
Algebraic Symmetries I

Just as we can factor

z3 − 1 = (z − 1)(z2 + z + 1),

we can factor
z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1)

It follows that each of the four numbers

zi = cos(2kπ/5) + i sin(2kπ/5), k = 1, 2, 3, 4

satisfies the equation
z4 + z3 + z2 + z + 1 = 0

Thus our algebraic interpretation of the five vertices of the regular pentagon
as the five fifth roots of unity has destroyed the five-fold symmetry. We have
distinguished one vertex, placing it at the point 1=1+0i. So we now have to
look for a different kind of symmetry, that among the four remaining vertices,
or better the four remaining roots.

There is a one obvious symmetry, that which interchanges z1 and z4 as
well as z2 and z3. This is an algebraic as well as an geometric symmetry
because it is just a matter of replacing each of the numbers by its complex
conjugate

a+ bi −→ a− bi

and

(a+bi)×(c+di) = ac−bd+(ad+bc)i −→ ac−bd−(ad+bc)i = (a−bi)×(c−di)

I take it as obvious that the complex conjugate of the sum or the difference of
two complex numbers is the sum or the difference of their complex conjugates.

(a+ bi)+(c+di) = (a+ c)+(b+d)i−→ (a+ bi)− (c+d)i= (a− bi)+(c−di)

In other words the operation of complex conjugation that interchanges z1 and
z4 as well as z2 and z3

z1 ←→ z4, z2 ←→ z3

is like reflection in a mirror. All arithmetic properties are faithfully preserved.
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Small remarks

It is sometimes useful to recall that the relation

z4
1 + z3

1 + z2
1 + z1 + 1 = 0

is the same as
z4 + z3 + z2 + z1 + z0 = 0

Why is, for example, z1z2 = z3?

(cos(θ) + i sin(θ))(cos(ϕ) + i sin(ϕ) = cos(θ + ϕ) + i sin(θ + ϕ)

Take θ = 2π/5 and ϕ = 4π/5. Then θ+ϕ = 6π/5 and this becomes

z1z2 = z3

One shows in the same way that, for example, z2z2 = z4. Observe
also that, along the same lines,

z7
1 = (cos(2π/5) + i sin(2π/5))7 = cos(14π/5) + i sin(14π/5)

and

cos(14π/5) + i sin(14π/5) = cos(4π/5) + i sin(4π/5) = z2

This is because the angle 14π/5 is equal to 2π+4π/5 and the cosine
and sine do not change when 2π is added to or subtracted from an
angle. Indeed, in some respects, the angle itself does not change!
(Note: this statement is correct, but calls for some reflection!)
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Algebraic Symmetries II

This is because i is just a symbol that stands for the square root of −i
and −i is then introduced and defined by the condition that

i+ (−i) = 0

But −i is also just a symbol and can be taken as the primary symbol.∗ Then
i is a second symbol that functions as −(−i). Even if i is taken to have some
meaning beyond that of a mere symbol, it cannot have a different meaning
than −i, so that the two have to be regarded as perfectly interchangeable.

Are there other symmetries of this kind?

Whether there are other symmetries of this kind affecting all complex
numbers is not a question for us, but we can ask whether there are symmetries
of this kind affecting just z1, z2, z3 and z4. Before we do, we make use of the
symmetry at hand. Since z1z1 = z2 z1z2 = z3, z1z3 = z4, z1z4 = 1, z2z2 = z4,
z2z3 = 1 and so on, and since in addition

1 = −z1 − z2 − z3 − z4

the numbers
az1 + bz2 + cz3 + dz4,

where a, b, c and d are arbitrary ordinary fractions form a collection closed
under addition, subtraction, multiplication, and even as it turns out division.
The numbers that are equal to their own reflections can be singled out. These
are the numbers

a(z1 + z4) + b(z2 + z3)

∗ The distinguishing characteristic of i is that i2 = −1 but this character-
istic is shared by −i.

4



The appearance of
√

5.

