Joint IAS/Princeton University Symplectic Geometry Seminar
Lagrangian Whitney sphere links
Let $n > 1$. Given two maps of an $n$-dimensional sphere into Euclidean $2n$-space with disjoint images, there is a $\mathbb Z/2$ valued linking number given by the homotopy class of the corresponding Gauss map. We prove, under some restrictions on $n$, that this vanishes when the components are immersed Lagrangian spheres each with exactly one double point of high Maslov index. This is joint work with Tobias Ekholm.
Date & Time
November 01, 2016 | 1:30pm – 2:30pm
Location
West Building Lecture HallSpeakers
Ivan Smith
Affiliation
University of Cambridge