Algebraic Symmetries 1
Just as we can factor
2 —1=(z—-1)(*+2z+1),
we can factor
P —1=G-1D)E*"+2+224+2+1)

It follows that each of the four numbers
z; = cos(2km/5) + isin(2kw/5), k=1,2,3,4

satisfies the equation
A+ 4241=0

Thus our algebraic interpretation of the five vertices of the regular pentagon
as the five fifth roots of unity has destroyed the five-fold symmetry. We have
distinguished one vertex, placing it at the point 1=1+0i. So we now have to
look for a different kind of symmetry, that among the four remaining vertices,
or better the four remaining roots.

There is a one obvious symmetry, that which interchanges z; and z4 as
well as zo and z3. This is an algebraic as well as an geometric symmetry
because it is just a matter of replacing each of the numbers by its complex
conjugate

a+bi—a—b

and
(a+bi) X (c+di) = ac—bd+(ad+bc)i — ac—bd—(ad+bc)i = (a—bi) X (c—di)

I take it as obvious that the complex conjugate of the sum or the difference of
two complex numbers is the sum or the difference of their complex conjugates.

(a+bi)+ (c+di) = (a+c)+ (b+d)i — (a+bi)— (c+d)i = (a—bi)+ (c—di)

In other words the operation of complex conjugation that interchanges z; and
z4 as well as zo and z3

21— 24, 2y > 23

is like reflection in a mirror. All arithmetic properties are faithfully preserved.
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Small remarks
It is sometimes useful to recall that the relation
B+ +1=0

is the same as
24+23+20+21+20=0

Why is, for example, z120 = 237
(cos(f) +isin(f))(cos(p) + isin(p) = cos(0 + @) + isin(0 + )
Take 0 = 27 /5 and ¢ = 47t /5. Then 0 + ¢ = 67/5 and this becomes
2129 = 23

One shows in the same way that, for example, 2920 = z4. Observe
also that, along the same lines,

2! = (cos(2n/5) +isin(27w/5))" = cos(147/5) + isin(147/5)
and
cos(14m/5) + isin(147/5) = cos(4mw/5) + isin(4n/5) = 2o
This is because the angle 147 /5 is equal to 27 447 /5 and the cosine
and sine do not change when 27 is added to or subtracted from an

angle. Indeed, in some respects, the angle itself does not change!
(Note: this statement is correct, but calls for some reflection!)
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This is because 7 is just a symbol that stands for the square root of —i
and —7 is then introduced and defined by the condition that

i+ (=) =0

But —i is also just a symbol and can be taken as the primary symbol.* Then
i is a second symbol that functions as —(—i). Even if i is taken to have some
meaning beyond that of a mere symbol, it cannot have a different meaning
than —7, so that the two have to be regarded as perfectly interchangeable.

Are there other symmetries of this kind?

Whether there are other symmetries of this kind affecting all complex
numbers is not a question for us, but we can ask whether there are symmetries
of this kind affecting just z1, 2o, 23 and z4. Before we do, we make use of the
symmetry at hand. Since 2121 = 29 2129 = 23, 2123 = 24, 2124 = 1, 2029 = 24,
2523 = 1 and so on, and since in addition

1:—21—2’2—2’3—2’4

the numbers
az1 + bz + cz3 + dzy,

where a, b, ¢ and d are arbitrary ordinary fractions form a collection closed
under addition, subtraction, multiplication, and even as it turns out division.
The numbers that are equal to their own reflections can be singled out. These
are the numbers

a(z1 + z4) + b(z2 + 23)

* The distinguishing characteristic of i is that > = —1 but this character-
istic is shared by —i.



The appearance of /5.

