PCPs of sub-constant error via derandomized direct product

Irit Dinur Or Meir

Weizmann Institute Department of Computer Science and Applied Mathematics

Irit Dinur, Or Meir PCPs via derandomized parallel repetition

3 1 4

Introduction Direct Product PCPs Construction

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input $x\colon$

- If $x \in L$, then $\exists \pi \text{ s.t. } V^{\pi}(x)$ accepts w.p. 1.
- If $x \notin L_i$ then $\forall \pi$: $V^{\pi}(x)$ accepts with small probability.
- $\bullet~V$ makes few queries to the proof string.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

• If $x \in L$, then $\exists \pi \text{ s.t. } V^{\pi}(x)$ accepts w.p. 1.

• If $x \notin L$, then $\forall \pi : V^{\pi}(x)$ accepts with small probability.

 \bullet V makes few queries to the proof string.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input $x\colon$

- If $x \in L$, then $\exists \pi \text{ s.t. } V^{\pi}(x)$ accepts w.p. 1.
- If $x \notin L$, then $\forall \pi$: $V^{\pi}(x)$ accepts with small probability.
- $\bullet~V$ makes few queries to the proof string.

4 冊 ト 4 三 ト 4 三 ト

Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

- If $x \in L$, then $\exists \pi \text{ s.t. } V^{\pi}(x)$ accepts w.p. 1.
- If $x \notin L$, then $\forall \pi$: $V^{\pi}(x)$ accepts with small probability.
- \bullet V makes few queries to the proof string.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

PCP parameters

- q query complexity.
- s soundness error.
- ℓ proof length.
- Σ proof alphabet.

The PCP theorem [AS92, ALMSS92]

Every $L \in \mathbf{NP}$ has a PCP verifier with constant q, s and $|\Sigma|$, and with $\ell = poly(n)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

PCP parameters

- q query complexity.
- *s* soundness error.
- ℓ proof length.
- Σ proof alphabet.

The PCP theorem [AS92, ALMSS92]

Every $L \in \mathbf{NP}$ has a PCP verifier with constant q, s and $|\Sigma|$, and with $\ell = poly(n)$.

4 E 5 4

Decreasing the soundness error

One research direction, useful for hardness of approximation, is decreasing the soundness error:

- Wish to decrease s as much as possible ideally to a sub-constant.
- Wish to maintain constant q ideally 2.
- Wish to maintain polynomial ℓ .

• Since $s \ge 1/|\Sigma|^q$, must have large Σ .

Decreasing the soundness error

One research direction, useful for hardness of approximation, is decreasing the soundness error:

- Wish to decrease s as much as possible ideally to a sub-constant.
- Wish to maintain constant q ideally 2.
- Wish to maintain polynomial ℓ .
- Since $s \ge 1/|\Sigma|^q$, must have large Σ .

State of the art

- Via parallel repetition [R95], one can get such a PCP with arbitrarily small contant s > 0.
- Folklore (explicit in [MR08]) using low-degree manifolds: $s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$.
- Recent result of [MR08] (simplification by [DH09]): $\forall s \text{ have } |\Sigma| = \exp(1/s).$

• • • • • • •

State of the art

- Via parallel repetition [R95], one can get such a PCP with arbitrarily small contant s > 0.
- Folklore (explicit in [MR08]) using low-degree manifolds: $s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$.
- Recent result of [MR08] (simplification by [DH09]): $\forall s \text{ have } |\Sigma| = \exp(1/s).$

• • • • • • • • •

State of the art

- Via parallel repetition [R95], one can get such a PCP with arbitrarily small contant s > 0.
- Folklore (explicit in [MR08]) using low-degree manifolds: $s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$.
- Recent result of [MR08] (simplification by [DH09]): $\forall s \text{ have } |\Sigma| = \exp(1/s).$

Our work

- We show an alternative approach for achieving the folklore result (s = 1/poly log n, |Σ| = exp (poly log n)).
- Simpler, more intuitive using only the sampling properties of linear spaces.
- Our approach is based on derandomized direct product.
- Work in progress: Plugging the construction into the framework of [DH09].

周 ト イ ヨ ト イ ヨ

Our work

- We show an alternative approach for achieving the folklore result (s = 1/poly log n, |Σ| = exp (poly log n)).
- Simpler, more intuitive using only the sampling properties of linear spaces.
- Our approach is based on derandomized direct product.
- Work in progress: Plugging the construction into the framework of [DH09].

