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We divide mathematics up into 
sub-fields for convenience

Comput
ational 
Comple

xity
Graph 
Theory



But
But this partitioning process is arbitrary and can hide deeper 

But artificial divisions hide deeper connections 



When do complex objects 
have simple ``models’’?

• In science:  finding mathematical models for 
complex phenomena 

• In mathematics: finding simple approximations to 
graphs or other structures  

• In learning:  finding a simple generative model for 
random data points



Models in science

Scientists might be trying to understand the variety of  
butterflies within a forest



Limited ways of measuring 

• Color:  Azure, wingspan: 1.2 cm, antennae length: .
11 mm, proboscis length: 2.5 cm,…..



What would a mathematical 
model of butterflies entail?

• Model:  A way to generate data points of the same format 
as measurements of a butterfly 

• Strict realist: all variables in model should be meaningful in 
terms of butterflies 

• Realist:  Variables might not mean anything of themselves, 
but distribution produced should be close to true one 

• Instrumentalist:  Model might not be real, but predictions 
should be valid, i.e., model should be indistinguishable from 
the true one with respect to simple functions of the data 



When do models exist?
• Model should be defined in terms of tests that can 

be made, simplicity means few tests actually 
involved in model 

• Predictive power:  Model should accurately  predict 
values of tests, even if not used in model 

• Realist:  When can we come close to the original 
distribution?  What does this even mean?  (Is the 
distribution all butterflies we caught, all butterflies 
in the forest, or all butterflies that could exist?). 



Many mathematical objects 
have  structure at a high level



But the details appear 
random



Abstract setting
• We want to understand a probability distribution D over 

objects x 

• There is a prior distribution U , often thought of as the 
uniform distribution on a set containing D’s support 

• We are interested in how Boolean tests T(x) from a class   T  
behave on D, i.e., to estimate T[D]= Prob [T(x)=1] when x is 
drawn from D, for all T in T 

• D might be complex, so we wish to find a model  of D, a 
simple distribution D’ so that D and D’ are indistinguishable 
to within e by tests in T, i.e. |T(D)-T(D’)| < e for all T in T



What is simple?
• Simple means definable in terms of relatively few 

tests, each from our class 

• If G is a class of functions (not necessarily 
boolean), we use Gk[T] to be all functions of the 
form g(T1(x),…Tk(x)) where  each Ti is in T

• A measure u is a function from U to [0,1], and 
induces the distribution Du where we pick x from U, 
and keep x with probability u(x), otherwise 
resampling.  |u| = Exp_U [u(x)] is the ``density’’ of u



Example settings
• U is the uniform distribution on a square , and each T is a straight line 

with true on one side, false on the other 

• U is the uniform distribution on all n bit strings, and T is the class of 
tests with small circuit complexity 

• U is the set of all integers up to N,  and T is the class of Gowers 
norms of functions.   

• U is the set of edges of the complete graph on N vertices, and each 
T is a cut, a pair of disjoint subsets A and B, where an T(e) is true if e 
has one endpoint in A and the other in B.   

• U is the space of all images, and T is the class of tests defined 
computable by neural nets with a certain configuration



Pseudo-density
• A distribution is pseudo-random if it is indistinguishable from U 

• For T a test, and D a distribution, let T[D] = Exp_{x chosen from D} 
[T(x)] 

• A distribution has density > d if for all (measurable) sets S, S[U] > 
d S[D].   

• D has pseudo-density > d  with error e with respect to T if T[U] > d 
T[D] - e for all T in T.  In other words, using tests in T, and relatively 
few samples, there is no  way to tell that the density of D is not > d 

• One way to be pseudo-dense is to be actually dense within a 
pseudo-random sub-distribution.  



Three kinds of 
decomposition lemmas

• Hard-core set lemmas [I, H: complexity]:  Let f be 
any Boolean function on U.  For some k = poly(1/e, 
1/d), there is either a function F in Gk[T] so that 
Prob[f(x)=F(x)] > 1 -d or a distribution u in Hk[T, f] 
of density at least 2d so that f is pseudo-random on 
Du.

0
1

0100
1101



Transference Principles, aka 
Dense Model Theorem

• Green-Tao,Tao-Ziegler , BSW, RTTV, here:  If D is at 
least d pseudo-dense for Gk[T], then there is an 
indistinguishable distribution Du, which is at least d 
dense, {and u is in Hk[T] }



Regularity lemmas
• Szemeredi, FK, graph theory .  If D is at least d 

dense, then there is a model Du with u in Hk[T]



• Hardcore Set 

Dense Model

Weak Regularity

By going through the reductions, get a variety
of dense model lemmas and weak regularity lemmas

(Different k, different G, different H)

Our results (but cf RTTV, TTV)



Reduction from Hard-core to 
Dense Model

S U

d’ 1-d’

f=1 f=-1

Counter-example to pseudo-density= 
Computing f with error < d’ 