Let w be the number z1 + z4. It is equal to its own reflection. So is its
square. Thus

w2 = a(z1+z4)+b(z2+z3) = (a−b)(z1+z4)+b(z1+z2 +z3+z4) = (a−b)w−b

Thus w satisfies a quadratic equation

w2 + cw + d = 0, c = b− a, d = b

We calculate this equation

w2 = (z1+z4)2 = z2
1 +z1z4+z4z1+z2

4 = z2+1+1+z3 = 2−1−z1−z4 = 1−w

Thus

w2 + w − 1 = 0 w =
−1±

√
1 + 4

2
Since w is a positive number,

w =
−1 +

√
5

2

In other words, w can as we know be constructed with ruler and compass.
Since

z1 + z4 = w ⇐⇒ z1 +
1
z1

= w⇐⇒ z2
1 + 1 = z1w

we have

z1 =
w ±
√
w2 − 4
2

Since w2 = 1− w, this is

w ±
√
−3− w
2

=
−1 +

√
5

4
±

√
−5

2 −
√

5
2

2

Since z1 lies above the axis of abscissas,

z1 =
−1 +

√
5

4
+ i

√
5+
√

5
2

2
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Symmetries III

Having found z1, we can easily find z4, its complex conjugate, and we can certainly
find z2 by squaring z1. We can also find z2 by working with z2 + z3 rather than w. This is,
however, straightforward algebra. As Descartes insisted, the algebra often turns a problem
into an almost unthinking manipulation of symbols, a turn that it can indeed often take,
but we prefer another direction. This is the direction taken by Gauss.

Let ζ be the number z1. Then z2 = ζ2, z3 = ζ3, and z4 = ζ4 = −1 − ζ − ζ2 − ζ3

because

(I) ζ4 + ζ3 + ζ2 + ζ + 1 = 0

Our numbers ez1 + fz2 + gz3 + hz4 can also be expressed as

a+ bζ + cζ2 + dζ3

a = −h, b = e − h, c = f − h, d = g − h

Are these numbers all different?

This is an important question! The answer is yes and I shall give a proof following
Gauss. We first note the consequences. Since the numbers are all different, we cannot have
an equation

a+ bζ + cζ2 + dζ3 = 0 = 0 + 0ζ + 0ζ2 + 0ζ3

unless a = b = c = d = 0. This means that ζ satisfies the equation

(I) Z4 + Z3 + Z2 + Z + 1 = 0

and essentially only this equation, because if we have any other such as

(II) Z6 +AZ5 +BZ4 + CZ3 +DZ2 + EZ + F = 0

then by the process of long division we will have

Z6+AZ5+BZ4+CZ3+DZ2+EZ+F = (Z2+GZ+H)(Z4+Z3+Z2+Z+1)+PZ3+QZ2+RZ+S

so that
Pζ3 +Qζ2 +Rζ + S = 0

We have just seen that this implies P = Q = R = S = 0. Thus

Z6 +AZ5 +BZ4 + CZ3 +DZ2 + EZ + F = (Z2 +GZ +H)× (Z4 + Z3 + Z2 + Z + 1)

and (II) is a consequence of (I).
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Symmetries IV

This means that, from an abstract point of view, ζ is simply a number
that satisfies the equation

ζ4 + ζ3 + ζ2 + ζ + 1

and no other. But z2, z3 and z4 have exactly the same property. Thus for
strictly algebraic purposes we could take ζ to be z2 rather than z1. Thus z1 is
replaced by z2. Since all algebraic relations are to be preserved, this entails
replacing z2 = z2

1 by z2
2 = z4

1 = z4 and z3 = z3
1 by z3

2 = z6
1 = z1. Once again,

because all algebraic relations are to be respected, the number

z4 = z4
1 = −1− z1 − z2

1 − z3
1

is to be replaced by

−1− z2 − z2
2 − z3

3 = z4
2 = z8

1 = z3
1 = z3

In general a number

a+bζ+cζ2 +dζ3 = a+bz1 +cz2
1 +dz3

1 = (b−a)z1 +(c−a)z2 +(d−a)z3−az4

is replaced by

a+ bz2 + cz2
2 +dz3

2 = a+ bz2
1 + cz4

1 +dz1 = (a− c)+ (d− c)z1 +(b− c)z2
1 − cz3

1

which is a number of the same kind. For example

z3 = z3
1 −→ z1 z4 = z4

1 −→ z4
2 = z8

1 = z3
1 = z3
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Forms of algebraic symmetries

