Computer Science/Discrete Mathematics Seminar I
Strongly log concave polynomials, high dimensional simplicial complexes, and an FPRAS for counting Bases of Matroids
A matroid is an abstract combinatorial object which generalizes the notions of spanning trees, and linearly independent sets of vectors. I will talk about an efficient algorithm based on the Markov Chain Monte Carlo technique to approximately count the number of bases of any given matroid.
The proof is based on a new connections between high dimensional simplicial complexes, and a new class of multivariate polynomials called completely log-concave polynomials. In particular, we exploit a fundamental fact from our previous work that the bases generating polynomial of any given matroid is a log-concave function over the positive orthant.
Based on joint works with Nima Anari, Kuikui Liu, and Cynthia Vinzant.
Date & Time
February 25, 2019 | 11:00am – 12:00pm
Location
Simonyi Hall 101Speakers
Shayan Oveis Gharan
Affiliation
University of Washington