• • = • • = •

Our work

- We show an alternative approach for achieving the folklore result (s = 1/poly log n, |Σ| = exp (poly log n)).
- Simpler, more intuitive using only the sampling properties of linear spaces.
- Our approach is based on derandomized direct product.
- Work in progress: Plugging the construction into the framework of [DH09].

Outline

2 Direct Product PCPs

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

< 3 > < 3

Sequential and Parallel Repetition

- Sequential repetition: Invoking the verifier k times.
- Decreasing s to s^k .
- Increasing q to $k \cdot q$.
- Parallel repetition: Making invocations in parallel.
- Combining $k \cdot q$ queries into q queries.

Sequential and Parallel Repetition

- Sequential repetition: Invoking the verifier k times.
- Decreasing s to s^k .
- Increasing q to $k \cdot q$.
- Parallel repetition: Making invocations in parallel.
- Combining $k \cdot q$ queries into q queries.

Direct Product

- Given a string w ∈ Σ^ℓ, the k-th direct product (k-DP) of w, denoted w^{⊗k}, is a string of length (^ℓ_k) over Σ^k.
- For every $\mathbf{i} = \{i_1, \dots, i_k\} \subseteq [\ell]$, we define $(w^{\otimes k})_{\mathbf{i}} = (w_{i_1}, \dots, w_{i_k}).$
- In derandomized direct product, we take only some of the *k*-subsets.

Direct Product

- Given a string w ∈ Σ^ℓ, the k-th direct product (k-DP) of w, denoted w^{⊗k}, is a string of length (^ℓ_k) over Σ^k.
- For every $\mathbf{i} = \{i_1, \dots, i_k\} \subseteq [\ell]$, we define $(w^{\otimes k})_{\mathbf{i}} = (w_{i_1}, \dots, w_{i_k}).$
- In derandomized direct product, we take only some of the *k*-subsets.

- The proof strings of the new PCP are *k*-DPs of the proof strings of the original PCP.
- A query to the new proof simulates k queries to the original proof.
- One test of the new verifier simulates k tests of the original verifier.

- The proof strings of the new PCP are *k*-DPs of the proof strings of the original PCP.
- A query to the new proof simulates k queries to the original proof.
- One test of the new verifier simulates k tests of the original verifier.

4 3 1 1 4

- The proof strings of the new PCP are *k*-DPs of the proof strings of the original PCP.
- A query to the new proof simulates k queries to the original proof.
- One test of the new verifier simulates k tests of the original verifier.

- Suppose we are given a false claim $x \notin L$ and a proof Π for the new verifier.
- If Π is $k\text{-}\mathsf{DP}$ (i.e., $\Pi=\pi^{\otimes k}$), the new verifier accepts with probability $\leq s^k.$
- The proof length increases from ℓ to $pprox \ell^k$.
- For super-constant k, the proof length is super-polynomial.
- So, wish to derandomize in order to obtain sub-constant error.

- Suppose we are given a false claim $x \notin L$ and a proof Π for the new verifier.
- If Π is $k\text{-}\mathsf{DP}$ (i.e., $\Pi=\pi^{\otimes k}$), the new verifier accepts with probability $\leq s^k.$
- The proof length increases from ℓ to $pprox \ell^k$.
- For super-constant k, the proof length is super-polynomial.
- So, wish to derandomize in order to obtain sub-constant error.

• Problem: The proof Π may not be a k-DP,

- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.
- But much, much more complicated proof.
- Difficult to derandomize.

- Problem: The proof Π may not be a k-DP,
- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.
- But much, much more complicated proof.
- Difficult to derandomize.

4 3 1 1 4

- Problem: The proof Π may not be a k-DP,
- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.
- But much, much more complicated proof.
- Difficult to derandomize.

PCP based on Direct Product Test

- Natural solution: Direct Product Test.
- Test that the proof string is indeed a direct product.
- A DP test was analyzed by [GS97, DR04, DG08, IKW09].
- [IKW09] used this DP test to construct a PCP.
- This gives a considerably simpler proof for a "parallel repetition"-like theorem.

PCP based on Direct Product Test

- Natural solution: Direct Product Test.
- Test that the proof string is indeed a direct product.
- A DP test was analyzed by [GS97, DR04, DG08, IKW09].
- [IKW09] used this DP test to construct a PCP.
- This gives a considerably simpler proof for a "parallel repetition"-like theorem.

PCP based on Derandomized DP Test

- [IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.
- However, they did not construct a PCP based on this derandomized direct product.
- Our work: Constructing a PCP based on the derandomized direct product of [IKW09].
- Thereby obtaining PCPs of sub-constant error.