The symmetry just examined can be viewed in two ways:

1) It takes the sequence {z1, z2, z3, z4} of all roots of

Z4 + Z3 + Z2 + Z + 1

to a sequence formed from the same numbers but in a different order

{z2, z4, z1, z3}

2) It takes any number

(I) az1 + bz2 + cz3 + dz4

to a number

(II) az2 + bz4 + cz1 + dz3

of the same kind.
This is the kind of symmetry that was later investigated in general by

Galois. We have to spend some time growing accustomed to it. Suppose we
apply the symmetry twice. Then

z1 → z2 → z4

z2 → z4 → z3

z3 → z1 → z2

z4 → z3 → z1

Thus applying the basic symmetry twice leads to the first symmetry consid-
ered, complex conjugation. We apply it again.

z1 → z4 → z3

z2 → z3 → z1

z3 → z2 → z4

z4 → z1 → z2

Yet again!
z1 → z3 → z1

z2 → z1 → z2

z3 → z4 → z3

z4 → z2 → z4

So the symmetry when repeated four times comes back where it began. It is
a four-fold symmetry.
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Anticipating Galois and his successors

No matter which of the numbers z1, z2, z3, z4 we take ζ to be, the
collection of numbers

(I) a+ bζ + cζ3 + dζ4, a, b, c, d all fractions

is the same. Modern mathematicians usually call the collection a field. the
sum and the product of two numbers of this sort are again numbers of the
same sort. This we have seen already. I give another example.

(1 + ζ)(1 + ζ3) = 1 + ζ + ζ3 + ζ4 = −ζ2

Any symmetry of this collection that respect the algebraic operations will
take 0 to 0 and 1 to 1. Then adding and dividing it takes any fraction a/b to
a/b. Moreover any root of

Z4 + Z3 + Z2 + Z + 1 = 0

will be taken to another root. Thus z1 will be taken to z1, z2, z3 or z4.
In other words, the symmetry will be one of the four (including the trivial
symmetry!) we already have. Denote the one taking z1 to z2 by the letter σ.
Then the repeating σ to obtain σσ = σ we obtain the symmetry taking z1 to
z4. Repeating again, we obtain σσσ = σ3 which takes z1 to z3. Repeating
again, we find that σσσσ = σ4 is the trivial symmetry.

Inside the collection of numbers there is a smaller collection of numbers
that have a special symmetry. We met them before. They are those that
are not affected by σ2, thus by complex conjugation. They are the numbers
a+bw, w = z1+z4. We were able to construct z1 by succesive square roots, by
first singling out this special collection of numbers, finding that any number
in it satisfied a quadratic equation with fractions as coefficients, in particular
that w2 +w−1 = 0, so that w = (−1+

√
5)

2 , and then solving z2
1 − z1w+1 = 0.

We now apply these ideas, which I hope are clear, to the heptadecagon!
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The Heptadecagon

z0

z1

z2

z3

z4z5

z6

z7

z8

z9

z10

z11

z12 z13

z14

z15

z16

zk = cos(2kπ/17) + i sin(2kπ/17)
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From the Disquisitiones Arithmeticae

There is a famous remark from the introduction to the seventh
and last chapter of the Disquisitiones that I quote here. What it
anticipates is the study of the division points on elliptic curves, in
the remark a special elliptic curve, a study that led over the course
of the nineteenth and twentieth century to many things, especially
complex multiplication and l-adic representations, that are relevant
to the Shimura-Taniyama-Weil conjecture,

