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Well connected graphs of small degree are called expanders.

Definition A graph Γ is called an ε-expander if for any set of vertices A,

such that |A| ≤ |Γ|/2 we have |∂A| ≥ ε|A|.

The maximal ε with this property is called the expanding constant of Γ.

A family of graphs (of bounded degree) is called an expander family if

their expanding constants are uniformly bounded.
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Theorem A family of k-regular graphs Γi are expanders if any of the

following holds:

• the expanding constants of Γi are bounded from 0,

• the Cheeger constants of Γi are bounded form 0,

• the spectral gaps of the Laplacians (Id- normalized adjacency

matrices) are bounded form 0.

Any of these conditions implies that the random walks on Γi mix in

O(log |Γi|) steps.

If one allows k to increase then the these conditions are NOT equivalent,

thus there are several different definitions of unbounded degree
expanders.
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In the case of Cayley graphs of finite groups, there is an other condition

equivalent to “expansion”, which is related to representation theory, more

precisely to the “Kazhdan constants”.

Problem Let be {Gi} a family of finite groups. Is it possible to find

generating sets Si, which make the Cayley graphs C(Gi, Si) expanders?

• there are many cases where such generating sets are known to

exist, e.g., for quotients of a group with a variant of property T;

• and only a few where it can be proven that such generating sets do

not exist, e.g., solvable groups of a fixed class.
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Let H ba a Hilbert space.

A representation a group of G into H is called unitary if

‖g(v)‖ = ‖v‖

for any v ∈ H and g ∈ G.

Definition A unit vector v ∈ H is called ε-almost invariant under the set
S if

‖g(v) − v‖ ≤ ε for any g ∈ S.

One easy way to produce almost invariant vectors is to take

perturbations of invariant vectors.
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Definition Let G be a group, generated by a finite set S.

The maximal ε such that the existence of an ε-almost invariant vector

implies the existence of an invariant vector is called Kazhdan constant of

G with respect to S and is denoted by K(G; S).

The group G has property T if the Kazhdan constant K(G; S) is positive.

If H is a normal subgroup of G, we can also define about relative

Kazhdan constants:

Definition The maximal ε such that the existence of an ε-almost

invariant vector implies the existence of an H invariant vector is called

relative Kazhdan constant of G with respect to S relative to H and is

denoted by K(G, H; S).
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• All finite groups

• Lattices in high rank Lie groups, e.g., SLn(Z)

• Random group, with sufficiently many relations

Infinite groups with property T can be used to construct expander graphs.

Also, families of finite groups with a generating sets of fixed size lead to

expanders, provided that their Kazhdan constants are uniformly bounded.

Moreover, estimates for the Kazhdan constant give to estimates for the

mixing time for some random walks.
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Let G be a group, generated by a finite set S.

The Kazhdan constant of G is

K(G; S) = inf
H

inf
v∈H

max
s∈S

||ρ(s)v − v||
||v||

where H is a representation of G without invariant vectors

Similarly we can define

K2
av(G; S) = inf

H
inf
v∈H

1

|S|
∑

s∈S

||ρ(s)v − v||2
||v||2

K2
av(G; S) is equal to twice the spectral gap of the Laplacian and the inf

is achieved at some irreducible representation.



Computation of Kazhdan Constants

Expander Graphs

Kazhdan Constants

Computation of Kazhdan
Constants

• Trivial bounds
• Dependance on the
generating set

• Some Relative
Kazhdan Constants

Bounded Generation
Property

Kazhdan Constants for
SLn(Fp)

Using Geometry to
(dis-)Prove Property T

Subspace Arrangements

Easy Example

Applications

12 / 48



Trivial bounds

Expander Graphs

Kazhdan Constants

Computation of Kazhdan
Constants

• Trivial bounds
• Dependance on the
generating set

• Some Relative
Kazhdan Constants

Bounded Generation
Property

Kazhdan Constants for
SLn(Fp)

Using Geometry to
(dis-)Prove Property T

Subspace Arrangements

Easy Example

Applications

13 / 48

It is very easy to see that:

2 ≥ K(G; G) >
√

2,

and

K2
av(G; G) = 2.