PCP based on Derandomized DP Test

- [IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.
- However, they did not construct a PCP based on this derandomized direct product.
- Our work: Constructing a PCP based on the derandomized direct product of [IKW09].
- Thereby obtaining PCPs of sub-constant error.

PCP based on Derandomized DP Test

- [IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.
- However, they did not construct a PCP based on this derandomized direct product.
- Our work: Constructing a PCP based on the derandomized direct product of [IKW09].
- Thereby obtaining PCPs of sub-constant error.

Introduction PCP based on Direct Product Direct Product PCPs PCP based on Derandomized Direct Product Construction PCPs and de-Bruijn Graphs

Outline

2 Direct Product PCPs

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

· • = • • = •

Introduction PCP based on Direct Product Direct Product PCPs PCP based on Derandomized Direct Product Construction PCPs and de-Bruijn Graphs

Outline

2 Direct Product PCPs

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

4 3 1 1 4

Constraint Graphs

- Proof coordinate \equiv Vertex.
- Proof string \equiv Assignment of symbols in Σ to the vertices.
- Possible test \equiv Edge.
- $x \in L \equiv$ Graph s.t. \exists satisfying assignment.
- $x \notin L \equiv$ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

Rest of the talk

Original verifier viewed as a graph.

(日) (同) (三) (三)

Constraint Graphs

- Proof coordinate \equiv Vertex.
- Proof string \equiv Assignment of symbols in Σ to the vertices.
- Possible test \equiv Edge.
- $x \in L \equiv$ Graph s.t. \exists satisfying assignment.
- $x \notin L \equiv$ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

Rest of the talk

```
Original verifier viewed as a graph.
```

(日) (同) (三) (三)

Constraint Graphs

- Proof coordinate \equiv Vertex.
- Proof string \equiv Assignment of symbols in Σ to the vertices.
- Possible test \equiv Edge.
- $x \in L \equiv$ Graph s.t. \exists satisfying assignment.
- $x \notin L \equiv$ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

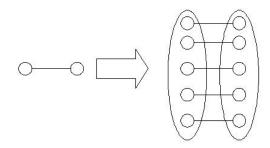
Rest of the talk

Original verifier viewed as a graph.

(日) (同) (三) (三)

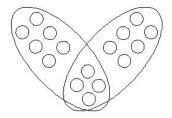
Parallel Repetition on Constraint Graphs

- The verifier chooses k random edges.
- The verifier queries the oracle on the set of left endpoints and on the set of right endpoints.



Direct Product Test [GS97, DR04, DG08, IKW09]

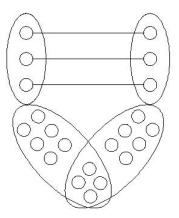
- Wish to test that a string Π is a k-DP.
- Choose a k_1 -subset $A \subseteq V$.
- Choose k-sets $B_1, B_2 \subseteq V$ containing A.
- Check that Π_{B_1} and Π_{B_2} agree on A.
- If Π is far from any k-DP, the test rejects w.h.p.



Introduction Direct Product PCPs Construction PCP based on Direct Product PCP based on Derandomized Direct Product PCPs and de-Bruijn Graphs

PCP based on DP Test

Natural way to combine parallel repetition with direct product (different than [IKW09]):

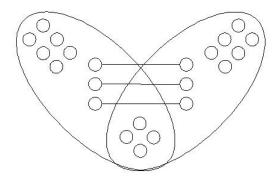


∃ ► < ∃ ►</p>

Introduction Direct Product PCPs Construction PCP based on Direct Product PCP based on Derandomized Direct Product PCPs and de-Bruijn Graphs

PCP based on DP Test

More convenient way to view it.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

PCP based on Direct Product PCP based on Derandomized Direct Product PCPs and de-Bruijn Graphs

PCP based on DP Test

Given G = (V, E) and Π :

- Choose k₀-set E₀ ⊆ E. Let C₁ and C₂ be the left and right endpoints of E₀.
- Choose a k_1 -subset $A \subseteq V$.
- Choose k-sets B_1 and B_2 of V containing $A \cup C_1$ and $A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0 .

If G has constant soundness, then the probability that the test accepts is $pprox \exp{(-k_0)}$.

イロト イポト イラト イラト

PCP based on Direct Product PCP based on Derandomized Direct Product PCPs and de-Bruijn Graphs

PCP based on DP Test

Given G = (V, E) and Π :

- Choose k₀-set E₀ ⊆ E. Let C₁ and C₂ be the left and right endpoints of E₀.
- Choose a k_1 -subset $A \subseteq V$.
- Choose k-sets B_1 and B_2 of V containing $A \cup C_1$ and $A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0 .