Ceterum principia theoriae, quam exponere aggredimur, multo
latius patent, quam hic extenduntur. Namque non solum ad func-
tiones circulares, sed pari successu ad multas alias functiones transs-
cendentes applicari possunt, e. g. ad eas, quae ab integrali∫

dx√
1− x4

pendent, praetereaque etiam ad variam congruentarium genera: sed
quoniam de illis functionibus transscendentibus amplum opus pe-
culiare paramus, de congruentibus autem in continuatione disquisi-
tionum arithmeticarum copiose tractabitur, hoc loco solas functiones
circulares considerare visum est.
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Lecture 7

A proof by Gauss (beginning)

Recall that we want to show that z1 is a root of the equation

I Z4 + Z3 + Z2 + Z + 1 = 0

but of no equation of the forms

Z3 + aZ2 + bZ + c = 0 (I)

Z2 + aZ + b = 0 (II)

Z + a = 0 (III)

in which a, b c and d are fractions.
The impossibility of the last equation is clear because z1 is not a fraction.

If it were a root of the first, then using long division to divide (I) by Z3 +
aZ2 + bZ + c, we would find

Z4 + Z3 + Z2 + Z + 1 = (Z3 + aZ2 + bZ + c)(Z + d) + eZ2 + fZ + g

Substitute z1 to find that z1 is also a root of

eZ2 + fZ + g = 0

Then, as we just observed e is not 0, unless e = f = g = 0. If e is not 0,
divide by it. Thus either

(IV) Z4 + Z3 + Z2 + Z + 1 = (Z3 + aZ2 + bZ + c)(Z + d)

or z1 satisfies an equation of type (II). If it satisfies (II), then perform a long
division to obtain

Z4 + Z3 + Z2 + Z + 1 = (Z2 + aZ + b)(Z2 + cZ + d) + eZ + d

Since ez1 + d cannot be 0 unlesse = d = 0, we conclude that

(V) Z4 + Z3 + Z2 + Z + 1 = (Z2 + aZ + b)(Z2 + cZ + d)

12



A proof by Gauss (continued)

We now show that the factorizations of (IV) and (V) are impossible. We
first observe a very important fact.

An equation of degree n

(VI) Zn + aZn−1 + bZn−2 + . . .+ d = 0

cannot have more than n roots!

Suppose (VI) has a root e. Using long division, divide by Z − e. The
result is

Zn + aZn−1 + bZn−2 + . . .+ d = (Z − e)(Zn−1 +AZn−2 + . . .+D) + f

Substitute e to see that f = 0. Now any other root e′ not equal to e of (VI)
must be a root of

(VII) Zn−1 + AZn−2 + . . .+D = 0,

so that if (VI) had more than n roots, then (VII) would have more than n−1.
All we have to do now is continue, working our way down to lower and lower
degree until we arrive at an equation of degree one

Z + α = 0

that clearly has only one root.
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General comments

The proof we present is a proof that can be extended without too much
additional effort to the following statement.

Suppose p is a prime. Then the polynomial

Zp−1 + Zp−2 + Zp−3 + . . . Z + 1

admits no factorization.
This is a statement proved by Gauss in the Disquisitiones. We will need

it for p = 17.
According to Bourbaki’s Éléments de l’histoire des mathématiques, this

was the first general statement of this sort about polynomials ever proved.
It seems to me that in one sense, it is also the last. In the nature of things,
there are very few large classes of polynomials that are all irreducible. On
the other hand, if taken as a statement in the sense of Galois theory, as a
statement affirming that the Galois group of the equation is large, then there
are indeed other statements of this sort available and perhaps many more yet
to be proved. The size and nature of Galois groups is a reasonably important
mathematical topic, at least for mathematicians.

Since the proof in the general case is not so different from the proof for
p = 5, we can expect a certain amount of sophistication.
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A proof by Gauss (continued)

Suppose we had a factorization (IV). Since z1, z2, z3 and z4 are all roots
of

Z4 + Z3 + Z2 + Z + 1 = 0

each of them is either a root of

(VIII) Z3 + aZ2 + bZ + c = 0

or of
Z + d = 0

Since the latter is impossible, because −d is, in contrast to z1, z2, z3 and z4,
a fraction, they are all roots of (VIII) which gives (VIII) one root too many.