Model for S = 
Hard-core distribution for f with density 2 d’



Algorithmic versions
• Some proofs of the Hardcore Set Lemma 

algorithmic, based on boosting algorithms (see KS) 

• Boosting is a very successful technique from 
machine learning (Schapire, FS), putting together 
weakly correlated hypothesis into a single highly 
correct hypothesis 

• Many different boosting algorithms known, most of 
which can be modified for constructive hard-core 
sets



Boosting
• Unknown function f on uniform distribution U 

• Sub-routine:  Weak Learner:  Input: u_i , a measure 
defined in terms of f, h_1,..h_{i-1}.   Output: a test 
h_i with correlation e with f on D_{u_i} 

• Goal:  quickly output a function H= G (h_1,..h_i) so 
that Prob_{x in U} [H(x)=f(x)] > 1 - d 

• ``If weak learner always finds hi, boosting algorithm 
finds H in few iterations’’



Reductions are algorithmic
• Each boosting algorithm with a density bound  gives an 

algorithmic hard-core set lemma  

• Each algorithmic hardcore set lemma gives an algorithmic 
dense model theorem :  Need as a sub-routine a procedure 
for finding tests that distinguish between two distributions 
(that are not indistinguishable ) 

• Algorithm will either output a model u in Hk[T] of D or a test 
T in Gk[T] that is a counter-example to pseudo-density, i.e, 
T(U) < d T(D) - e.   

• If D is actually dense, must produce a simple model, so also 
get algorithmic weak regularity lemmas.



GAN (Goodfellow et al)

• Possible tie back to machine learning.  Generative 
adversarial networks use two learning algorithms to 
understand distribution.  One (forger) tries to learn 
to produce samples from a distribution.  Other 
(critic) tries to guess whether samples are genuine 
or forged.  



Using Algorithmic DMT as 
GAN-type algorithm

• Generation through adversarial boosting (GAB) 
Strategy where either the critic finds a narrow 
criteria for genuine samples or the forger finds a 
high entropy way that fools the critic.   



Using Algorithmic DMT as 
GAN-type algorithm 

• Forger: Simulates boosting algorithm 

• Critic: Distinguisher between forger’s distributions and S 
= Weak learner.  

• Forger produces candidate distribution u_i, Critic 
produces distinguishing test h_i .  Forger uses boosting 
algorithm to produce u_{i+1}.  

• In few iterations, either critic fails (indistinguishability) or 
boosting algorithm produces strong hypothesis = 
counter-example for d-pseudo-density



Consequence
• Using any appropriate boosting algorithm, and any 

distinguisher, we obtain an efficient method for 
Generation by Adversarial Boosting (GAB) , which 
produces either an indistinguishable distribution or 
a counter-example to pseudo-density d.   

• Best number of iterations: O ( log 1/d / e^2).  
(However, finding samples from u takes time O(1/
d)).  



GAB algorithm: the 
distinguisher

• DIST is  a distinguisher.  It takes as input two 
distributions, S and D, and tries to find an h in H 
where h(S) > h(D) + e.  It could be stateful, if 
desired, or stateless.  It could be a neural net 
classifier, but it doesn’t have to be.  Sometimes, we 
will be able to show a particular algorithm Dist that 
is complete for H:  if there is such a distinguishing 
test h, Dist will find one that comes close.   

• We think of Dist as the critic.



Form of distribution
• Say in the past, Dist has produced h_1,..h_i 

• Define s_i(x) = 2(h_1(x) + h_2(x)…+h_i(x)) -i, number 
``S-like’’ minus number ``non-S-like’’ 

• v is an integer valued variable, decreasing over time 

• M[s] = min (1, exp (es)) 

• u_{i,v}(x) = M( s_i (x)  - v) is a measure 

• D_{u_{i,v}} is the induced distribution



GAB
• T:= C log (1/d)/e^2.  

• v := ln 1/d, i:=0 (So u_{0,v} (x) =d.  ) 

• Repeat T times or until Dist fails: 

•         If Dist fails on S and D_{u_{i,v}}, return u_{i,v} 

•         ELSE h_{i+1} is the hypothesis produced by Dist 

•         IF d (u_{i+1,v} ) < d THEN decrement v 

• Find a t so that Threshold_t ( h_1(x)+…h_T(x)) is a counter-
example to (d,e)-pseudo-density for S



Theoretical guarantee

• GAB either produces a distribution D_{u_{i,v}} of 
density at least d which Dist fails to distinguish from 
S, or a counter-example to pseudo-density.  