These inequalities hold, because if unit vector v is moved by less than√
2 by any element of the group G then the whole orbit of v lies in some

half-space.
Thus, the center of mass of the orbit is a non-zero invariant vector in the

representation.

Equivalently, we use that the normalized adjacency matrix of a complete

graph has a spectral gap equal to 1.
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Let G be a group and let S be a set (containing the identity) then

K(G; S) ≥ 1

k
K(G; Sk),

where Sk denotes all group elements which can be written as a product

of k elements from S.

These inequality holds, because any ǫ-almost invariant vector w.r.t. S is

also kǫ-almost invariant w.r.t. to Sk.
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If H is a normal subgroup of G then

K(G; S) ≥ 1

2
K(G; H ∪ S)K(G, H; S),

where K(G, H; S) is the relative Kazhdan constant.

These inequality holds, because any ǫ-almost invariant vector w.r.t. S is

also 2K(G, H; S)−1ǫ-almost invariant w.r.t. to H .

Lemma If Hi ⊳ Ni are subgroups of G such that

K(Ni, Hi; Si) ≥ L.

Then

K(G;∪Si) ≥
1

2
L ×K(G;∪Hi).
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Theorem (Burger, Shalom, K.)
Let R be an associative ring generated by αi, i = 1, . . . , k.
Consider the subgroup GL2(R) ⋉ R2 ⊂ GL3(R).





∗ ∗ ∗
∗ ∗ ∗
0 0 1





Then

K(GL2(R) ⋉ R2, R2; F ) ≥ 1

5(
√

k + 3)
,

where F is the set consisting of 4(k + 1) elementary matrices with ±1
or ±αi off the diagonal and the two standard generators of R2.

The proof uses almost invariant measures on the unitary dual of R2

considered as additive group.
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Definition A group G is said to be boundedly generated by the ordered

multi-set S = {s1, s2, . . . , sk} if any element g ∈ G can be written a a

product

g = sa1
1 sa2

2 . . . sak
k

for some integers ai.

This is a very strong condition and implies strong restrictions on the

group G.
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Theorem (Carter-Keller) Any matrix in SLn(Z) can be written as a

product of less than 2n2 + 100 elementary matrices.

The proof uses reduction from SLn(Z) to SLn−1(Z) for n ≥ 3,

which only uses existence of primes in arithmetic progression.

The main step is to show that any element in SL2(Z) ⊂ SL3(Z)
can be written as a product of 100 elementary matrices.

This step uses K-theory and playing with Mennicke symbols.

If we are only interested in SLn(Fp) then the proof becomes much

easier and uses only Gauss elimination.
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For groups like SLn(R) it is better to consider the following property

Definition A group G called is boundedly generated by the subgroups
Hi, if there exists N such that any g ∈ G can be written as

g = g1g2 . . . gN , where gi ∈
⋃

Hi.

Theorem Let R be a “nice” finite associative ring with 1, then any

element in EL3(R) can be written as a product of 50 elementary
matrices.

A “nice” ring is any product of matrix rings over fields, or commutative

rings.

It is unknown if similar result holds for SLn(Z[x]) for a big n.

It if false for SLn(C[x]).
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The homomorphisms from SL2(Z) ⋉ Z2 to SLn(Fp),

and estimates for the relative Kazhdan constant of SL2(Z) ⋉ Z
2

imply that

K(SLn(Fp); En(±1)) ≥ 1

20
K(SLn(Fp); En),

where En(±1) is the set of elementary matrices with ±1 off the

diagonal and En is the set of all el. matrices.

By bounded generation En
2n2

= SLn, therefore

K(SLn(Fp); En) ≥ 1

2n2
K(SLn(Fp); SLn(Fp)) ≥

1

2n2

Theorem (Shalom)

K(SLn(Fp); En(±1)) ≥ 1

40n2
.
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Block decomposition implies SL3n(Fp) ≃ EL3(Matn(Fp)).