Thus we must have

(V) Z4 + Z3 + Z2 + Z + 1 = (Z2 + aZ + b)(Z2 + cZ + d)

The first thing is to establish that a, b, c and d are all integral. For this
we need a little number theory. Suppose that one of these numbers is not
integral. Then it is of the form

m

n
, n positive, n > 1

in which m and n have no common divisor. To be explicit, we write

3
30

as
1
10

=
1

2× 5

Thus there is some prime number p such that n = rpt, t > 0, p does not
divide r. For example, if m/n = 1/10 then p could be 5 and we would have
m = 1, r = 2, t = 1.

We write each of a, b, c and d in this way.

a =
a1

a2pq
, b =

b1
b2pr

, c =
c1
c2ps

, d =
d1

d2pt
,
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Suppose that at least one of the numbers q, r, s, t is positive. If, for
example, q = 0 then p might divide a1. Thus suppose that not all of a, b, c
and d are integral. We multiply (IV) out to obtain

Z4 + (a+ c)Z3 + (b+ ac+ d)Z2 + (bc+ ad)Z + bd = 0.

First of all, a + c = 1 is an integer. This is possible only if q = s, for if q is
not equal to s then one of them is positive and larger than the other. The
denominator of a+ c would contain the factor pn if n is the larger of q and s.
For example

2
3× 52

+
3
5

=
2 + 9× 5
3× 52

=
47

3× 52

We conclude that q = s.
Looking at b+ac+d, we next conclude that either r = t or q+ s is equal

to one of r or t. This line of argument quickly becomes confusing. The best
thing is to follow Gauss and to prove a general theorem. Oddly enough, it is
an argument that can best be explained in the general case. Here is what we
want to show.

Suppose that the product of

Zn + a1Z
n−1 + a2Z

n−2 + . . .+ an−1Z + an

and of
Zm + b1Z

m−1 + a2Z
b−2 + . . .+ bn−1Z + bm

has integral coefficients and that all of the numbers ai and bj are
fractions (and not some more complicated kind of irrational num-
ber!). Then all of the numbers ai and bj are integers.

We suppose not and choose a p that divides the denominator of at least
one ai or one bj. Then we write

ai =
mi

nipri
bj =

sj
tjpsj

It is understood that p does not divide ni and that it does not divide tj .
Starting with r1, examine all the ri and let rk be the first that is at least as
large as all the others. Thus rk is bigger than those that came before and at
least as large as those that come after. In the same way sl is to be larger than
the sj that come before and at least as large as those that come after.
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The product is of degree m + n. we look at the coefficient of the power
Zm+n−k−l. It is

am+n−k−lb0 + am+n−k−l−1b1 + am+n−k−l−2b2 + . . .+ a0bm+n−k−l

Some of these terms are purely fictive, those in which ai appears with i larger
than n or bj with j larger than m. If a0 or b0 appear they are taken to be 1.
For example, if n = 5, m = 3 then the coefficient of Z4 is

a4 + a3b1 + a2b2 + a1b3

In general, the coefficient of Zk+l is supposed integral and contains the
term akbl in whose denominator prk+sl occurs. It also contains terms like
ak−1bl+1 whose denominator contains at most the factor prl−1+sl or like
ak+1bl−1 whose denominator contains at most the factor prk+sl−1. Thus when
we put everything over a common denominator, we will have a prk+sl in the
denominator that cannot be removed. This is a contradiction.

An example.

(Z3 +
1
3
Z2 +

2
9
Z +

1
9
)× (Z2 +

4
3
Z +

7
3
)

Here k = 2, l = 1, so that m + n − k − l = 2. The coefficient of Z2 in the
product is

1
3

7
3

+
2
9

4
3

+
1
9

=
1
3

+
8
27

+
1
9

=
21
27

+
8
27

+
3
27

=
32
27
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Final step

We now know that in (V) the four numbers a, b, c and d are integral.
The argument we used was taken from §42 of the Disquisitones, thus from
an early chapter. The next part is from §341, thus from a very late, indeed
the last chapter, the one devoted to the division of the circle, thus to regular
polygons. The number z1 will be a root of

Z2 + aZ + b = 0

or of
Z2 + cZ = d = 0

We can suppose that it is a root of the first. Then z4, its complex conjugate
will also be a root, so that the roots of the second are z2 and z3.