Win-win

• If Dist is a good distinguisher, fooling Dist means 
that the distribution produced ``looks like S’’. 
Density d means the distribution is ``very random’’ 

• Finding a counter-example to pseudo-density 
means characterizing the range of S, showing that 
it is ``non-random’'



Criticism of GAN

• Arora, Ge, Liang, Ma, Zhang:  GANs might greatly 
reduce entropy of distribution, approaching 
``replays’' 

• Arora, Zhang:  Empirical study shows this 
happening with real applications of GANs



Why entropy loss is a 
problem



Generation by Adversarial 
Reflective Boosting (GARB)

• Modification of GAB to include looking for 
symmetric function of current hypotheses as 
distinguishers, i.e., using measure as distinguisher 

• Cost:  Distributions, counter-examples are deep 
symmetric circuits of hypotheses 

• Advantage:  If S is pseudo-dense, we find a model 
that is both indistinguishable and has at least the 
entropy of S (up to small additive loss, o(1) bits.). 



GARB
• We keep GAB as is.  The only change is in the 

Distinguisher.    

• ReflectiveDist (S, u_{i,v} = M( s_i -v)) 

•     Use samples from both distributions to make histograms 
of s_i  

• If the distributions are greater than e statistical distance  
then there  is a symmetric function h_{i+1} of h_1…h_i that 
distinguishes S and D_{u_{i,v}}.  Return h_{i+1} 

• Else, return Dist (S, D_{u_{i,v}}).  



Properties of GARB
• h_k is a depth at most k symmetric circuit in functions 

from H.   

• Same guarantees as GAB, because special case. 

• If Dist’ fails,  Entropy (D_{u_{i,v}})  > Entropy (S) - O(e 
log (1/ed)), so almost maximal entropy. 

• The same is true for any S’ that is indistinguishable from 
S via symmetric  circuits over H, so if S is sub-sampled 
from S’, the guarantee will hold for the entropy of S'



What can go wrong?
• Distribution not pseudo-dense for reasonable d.  How likely are 

random matrices of pixels to look like cats?    Then we find 
characterization, can apply recursively, if we can sample within 
subset defined by characterization.  Or start with a smaller 
space to begin with, by identifying useful features before 
algorithm starts.  (Pictures of cats within space of pictures of 
objects, not within random noise.) 

• Weak distinguisher.  Then we’ll find a distribution that is high-
entropy, but stronger distinguishers might tell the difference.   
Fix one:  many situations, provable distinguishers (e.g., cut norm 
for graphs, low dimensional geometric distributions).  Fix two: 
resume GARB with stronger distinguisher if unsatisfied.   



Mathematical consequences
• In addition to possible machine learning applications, we can 

apply machine learning tools to mathematics using the dense 
model theorem with better boosting algorithms 

• Graph theory: Improved weak regularity lemma for sparse 
graphs 

• Fourier analysis: Improve Chang’s Inequality for Boolean 
functions that don’t have huge intersections with sub-spaces 

• Computational complexity:  Characterization of pseudo-entropy 

• Cryptography:  Leakage-resistant pseudo-random strings.



Leakage resilient 
cryptography

• In crypto, randomness is cheap, but secret 
randomness is expensive. 

• Say we have a (shared) secret random string R, but the 
adversary has managed to learn some k -bits of 
information about R, L(R)        

• Can use a (strong) randomness Extractor with a public 
randomly chosen seed to extract secret R’=Ext(s, R) 
that will be a slightly smaller secret random string 



Pseudo-random secret
• But usually R isn’t random, but pseudo-random, 

R=G(r).  In that case, the leaked bits could be 
functions of r.  Do extractors still work?   

• Yes:  Dense Model theorem:  Distribution (R, L(r)) is 
2^{-k} pseudo-dense, has a dense model.  
Extracting from this model is random, given L, so 
extracting from R is indistinguishable from random 
given L.  GAB: also true in uniform model



Applied to Regularity 
Lemmas

• Works for non-complete graphs, e.g., multi-partite 
graphs, conditioning on degrees, etc. 

• Dense Model theorem gives weak regularity lemma 
for sparse graphs:  2^O( log 1/d e^{-2})) rather 
than 2^O(d^{-2} e^{-2}) 

• While generic result only for Weak Regularity, can 
reverse engineer to produce ``boost ’til you bust’’, a 
boosting version that implies Szemeredi Regularity



Decomposition
• Instead of an ``either-or’’, we can use DML 

iteratively to decompose an arbitrary distribution 
into a part that is non-dense and a model of the 
dense part.   



Applying recursively

• Telescoping model with k =poly(1/e , log 1/d)



Pseudo-entropy

• Applying this in turn to computational complexity, 
this shows that if a distribution has pseudo-entropy 
k , then it has a model  D’ that is indistinguishable, 
has entropy k - e, and where D’ is samplable in 
P^NP / poly



Conclusion
• This connection allows us to draw on powerful 

machine learning tools for a wide variety of 
mathematical subjects 

• ``Plug and play’’ theorems allow you to try to find the 
boosting algorithm that gives you the best regularity 
lemmas for your application 

• We can also hope to use the connection to prove 
theorems explaining the success of machine learning 
techniques, and  extending those techniques.  


