
Connections between
learning and pseudo

randomness
Russell Impagliazzo, UCSD

We divide mathematics up into
sub-fields for convenience

Comput
ational
Comple

xity
Graph
Theory

But
But this partitioning process is arbitrary and can hide deeper

But artificial divisions hide deeper connections

When do complex objects
have simple ``models’’?

• In science: finding mathematical models for
complex phenomena

• In mathematics: finding simple approximations to
graphs or other structures

• In learning: finding a simple generative model for
random data points

Models in science

Scientists might be trying to understand the variety of
butterflies within a forest

Limited ways of measuring

• Color: Azure, wingspan: 1.2 cm, antennae length: .
11 mm, proboscis length: 2.5 cm,…..

What would a mathematical
model of butterflies entail?

• Model: A way to generate data points of the same format
as measurements of a butterfly

• Strict realist: all variables in model should be meaningful in
terms of butterflies

• Realist: Variables might not mean anything of themselves,
but distribution produced should be close to true one

• Instrumentalist: Model might not be real, but predictions
should be valid, i.e., model should be indistinguishable from
the true one with respect to simple functions of the data

When do models exist?
• Model should be defined in terms of tests that can

be made, simplicity means few tests actually
involved in model

• Predictive power: Model should accurately predict
values of tests, even if not used in model

• Realist: When can we come close to the original
distribution? What does this even mean? (Is the
distribution all butterflies we caught, all butterflies
in the forest, or all butterflies that could exist?).

Many mathematical objects
have structure at a high level

But the details appear
random

Abstract setting
• We want to understand a probability distribution D over

objects x

• There is a prior distribution U , often thought of as the
uniform distribution on a set containing D’s support

• We are interested in how Boolean tests T(x) from a class T
behave on D, i.e., to estimate T[D]= Prob [T(x)=1] when x is
drawn from D, for all T in T

• D might be complex, so we wish to find a model of D, a
simple distribution D’ so that D and D’ are indistinguishable
to within e by tests in T, i.e. |T(D)-T(D’)| < e for all T in T

What is simple?
• Simple means definable in terms of relatively few

tests, each from our class

• If G is a class of functions (not necessarily
boolean), we use Gk[T] to be all functions of the
form g(T1(x),…Tk(x)) where each Ti is in T

• A measure u is a function from U to [0,1], and
induces the distribution Du where we pick x from U,
and keep x with probability u(x), otherwise
resampling. |u| = Exp_U [u(x)] is the ``density’’ of u

Example settings
• U is the uniform distribution on a square , and each T is a straight line

with true on one side, false on the other

• U is the uniform distribution on all n bit strings, and T is the class of
tests with small circuit complexity

• U is the set of all integers up to N, and T is the class of Gowers
norms of functions.

• U is the set of edges of the complete graph on N vertices, and each
T is a cut, a pair of disjoint subsets A and B, where an T(e) is true if e
has one endpoint in A and the other in B.

• U is the space of all images, and T is the class of tests defined
computable by neural nets with a certain configuration

Pseudo-density
• A distribution is pseudo-random if it is indistinguishable from U

• For T a test, and D a distribution, let T[D] = Exp_{x chosen from D}
[T(x)]

• A distribution has density > d if for all (measurable) sets S, S[U] >
d S[D].

• D has pseudo-density > d with error e with respect to T if T[U] > d
T[D] - e for all T in T. In other words, using tests in T, and relatively
few samples, there is no way to tell that the density of D is not > d

• One way to be pseudo-dense is to be actually dense within a
pseudo-random sub-distribution.

Three kinds of
decomposition lemmas

• Hard-core set lemmas [I, H: complexity]: Let f be
any Boolean function on U. For some k = poly(1/e,
1/d), there is either a function F in Gk[T] so that
Prob[f(x)=F(x)] > 1 -d or a distribution u in Hk[T, f]
of density at least 2d so that f is pseudo-random on
Du.

0
1

0100
1101

Transference Principles, aka
Dense Model Theorem

• Green-Tao,Tao-Ziegler , BSW, RTTV, here: If D is at
least d pseudo-dense for Gk[T], then there is an
indistinguishable distribution Du, which is at least d
dense, {and u is in Hk[T] }

Regularity lemmas
• Szemeredi, FK, graph theory . If D is at least d

dense, then there is a model Du with u in Hk[T]

• Hardcore Set

Dense Model

Weak Regularity

By going through the reductions, get a variety
of dense model lemmas and weak regularity lemmas

(Different k, different G, different H)

Our results (but cf RTTV, TTV)