Since the ring Matn(Fp) is 2-generated, and EL3(Matn(Fp)) has

uniform bounded generation property, we have:

K(SL3n(Fp); E3(±1, A, B)) ≥ 1

20
K(SL3n(Fp); E3),

K(SL3n(Fp); E3)) ≥
1

40
K(SL3n(Fp); SL3n(Fp)) ≥

1

40

where E3(±1, A, B) is the set of block elementary matrices with

generators of Matn(Fp) off the diagonal and E3 is the set of all block el.

matrices.

Theorem (K) There resists a generating set S of SL3n(Fp) with

|S| < 20 and

K(SL3n(Fp); S) ≥ 1

1000
.
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The infinite dihedral group

D∞ = 〈a, b | a2 = b2 = 1〉

does not have property T.

For any ϕ there is a representation

of D∞ on R
2 where a, b act as re-

flections across two lines at angle
2ϕ.

This representation does not have

invariant vectors, but it has a unit

vector which is 2 sinϕ invariant.

2ϕ

a

b

This example shows that we need some bound for the angle between the

subspaces HG1 and HG2 in order to prove property T for

G = 〈G1, G2〉.



Groups generated by involutions

Expander Graphs

Kazhdan Constants

Computation of Kazhdan
Constants

Bounded Generation
Property

Kazhdan Constants for
SLn(Fp)

Using Geometry to
(dis-)Prove Property T

• Example D∞

• Groups generated by
involutions
• Angle between two
subspaces
• Angle between many
subspaces
• Bounding the angle
between subspaces

• Groups generated by 3
involutions

• 3 Subspaces

Subspace Arrangements

Easy Example

Applications

26 / 48

Assume that the generating set S consist of involutions.

Let Hs denotes the fixed subspace of s ∈ S.

Notice that:

• H has no G invariant vectors ⇔ ⋂Hs = {0}

• ρ(s)v − v = 2d(v,Hs)

Thus, the group G has property T if for any representation of G on H,
any vector which is close to all subspaces Hs is not too far from the

intersection
⋂Hs.
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Definition Let H1 and H2 be two subspaces of a Hilbert space H. The

angle ∢(H1,H2) is the smallest angle between vectors v1 and v2, such

that vi ∈ Hi and vi ⊥ H1 ∩H2.

Notice that the operator norm of the addition

sum : H1/(H1 ∩H2) ⊕H2/(H1 ∩H2) → H/(H1 ∩H2)

is less than
√

1 + cos ∢(H1,H2).

Equivalently, we can define the angle using the spectral gap near
√

2 of

the addition

sum : H1 ⊕H2 → H
Notice that the angle between two subspaces is ‘not defined’ if one is subspace of the other. In this case we say that the angle is
π/2 and the subspaces are perpendicular.
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Definition Let Hi, i = 1, . . . , n be subspaces of a Hilbert space H.

We say that the angle ∢(Hi) between them is φ if

cosφ =
1

n − 1

(

sup
||∑ vi||2
∑ ||vi||2

− 1

)

where sup is taken over vi ∈ Hi and vj ⊥
⋂

i Hi.

Equivalently the norm of the addition

sum : H1/ ∩Hi ⊕ . . .Hn/ ∩Hi → H/ ∩Hi

is
√

1 + (n − 1) cos φ.

Notice that the angle between any collection of subspaces in a finite

dimensional spaces is positive, but this is not true in general.

Also any lower bound for ∢(Hi) gives a lower bound of maximal

distance from a unit vector v to the subspaces Hi.
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Lemma If the the involutions s and t generate a dihedral group of order

2k then the angle ∢(Hs,Ht) ≥ π/k, where Hs and Ht are the fixed

points of s and t in any unitary representation of G.

The proof uses the representation theory of the dihedral group Dk.

Similar result hold if s and t are elements of order p and 〈s, t〉 is the
Heisenberg group mod p. In this case we have

cos ∢(Hs,Ht) ≤
1√
p
.