If G has constant soundness, then the probability that the test accepts is $pprox \exp{(-k_0)}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

2 Direct Product PCPs

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

4 B N 4 B N

 Introduction
 PCP based on Direct Product

 Direct Product PCPs
 PCP based on Derandomized Direct Product

 Construction
 PCPs and de-Bruijn Graphs

Derandomized Direct Product [IKW09]

- Suppose we want to take the direct product of a string $w \in \Sigma^{\ell}$.
- Identify coordinates in $[\ell]$ with \mathbb{F}^m .
- Instead of taking all k-sets, take only sets that are d-dimensional subspaces of F^m.

Derandomized Direct Product Test [IKW09]

- Wish to test that a string Π is a k-DDP.
- Choose a d_1 -subspace A of \mathbb{F}^m .
- Choose *d*-subspaces B_1, B_2 containing *A*.
- Check that Π_{B_1} and Π_{B_2} agree on A.
- If Π is far from any k-DDP, the test rejects w.h.p. [IKW09].

Why is constructing a PCP difficult?

Imagine the following test:

- Choose k₀-set E₀ ⊆ E. Let C₁ and C₂ be the left and right endpoints of E₀.
- Choose a d_1 -subspace A.
- Choose d-subspaces B_1, B_2 containing $A \cup C_1, A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy the edges in $E_0.$

How do we know that B_1 and B_2 even exist?

• □ ▶ • • □ ▶ • • □ ▶ •

Graphs with linear structure

We say that a graph G = (V, E) has linear structure if the following holds:

- The vertices V of G are identified with $\mathbb{F}^m.$
- The edges E of G form a subspace of \mathbb{F}^{2m} .
- And:
 - Let E_0 be a random d_0 -subspace of E.
 - Let C be either the heads or tails of the edges in E_0 .
 - Then, C is a random d_0 -subspace of \mathbb{F}^m .

(4月) (1日) (1日)

Graphs with linear structure

We say that a graph G = (V, E) has linear structure if the following holds:

- The vertices V of G are identified with \mathbb{F}^m .
- The edges E of G form a subspace of \mathbb{F}^{2m} .
- And:
 - Let E_0 be a random d_0 -subspace of E.
 - Let C be either the heads or tails of the edges in E_0 .
 - Then, C is a random d_0 -subspace of \mathbb{F}^m .

マロト イヨト イヨト

Graphs with linear structure

We say that a graph G = (V, E) has linear structure if the following holds:

- The vertices V of G are identified with \mathbb{F}^m .
- The edges E of G form a subspace of \mathbb{F}^{2m} .
- And:
 - Let E_0 be a random d_0 -subspace of E.
 - Let C be either the heads or tails of the edges in E_0 .
 - Then, C is a random d_0 -subspace of \mathbb{F}^m .

- A 🗐 🕨 - A

PCP based on Derandomized DP Test

Given G = (V, E) with linear structure and Π :

- Choose d₀-subspace E₀ ⊆ E. Let C₁ and C₂ be the left and right endpoints of E₀.
- Choose a d_1 -subspace A.
- Choose *d*-subspaces B_1, B_2 containing $A \cup C_1$, $A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0 .

If G has constant soundness, then the probability that the test accepts is $\approx 1/k_0^{\Omega(1)}.$

A (1) < A (1) < A (1) < A (1) </p>

PCP based on Derandomized DP Test

Given G = (V, E) with linear structure and Π :

- Choose d₀-subspace E₀ ⊆ E. Let C₁ and C₂ be the left and right endpoints of E₀.
- Choose a d_1 -subspace A.
- Choose *d*-subspaces B_1, B_2 containing $A \cup C_1, A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0 .

If G has constant soundness, then the probability that the test accepts is $\approx 1/k_0^{\Omega(1)}.$

.

Outline

2 Direct Product PCPs

3 Construction

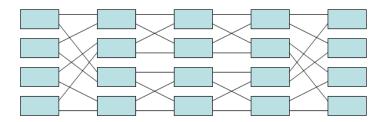
- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs

< ∃ > < ∃ >

de-Bruijn Graphs

A de-Bruijn graph is:

- A layered graph with $\operatorname{poly}\left(\log n\right)$ layers.
- The vertices of every layer are identified with \mathbb{F}^t .
- The vertex $(\alpha_1, \ldots, \alpha_t) \in \mathbb{F}^t$ in layer i is connected with $(\alpha_2, \ldots, \alpha_t, \beta)$ in layer i + 1 for every $\beta \in \mathbb{F}$.