The polynomial Z2 + aZ + b is divisible by Z − z1

Z2 +aZ+ b = (Z−z1)(Z−z4) = Z2− (z1 +z4)Z+1 = Z2−2 cos(2π/5)Z+1

which we write as

Z2−2 cos(2π/5)Z+cos2(2π/5)+sin2(2π/5) = (Z− cos(2π/5))2 +sin2(2π/5)

In the same way,

Z2 + cZ + d = (Z − cos(4π/5))2 + sin2(4π/5)

Thus if Z is an ordinary real number, both Z2 + aZ + b and Z2 + cZ + d are
positive. If Z is an integer, they are integers.

Since

(Z2 + aZ + b)(Z2 + cZ + d) = Z4 + z3 + Z2 + Z + 1

we have first of all, for Z = 1,

(1 + a+ b)(1 + c+ d) = 5

Thus one of these numbers is 1 and the other is 5. On the other hand,

Z2 + aZ + b+ Z2 + cZ + d = Z4 − (z1 + z2 + z3 + z4)Z + 2 = 2Z4 + 3

which is 5 when Z = 1. We conclude that 1 + 5 = 5, which is out of the
question.

18



19



20



III. Neue Entdeckungen.

Es ist jedem Anfänger der Geometrie bekannt, dass
verschiedene ordentliche Vielecke, namentlich das
Dreyeck, Viereck, Funfzehneck, und die,welche durch
wiederholte Verdoppelung der Seitenzahl eines derselben
entstehen, sich geometrisch construiren lassen. So weit
war man schon zu Euklids Zeit, und es scheint, man habe
sich seitdem allgemein überredet, dass das Gebiet der
Elementargeometrie sich nicht weiter erstrecke: wenig-
stens kenne ich keinen geglückten Versuch, ihre Grenzen
auf dieser Seite zu erweiten.

Desto mehr, dünkt mich, verdient die Entdeckung
Aufmerksamkeit, dass ausser jenen ordentlichen Vielecken
noch eine Menge anderer, z. B,. das Siebenzehneck, einer ge-
ometrischen Construction fähig ist. Diese Entdeckung ist
eigentlich nur ein Corollarium einer noch nicht ganz vol-
lendeten Theorie von grösserem Umfange, und sie soll,
sobald diese ihre Vollendung erhalten hat, dem Publicum
vorgelegt werden.

C. F. Gauss, a. Braunschweig,
Stud. der Mathematik zu Göttingen.

Es verdient angemerkt zu werden, dass Hr. Gauss
jetzt in seinem 18ten Jahr steht, und sich hier in Braun-
schweig mit eben so glücklichem Erfolg der Philosophie
und der classischen Litteratur als der höheren Mathe-
matik gewidmet hat.

Den 18 April 96.
E. A. W. Zimmermann, Prof.
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Die Allgemeine Literatur-Zeitung

From Meyers Enzyklopädisches Lexikon:

This review appeared in Jena from 1785 to 1803 and in Halle from 1804 to 1849 and
was a leading organ of German classical and romantic literature. Goethe, Schiller and
Kant were among the editors and authors. It moved to Halle as a result of an effort of
the romantics to increase their control over the review and was replaced in Jena, on the
initiative of Goethe by the Jenaische Allgemeine Literatur-Zeitung.

Gauss

Gauss, who was born in 1777, wrote the Disquisitones between 1796 and 1798, thus
between his nineteenth and twenty-first years. It did not appear until 1801. It contains a
great deal in the way both of theorems and theories, the most important being:

1. Proof of law of quadratic reciprocity. The statement was already known at the
time, but even the best of the eighteenth century mathematicians were unable to find a
proof. It remains a central mathematical theorem.

