Cornell University; Tel Aviv University

Categories