Physics Group Meeting
Anomalies, Conformal Manifolds, and Spheres
We will discuss various aspects of the manifold of conformal field theories. Most of the time will be devoted to a review of older background material. It will allow us to give a unified and more conceptual treatment of some recent results.
Background reading:
H. Osborn, “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories,” Nucl. Phys. B 363, 486 (1991)
H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison and M. Romo, “Two-Sphere Partition Functions and Gromov-Witten Invariants,” Commun. Math. Phys. 325, 1139 (2014). [arXiv:1208.6244 [hep-th]]
J. Gomis and S. Lee, “Exact Kahler Potential from Gauge Theory and Mirror Symmetry,” JHEP 1304, 019 (2013). [arXiv:1210.6022 [hep-th]].
E. Gerchkovitz, J. Gomis and Z. Komargodski, “Sphere Partition Functions and the Zamolodchikov Metric,” JHEP 1411, 001 (2014). [arXiv:1405.7271 [hep-th]].
J. Gomis, P.- S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, ``Anomalies, Conformal Manifolds, and Spheres,'' [arXiv:1509.08511 [hep-th]].