Joint IAS/Princeton University Number Theory Seminar

Kloosterman sums and Siegel zeros

Kloosterman sums arise naturally in the study of the distribution of various arithmetic objects in analytic number theory. The 'vertical' Sato-Tate law of Katz describes their distribution over a fixed field $\mathbb F_p$, but the equivalent 'horizontal' distribution as the base field varies over primes remains open. We describe work showing cancellation in the sum over primes if there are exceptional Siegel-Landau zeros. This is joint work with Sary Drappeau, relying on a fun blend of ideas from algebraic geometry, the spectral theory of automorphic forms and sieve theory.

Date & Time

September 28, 2017 | 4:30pm – 5:30pm

Affiliation

Member, School of Mathematics

Event Series

Categories