Reduction from Hard-core to
Dense Model

S U

d’ 1-d’

f=1 f=-1

Counter-example to pseudo-density=
Computing f with error < d’

Model for S =
Hard-core distribution for f with density 2 d’

Algorithmic versions
• Some proofs of the Hardcore Set Lemma

algorithmic, based on boosting algorithms (see KS)

• Boosting is a very successful technique from
machine learning (Schapire, FS), putting together
weakly correlated hypothesis into a single highly
correct hypothesis

• Many different boosting algorithms known, most of
which can be modified for constructive hard-core
sets

Boosting
• Unknown function f on uniform distribution U

• Sub-routine: Weak Learner: Input: u_i , a measure
defined in terms of f, h_1,..h_{i-1}. Output: a test
h_i with correlation e with f on D_{u_i}

• Goal: quickly output a function H= G (h_1,..h_i) so
that Prob_{x in U} [H(x)=f(x)] > 1 - d

• ``If weak learner always finds hi, boosting algorithm
finds H in few iterations’’

Reductions are algorithmic
• Each boosting algorithm with a density bound gives an

algorithmic hard-core set lemma

• Each algorithmic hardcore set lemma gives an algorithmic
dense model theorem : Need as a sub-routine a procedure
for finding tests that distinguish between two distributions
(that are not indistinguishable)

• Algorithm will either output a model u in Hk[T] of D or a test
T in Gk[T] that is a counter-example to pseudo-density, i.e,
T(U) < d T(D) - e.

• If D is actually dense, must produce a simple model, so also
get algorithmic weak regularity lemmas.

GAN (Goodfellow et al)

• Possible tie back to machine learning. Generative
adversarial networks use two learning algorithms to
understand distribution. One (forger) tries to learn
to produce samples from a distribution. Other
(critic) tries to guess whether samples are genuine
or forged.

Using Algorithmic DMT as
GAN-type algorithm

• Generation through adversarial boosting (GAB)
Strategy where either the critic finds a narrow
criteria for genuine samples or the forger finds a
high entropy way that fools the critic.

Using Algorithmic DMT as
GAN-type algorithm

• Forger: Simulates boosting algorithm

• Critic: Distinguisher between forger’s distributions and S
= Weak learner.

• Forger produces candidate distribution u_i, Critic
produces distinguishing test h_i . Forger uses boosting
algorithm to produce u_{i+1}.

• In few iterations, either critic fails (indistinguishability) or
boosting algorithm produces strong hypothesis =
counter-example for d-pseudo-density

Consequence
• Using any appropriate boosting algorithm, and any

distinguisher, we obtain an efficient method for
Generation by Adversarial Boosting (GAB) , which
produces either an indistinguishable distribution or
a counter-example to pseudo-density d.

• Best number of iterations: O (log 1/d / e^2).
(However, finding samples from u takes time O(1/
d)).

GAB algorithm: the
distinguisher

• DIST is a distinguisher. It takes as input two
distributions, S and D, and tries to find an h in H
where h(S) > h(D) + e. It could be stateful, if
desired, or stateless. It could be a neural net
classifier, but it doesn’t have to be. Sometimes, we
will be able to show a particular algorithm Dist that
is complete for H: if there is such a distinguishing
test h, Dist will find one that comes close.

• We think of Dist as the critic.

Form of distribution
• Say in the past, Dist has produced h_1,..h_i

• Define s_i(x) = 2(h_1(x) + h_2(x)…+h_i(x)) -i, number
``S-like’’ minus number ``non-S-like’’

• v is an integer valued variable, decreasing over time

• M[s] = min (1, exp (es))

• u_{i,v}(x) = M(s_i (x) - v) is a measure

• D_{u_{i,v}} is the induced distribution

GAB
• T:= C log (1/d)/e^2.

• v := ln 1/d, i:=0 (So u_{0,v} (x) =d.)

• Repeat T times or until Dist fails:

• If Dist fails on S and D_{u_{i,v}}, return u_{i,v}

• ELSE h_{i+1} is the hypothesis produced by Dist

• IF d (u_{i+1,v}) < d THEN decrement v

• Find a t so that Threshold_t (h_1(x)+…h_T(x)) is a counter-
example to (d,e)-pseudo-density for S

Theoretical guarantee

• GAB either produces a distribution D_{u_{i,v}} of
density at least d which Dist fails to distinguish from
S, or a counter-example to pseudo-density.

