Joint IAS/Princeton University Number Theory Seminar

Independence of ℓ for Frobenius conjugacy classes attached to abelian varieties

Let $A$ be an abelian variety over a number field $E\subset \mathbb{C}$ and let $v$ be a place of good reduction lying over a prime $p$. For a prime $\ell\neq p$, a result of Deligne implies that upon replacing $E$ by a finite extension, the Galois representation on the $\ell$-adic Tate module of $A$ factors as $\rho_\ell:\mathrm{Gal}(\overline{E}/E)\rightarrow G_A$, where $G_A$ is the Mumford--Tate group of $A_{\mathbb{C}}$. For $p>2$, we prove that the conjugacy class of $\rho_\ell(\mathrm{Frob}_v)$ is defined over $\mathbb{Q}$ and independent of $\ell$. This is joint work with Mark Kisin.

Date & Time

June 18, 2020 | 3:00pm – 4:00pm

Location

https://theias.zoom.us/j/959183254

Affiliation

Imperial College London

Event Series

Categories

Notes

Please note that this seminar will take place online via Zoom. You can connect to this seminar via the following link and password: https://theias.zoom.us/j/959183254 Password: the three digit integer that is the cube of the sum of its digits