2. Developed the theory of binary quadratic forms. In particular, he introduced
the notion of composition of quadratic forms and established its properties. Although
in some respects, namely in the context of the notion of ideal number, composition has
become a common working tool of all algebraists and number-theorists, Gauss’s theory
itself is still difficult and little known. His form of the theory would appear to be that best
suited to computation.

3. Cyclotomic fields. The construction of the regular heptadecagon, and, more gen-
erally, the analysis of the numbers formed from roots of unity. This is thus one of the
earliest manifestations of Galois theory. Gauss presumably knew more than he included
in the book, but he, apparently, published very little more on the subject.

His thesis of 1799 established, in effect and for the first time, that every polynomial
equation has a root.

Zn + aZn−1 + bZn−2 + . . .+ d = 0

As the root may be complex and the thesis did not refer to complex numbers, the formula-
tion of the thesis was necessarily somewhat different. I have already emphasized that this
is a basic mathematical fact.

These are all theories and results to which the contributions of Gauss are clear. In
addition, he appears to have occupied himself as a very young man, even as an adolescent,
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with other important problems and observations, for example, with the nature of geome-
tries in which the parallel axiom of Euclid is not satisfied and with the arithmetic-geometric
mean, which is both an elementary and an advanced topic. Here, however, the evidence is
different. It consists of Gauss’s recollections as a somewhat saturnine older man, so that
it appears to be difficult to disentangle what he himself discovered later, what he learned
from other authors as an adolescent – he had an early and extensive acquaintance with the
work of various leading eighteenth century mathematicians – as well as what he learned
later, from what he discovered early. One could certainly spend a lot of time with Gauss’s
Collected Works and with his correspondence, reflecting on these matters.

One extremely useful reference is a diary that Gauss kept between 1796 and 1814,
with 146 entries that record his principal discoveries. The lemniscate function to which, as
I noticed, Gauss alludes in the first lines of chapter 7 of the Disquisitiones appears several
times. I was asked what Gauss what may have meant with his allusion to the lemniscate.
A brief examination of the diary and of the collected works, which contain ample editorial
comments, makes perfectly clear what Gauss knew. Although it is a digression from my
main purpose, it is worthwhile to tarry a little on the matter.

The goal of this year’s lectures is after all to communicate, starting at the beginning,
some genuine mathematical understanding, beyond the gee-whiz or what I refer to as the
Jack Horner manner, of recent achievements in number theory, and it would be a shame,
since we are now in a position to appreciate a more detailed explanation of Gauss’s allusion,
to let slip the occasion of acquiring more concrete information.

Gauss was an overwhelming presence in nineteenth century mathematics, Even though
he exerted little active influence. The German pre-eminence in mathematics as a whole,
and in certain domains such as number theory in particular, that lasted throughout the
nineteenth century and until the early thirties is due in good part to him, although the
Prussian university system was probably also a significant factor. I have not studied these
matters. Oddly enough it appears to have been André Weil who was most thoroughly
imbued with the aspirations of German number theory, both through direct, personal
experience as a young man during the twenties and through his studies of variou nineteenth
century authors. Simplifying, for the purposes of brevity, an elaborate development in
which a large number of mathematicians took part, one might say that he not only brought
it intact through the war at its highest level but also was the principal source of its
transformation into the theories that were finally and successfully exploited in the proof
of Fermat’s theorem.

His major contribution was, oddly enough, a set of conjectures, the Weil conjectures,
now demonstrated, but by others. He is, in various comments to his papers, quite explicit
about the relation of these conjectures to Gauss and the lemniscate.

I quote from Weil’s Two lectures on number theory, past and present, an essay I
recommend to your attention.