Again it suffices to verify this bound for any irreducible representation of

the Heisenberg group.
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Let G be a group generated by 3 involutions, i.e., G is a Coxeter group

G = 〈s1, s2, s3 | s2
i = 1, (sisj)

mij = 1〉

Question When does G has property T?

Using the classification of 3 generated Coxeter groups one can see that

the following are equivalent:

• G has property T

• G is finite

• 1

m12
+ 1

m23
+ 1

m31
> 1



3 Subspaces

Expander Graphs

Kazhdan Constants

Computation of Kazhdan
Constants

Bounded Generation
Property

Kazhdan Constants for
SLn(Fp)

Using Geometry to
(dis-)Prove Property T

• Example D∞

• Groups generated by
involutions
• Angle between two
subspaces
• Angle between many
subspaces
• Bounding the angle
between subspaces

• Groups generated by 3
involutions

• 3 Subspaces

Subspace Arrangements

Easy Example

Applications

31 / 48

Let Hi be 3 subspaces in a Hilbert space H, with trivial intersection.

Lemma: Let αij denote the angle be-

tween Hi and Hj . If
∑

αij > π
than any vector v which is closed to
all Hi, is short, i.e.,

||v||2 ≤ C
∑

d(v,Hi)
2,

where the constant C depends only in

αij .

Notice that the condition

∑

αij > π

is equivalent to the existence of spher-

ical triangle with angles αij .

α12

α23

α31

H2

H1

H3
v
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Definition A subspace arrangement is the collection of all possible

n-tuples of subspaces {Hi}i∈I in some Hilbert space H, satisfying a

fixed set of conditions of the following type.

• for some subsets J ⊂ I there exists αJ such that

∢(Hj)j∈J ≥ αJ

• for some subsets J ⊂ I and some i ∈ I we have Hi ⊃
⋂

j∈J Hj

A collection is called “good”, if there is a strictly positive lower bound for

∢(Hi)i∈I ,

which is valid for all n-tuples of subspaces which satisfy the conditions

listed above.
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The previous lemma is equivalent to saying that any 3 subspaces such

that

• ∢(H1,H2) ≥ α12

• ∢(H2,H3) ≥ α23

• ∢(H3,H1) ≥ α31

satisfy ∢(H1,H2,H3) ≥ α0 > 0 if

α12 + α23 + α31 > π.

In other words the arrangement of 3 subspaces Hi, satisfying the above
conditions is “good”.
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Our motivation for studying such arrangements of subspaces comes from

representation theory.

Let H be a representation of a group G and let Gi be finite subgroups of

G. Denote Hi = HGi the set of vectors fixed by each subgroup.

The two type of restrictions on the subspaces are related to properties of

the group G (and the collections of subgroups Gi):

• representation theory of the group 〈Gi1 , . . . , Gik〉 yields lower
bounds for the angle ∢(Hi1 , . . . ,Hik),

• inclusions Gj ⊂ 〈Gi1 , . . . , Gik〉 correspond Hj ⊃ ∩kHik .
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Theorem Let G be a group generated by n finite subgroups Gi.

Suppose that the inclusions between GJ for J ⊂ {1, . . . , n} and the

representation theory of these groups define a ”good” arrangement of

subspaces.
Then G has property T.
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Suppose that a collection of subspaces is given only by conditions of the

first type, in the simplest case we have bounds for the angles αij

between any pair of Hi-es.

If we find sufficient condition for having a good collection we can deduce
property T for some groups.

Previous results: (εi,j = cos αi,j )

• Dymara-Januszkiewicz proved that the collection is ”good” if

εij < 2−12n for all i, j

• Ershov-Jaikin improved the bound to εij < 1

n−1
for all i, j

• They also showed that the collection is good if n = 3 and some
inequality is satisfied.
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Theorem (K.) Let Hi are subspaces of a Hilbert space H. Denote

εi,j = cos(∢(Hi,Hj)). Suppose that the matrix

A =















1 −ε1,2 −ε1,3 . . . −ε1,n

−ε2,1 1 −ε2,2 . . . −ε2,n

−ε3,1 −ε3,2 1 . . . −ε3,n
...

...
...

. . .
...