Win-win

• If Dist is a good distinguisher, fooling Dist means
that the distribution produced ``looks like S’’.
Density d means the distribution is ``very random’’

• Finding a counter-example to pseudo-density
means characterizing the range of S, showing that
it is ``non-random’'

Criticism of GAN

• Arora, Ge, Liang, Ma, Zhang: GANs might greatly
reduce entropy of distribution, approaching
``replays’'

• Arora, Zhang: Empirical study shows this
happening with real applications of GANs

Why entropy loss is a
problem

Generation by Adversarial
Reflective Boosting (GARB)

• Modification of GAB to include looking for
symmetric function of current hypotheses as
distinguishers, i.e., using measure as distinguisher

• Cost: Distributions, counter-examples are deep
symmetric circuits of hypotheses

• Advantage: If S is pseudo-dense, we find a model
that is both indistinguishable and has at least the
entropy of S (up to small additive loss, o(1) bits.).

GARB
• We keep GAB as is. The only change is in the

Distinguisher.

• ReflectiveDist (S, u_{i,v} = M(s_i -v))

• Use samples from both distributions to make histograms
of s_i

• If the distributions are greater than e statistical distance
then there is a symmetric function h_{i+1} of h_1…h_i that
distinguishes S and D_{u_{i,v}}. Return h_{i+1}

• Else, return Dist (S, D_{u_{i,v}}).

Properties of GARB
• h_k is a depth at most k symmetric circuit in functions

from H.

• Same guarantees as GAB, because special case.

• If Dist’ fails, Entropy (D_{u_{i,v}}) > Entropy (S) - O(e
log (1/ed)), so almost maximal entropy.

• The same is true for any S’ that is indistinguishable from
S via symmetric circuits over H, so if S is sub-sampled
from S’, the guarantee will hold for the entropy of S'

What can go wrong?
• Distribution not pseudo-dense for reasonable d. How likely are

random matrices of pixels to look like cats? Then we find
characterization, can apply recursively, if we can sample within
subset defined by characterization. Or start with a smaller
space to begin with, by identifying useful features before
algorithm starts. (Pictures of cats within space of pictures of
objects, not within random noise.)

• Weak distinguisher. Then we’ll find a distribution that is high-
entropy, but stronger distinguishers might tell the difference.
Fix one: many situations, provable distinguishers (e.g., cut norm
for graphs, low dimensional geometric distributions). Fix two:
resume GARB with stronger distinguisher if unsatisfied.

Mathematical consequences
• In addition to possible machine learning applications, we can

apply machine learning tools to mathematics using the dense
model theorem with better boosting algorithms

• Graph theory: Improved weak regularity lemma for sparse
graphs

• Fourier analysis: Improve Chang’s Inequality for Boolean
functions that don’t have huge intersections with sub-spaces

• Computational complexity: Characterization of pseudo-entropy

• Cryptography: Leakage-resistant pseudo-random strings.

Leakage resilient
cryptography

• In crypto, randomness is cheap, but secret
randomness is expensive.

• Say we have a (shared) secret random string R, but the
adversary has managed to learn some k -bits of
information about R, L(R)

• Can use a (strong) randomness Extractor with a public
randomly chosen seed to extract secret R’=Ext(s, R)
that will be a slightly smaller secret random string

Pseudo-random secret
• But usually R isn’t random, but pseudo-random,

R=G(r). In that case, the leaked bits could be
functions of r. Do extractors still work?

• Yes: Dense Model theorem: Distribution (R, L(r)) is
2^{-k} pseudo-dense, has a dense model.
Extracting from this model is random, given L, so
extracting from R is indistinguishable from random
given L. GAB: also true in uniform model

Applied to Regularity
Lemmas

• Works for non-complete graphs, e.g., multi-partite
graphs, conditioning on degrees, etc.

• Dense Model theorem gives weak regularity lemma
for sparse graphs: 2^O(log 1/d e^{-2})) rather
than 2^O(d^{-2} e^{-2})

• While generic result only for Weak Regularity, can
reverse engineer to produce ``boost ’til you bust’’, a
boosting version that implies Szemeredi Regularity

Decomposition
• Instead of an ``either-or’’, we can use DML

iteratively to decompose an arbitrary distribution
into a part that is non-dense and a model of the
dense part.

Applying recursively

• Telescoping model with k =poly(1/e , log 1/d)

Pseudo-entropy

• Applying this in turn to computational complexity,
this shows that if a distribution has pseudo-entropy
k , then it has a model D’ that is indistinguishable,
has entropy k - e, and where D’ is samplable in
P^NP / poly

Conclusion
• This connection allows us to draw on powerful

machine learning tools for a wide variety of
mathematical subjects

• ``Plug and play’’ theorems allow you to try to find the
boosting algorithm that gives you the best regularity
lemmas for your application

• We can also hope to use the connection to prove
theorems explaining the success of machine learning
techniques, and extending those techniques.