“In 1947, in Chicago, I felt bored and depressed and, not knowing what to do, I started read-
ing Gauss’s two memoirs on biquadratic residues, which I had never read before. . . .This
led me in turn to some conjectures.”
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A few lines later Weil draws attention to the very last entry in Gauss’s diary, an entry to
which we shall come in a moment.
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Zn + aZn−1 + bZn−2 + . . .+ d = 0
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Digression

The digression at first sight seems to demand some knowledge of the
calculus, but it does not. I first write down a formula that may be familiar
to some, but not to all. No matter! Do not puzzle over the left side. It is
no more than the mathematician’s usual fastidious way of writing down the
length of the arc from the point (1, 0) on the circle to the point (x, y) and
that is what we mean by θ, which of course has to be measured in radians,
thus in units in which the radius is 1, but that is the unit chosen. If

(A)
∫ y

0

dt√
1− t2

= θ,

then y = sin(θ). If y = 1 then θ = π/2.

(x,y)

(1,0)

We now do something similar for the lemniscate, a curve defined by the
equation

(x2 + y2)2 − (x2 − y2) = 0
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The lemniscate is the curve in the form of a bow. The point (x, y) is the
point where the line through the points (0, 0) and (1, u) cut the curve. The
length of the curve from (1, 0) to the point (x, y) is expressed mathematically
as

(B)
∫ u

0

dt√
1− t4

= θ.

Once again, there is no need to be troubled by the integral. It is again just a
way of expressing the length of an arc of a curve. Observe that θ plays here
the role of the angle in a circle measured in radians. Gauss wrote

u =sin lemn(θ).

If u = 1, then θ is some number that I call, following Gauss, $/2. Thus
$/2 is the length of the upper loop on the right running from (1, 0) to (0, 0).

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(x,y )

(1,u )
x =

√
1− u2

1 + u2

y =
u
√

1− u2

1 + u2
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Constructing a regular triangle, a regular pentagon, or a regular hep-
tadecagon is the problem of dividing the total circumference of the circle into
three, five or seventeen arcs of equal length. We could consider the same
problem for the lemniscate, taking the initial point, which is now important
as it was not, because of symmetry, for the circle, to be the point (0, 1). In
an entry for March 19, 1797 Gauss notes that this leads to an equation for
u of degree m2, whereas for the circle it was an equation of degree m. In
the cases already considered, m was 3 or 5. We remove one easy root, u = 0
corresponding to the first point of division. This leads to equations of degree
m − 1 or for a lemniscate m2 − 1. In a later entry, apparently for April 15,
he observes there is a problem of separating the real roots of this equation
from the complex. He is seeking the real roots. The corresponding equation
for the circle, thus for y, has only real roots. It is the numbers x + iy that
are complex. The real roots of the equation of degree m2−1 give the division
points and there are m− 1 of them.

In an entry dated March 21, he observes implicitly (all the entries are
cryptic) that these m − 1 roots are numbers that can be constructed with a
ruler and compass.

Lemniscata geometrice in quinque partes dividitur.

The young Norwegian mathematician Abel published in 1827 and 1828
proofs of the assertions implicit in Gauss’s remark in the Disquisitiones. For
m = 3, 5 the necessary constructions had been found much earlier, by 1750,
by the Italian geometer Count Fagnano

The connections of the lemniscate with number theory are too ramified
for us to discuss them in any more detail. The division points were important
then and are important now, but so are what are called congruences modulo a
prime. The two topics are very closely related. I end with the entry to which
Weil alluded, the very last in the diary, dated July 9, 1814.
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Observatio per inductionem facta gravissima theoriam residuorum
biquadraticorum cum functionibus lemniscatis elegantissime nec-
tens. Puta si a+bi est numerus primus, a-1+bi per 2+2i divisibilis,
multitudo omnium solutionum congruentiae

1 ≡ xx + yy + xxyy (mod a+ bi)

inclusis
x =∞, y = ±i; x = ±i, y =∞,

fit
= (a− 1)2 + bb.

We have progressed a little beyond this last entry in the intervening 185
years, but not so much as one might think! Without going into further detail,
which would be too much of a digression, I observe that if

1 = x2 + y2 + x2y2

and
z = y(1 + x2)

then

z2 = y2(1+2x2+x4) = y2(1+x2)+y2x2(1+x2) = 1−x2 +x2(1−x2) = 1−x4.
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