−εn,1 −εn,2 −εn,3 . . . 1















is positive definite, then there is lower bound for ∢(Hi), which depends

only the matrix A.
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Theorem The arrangement of n subspaces Hi satisfying the conditions

∢(Hi,Hj) ≥ αij

for all i, j, is ”good” if there exists an n-dimensional spherical simplex

with angles between the faces equal to αij .

Actually, “if” can be replaced with “if and only if”, but the other direction is
much easier.
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It seems “obvious” that the most difficult case is when Hi are

hyper-planes (they have co-dimension 1 in H).

In this case WLOG we can assume that dimH = n and we can find unit

vectors ui perpendicular to the hyper-planes Hi. By construction we

have |〈ui, uj〉| ≤ εi,j .

The volume of the simplex spanned by ui is

V 2 = det(〈ui, uj〉)i,j ≥ detA

is bounded from below, thus any interior point is ”far” form at least one

face, which translates to a lower bound for the angle between the
subspaces Hi.

In the general case one need to do a clever induction to justify the

“obvious”.
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Theorem (Dymara-Januszkiewicz) Let G be a group generated by a

finite subgroup Gi. If for any i, j the group Gi,j = 〈Gi, Gj〉 has

property T and the Kazhdan constant K(Gij, Gi ∪ Gj) is sufficiently

big, than G has property T.
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Theorem (K.) A Coxeter group G has property T if and only if it is finite.

Moreover, the Kazhdan constant K(G, S) can be computed using the

defining representation of the group G.

Corollary The mixing time of the random walk on a Coxeter group G
with respect to the standard generating set S is bounded by n3 log n,
where n is the rank of G.
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Theorem The groups SLn(Fp[t1, . . . , tk]) have property T for any

n ≥ 3 and p > 4.

Proof: The subgroups

Gi = Id + FpEi,i+1

and

Gn = Id+(Fp+t1Fp+· · ·+tkFp)En,1









1 G1 0 0
0 1 G2 0
0 0 1 G3

G4 0 0 1









generate the group SLn(Fp[t1, . . . , tk]).

Any two of these group either commute of generate a Heisenberg group

mod p.



Expander Graphs

Kazhdan Constants

Computation of Kazhdan
Constants

Bounded Generation
Property

Kazhdan Constants for
SLn(Fp)

Using Geometry to
(dis-)Prove Property T

Subspace Arrangements

Easy Example

Applications

• Coxeter Groups

• SLn(Fp[t1, t2])

• Groups graded by root
systems

46 / 48

Thus the ”matrix” of cosines of the angles between the subspaces of

fixed points is:














1 −ε 0 . . . −ε
−ε 1 −ε . . . 0
0 −ε 1 . . . 0
...

...
...

. . .
...

−ε 0 0 . . . 1















where ε = p−1/2.

This matrix is positive definite if ε < 1/2.

Same result holds for Steinberg groups over any finitely generated ring of

characteristic p ≥ 10.
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Definition Let Φ be a finite root system. A group G is called graded by

Φ if there exists root subgroup Xα for α ∈ Φ such that

• G is generated by Xα

• if α and β are linearly independent then [Xα, Xβ] ⊂ 〈Xγ〉, where

γ = aα + bβ for a, b ≥ 1

• if β = aα for a ≥ 1 then [Xα, Xβ] ⊂ 〈Xγ〉, where γ = bβ for
b ≥ 1

• for each α ∈ Φ there exists a set of positive roots Φ+ such that
α ∈ Φ+ and

Xα ⊂ 〈Xγ | γ ∈ Φ+, γ 6= α〉.
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Theorem (Ershov-Jaikin-K.) Let G be a group graded by the root

system Φ. Then the Kazhdan constant K(G,∪Xα) > 0, i.e., G almost

has property T.

The proof is a bit messy...

Corollary Let G = StΦ(R) be a (twisted) Steinberg group of rank ≥ 2
over a finitely generated ring R.

Then G has property T and there is an lower bound for the Kazhdan

constant K(G, S) > 0, where S is the ”natural” generating set of G.
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