(Wikipedia)

de-Bruijn Graphs

de-Bruijn graphs have linear structure:

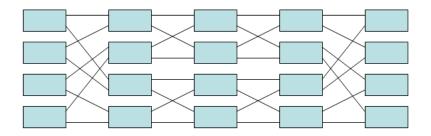
- We identify the vertices of the graph with \mathbb{F}^m for m = t + 1.
- Let γ be a generator of the multiplicative group of \mathbb{F} .
- The vertex $(\alpha_1, \ldots, \alpha_t)$ in layer *i* is identified with $(\gamma^i, \alpha_1, \ldots, \alpha_t)$.
- Edges are of the form $((\gamma^i, \alpha_1, \dots, \alpha_t), (\gamma^{i+1}, \alpha_2, \dots, \alpha_t, \beta))$
 - clearly a subspace of \mathbb{F}^{2m} .

• • • • •

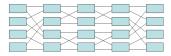
Routing on de-Bruijn Graphs

de-Brujin Graphs are routing networks:

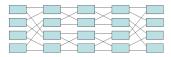
- \bullet Given a permutation σ of the first layer to the last layer.
- Can find paths from each vertex v in the first layer to $\sigma(v)$.
- The paths are vertex-disjoint.



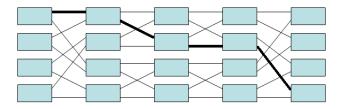
- We can use it to embed any constraint graph G = (V, E) in a de-Bruijn graph.
- With loss of generality, constraint graph has constant degree.
- Variant of [BFLS91, PS94].
- Assume that each vertex had degree 1, then:
 - Identify the first layer with V, and same for the last layer.
 - Define $\sigma(u) = v$ if v is the neighbor of u in G.
 - Find vertex-disjoint paths for σ .
 - Embed the edges of G on the vertex-disjoint paths.



- We can use it to embed any constraint graph G = (V, E) in a de-Bruijn graph.
- With loss of generality, constraint graph has constant degree.
- Variant of [BFLS91, PS94].
- Assume that each vertex had degree 1, then:
 - Identify the first layer with V, and same for the last layer.
 - Define $\sigma(u) = v$ if v is the neighbor of u in G.
 - Find vertex-disjoint paths for σ .
 - Embed the edges of G on the vertex-disjoint paths.



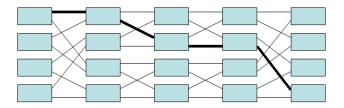
- How do we embed an edge e of G on a path e_1, \ldots, e_p ?
- Put equality constraints on e_1, \ldots, e_{p-1} .
- Associate e_p with the constraint of **e**.



• If G has constant degree d, repeat d times.

イロト イポト イラト イラト

- How do we embed an edge e of G on a path e_1, \ldots, e_p ?
- Put equality constraints on e_1, \ldots, e_{p-1} .
- Associate e_p with the constraint of **e**.



• If G has constant degree d, repeat d times.

A D b 4 A

• • = • • = •

Introduction Direct Product PCPs Construction PCP based on Direct Product PCP based on Derandomized Direct Product PCPs and de-Bruijn Graphs

Embedding PCPs on de-Bruijn Graphs

- The embedded PCP has soundness error $1 \frac{1-s}{\operatorname{poly}\log n}$.
- This is affordable.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Introduction
 PCP based on Direct Product

 Direct Product PCPs
 PCP based on Derandomized Direct Product

 Construction
 PCPs and de-Bruijn Graphs

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly}\log n$, $|\Sigma| = \exp(\text{poly}\log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - 2 Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - 2 Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly}\log n$, $|\Sigma| = \exp(\text{poly}\log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - 2 Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - 2 Performing parallel repetition
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - 2 Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - 2 Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.

• This is done by:

- Showing a test for graphs with linear structure.
- 2 Showing that de-Bruijn graphs have linear structure.
- Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - 2 Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly}\log n$, $|\Sigma| = \exp(\text{poly}\log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly}\log n$, $|\Sigma| = \exp(\text{poly}\log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Summary

- We obtain PCPs of sub-constant soundness ($s = 1/\text{poly} \log n$, $|\Sigma| = \exp(\text{poly} \log n)$).
- The construction is based on a direct product approach:
 - Testing that the proof is a direct product.
 - Performing parallel repetition.
 - We use derandomized direct product.
- This is done by:
 - Showing a test for graphs with linear structure.
 - Showing that de-Bruijn graphs have linear structure.
 - Embedding any PCP on a de-Bruijn graph.

Introduction	PCP based on Direct Product
Direct Product PCPs	PCP based on Derandomized Direct Product
Construction	PCPs and de-Bruijn Graphs

Thank you!

æ