Let w be the number z; + z4. It is equal to its own reflection. So is its
square. Thus

w? = a(z1424)+b(2o+23) = (a—b)(21+24) +b(21 + 20+ 234+ 24) = (a—b)w—b
Thus w satisfies a quadratic equation
w? + cw~+d =0, c=b—a, d=0

We calculate this equation

w? = (1420)2 = 2zt +2 = b bl by =2— 121~z = 1—w
Thus
—1++v1+4
w+w—1=0 w = +

2

Since w is a positive number,

_ —1++5

v 2

In other words, w can as we know be constructed with ruler and compass.
Since

1
z1+z4:w<:>z1+—:w<:>z%—|—1:z1w
21

we have
w =+ Vw? —4
2

21 =

Since w? = 1 — w, this is

wi\/—B—w_ —1-|-\/5i \/‘%‘%
2 - 4 2

Since z; lies above the axis of abscissas,

14vE A
:—+Z

4 2

21
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Having found 21, we can easily find z4, its complex conjugate, and we can certainly
find zo by squaring z;. We can also find zo by working with 25 + 23 rather than w. This is,
however, straightforward algebra. As Descartes insisted, the algebra often turns a problem
into an almost unthinking manipulation of symbols, a turn that it can indeed often take,
but we prefer another direction. This is the direction taken by Gauss.

Let ¢ be the number z;. Then 20 = (2, z3 = (3, and 2y = (* = -1 - (- * -
because

(I) CHCHC+HC+H1=0
Our numbers ez; + fze + gz3 + hz4 can also be expressed as
a+b¢ +cC? +d¢?

a=—-h, b=e—h, c=f—h, d=g—nh

Are these numbers all different?

This is an important question! The answer is yes and I shall give a proof following
Gauss. We first note the consequences. Since the numbers are all different, we cannot have
an equation

a+b+cl?+d=0=0+0¢+0¢%+0¢3

unless a = b = ¢ = d = 0. This means that ( satisfies the equation

(I) '+ 2P+ 2P+ Z+1=0

and essentially only this equation, because if we have any other such as

(IT) Z°+AZ°+BZ*+CZ*+ DZ*+ EZ+ F =0

then by the process of long division we will have

254 AZP+BZ*4+CZP+DZ*+EZ+F = (Z*+GZ+H)(Z*+ Z°+ 2>+ Z+ 1)+ PZ*+QZ*+ RZ+S

so that
PG+ QP +R(+S=0

We have just seen that this implies P =Q = R =5 = 0. Thus
78+ AZS 4+ BZ* +CZ* + DZ? + EZ+F = (Z*+GZ+ H) x (Z* + Z* + Z*> + Z +1)

and (II) is a consequence of (I).



Symmetries IV

This means that, from an abstract point of view, ( is simply a number
that satisfies the equation

G CH+HE+CHL

and no other. But z9, 23 and z4 have exactly the same property. Thus for
strictly algebraic purposes we could take ¢ to be z9 rather than z;. Thus 27 is
replaced by z2. Since all algebraic relations are to be preserved, this entails
replacing zo = 27 by 25 = 2{ = z4 and 23 = 2} by 25 = 2% = 2;. Once again,
because all algebraic relations are to be respected, the number

=2t =—1—z — 22

is to be replaced by

2 _ 3
—1 — 29 — 25 — 23

I
n

In general a number

a+b(+cC?+dC® =a+bz +czi+dz} = (b—a)z1+(c—a)za+(d—a)zs —azy
is replaced by

a+bzytczi+de =a+bzi+czf+dzy = (a—c)+(d—c)z+ (b—c)z? —cz}
which is a number of the same kind. For example

ZgIZ:lg—>Zl Z4:Zil—>Z§:Z§:Z%:Z3



Forms of algebraic symmetries
The symmetry just examined can be viewed in two ways:

1) It takes the sequence {z1, 22, 23, 24} of all roots of
A+ 7P+ 727+ Z+1
to a sequence formed from the same numbers but in a different order

{2'2, R4, 21, 2'3}

2) It takes any number

(I) az1 + bZQ + cz3 + d2’4
to a number
(1I1) azo + bzy + cz1 + dzs

of the same kind.

This is the kind of symmetry that was later investigated in general by
Galois. We have to spend some time growing accustomed to it. Suppose we
apply the symmetry twice. Then

Rl =7 k2 — 24
2y — R4 — 3
3 /™ 21 — 22
24 — 23 — 21

Thus applying the basic symmetry twice leads to the first symmetry consid-
ered, complex conjugation. We apply it again.

Rl —> %4 — 23
gy — 23 — 21
R3 — k2 7 24
R4 — k1 22

Yet again!
21 — k3 — %1

29 — 21 — %2
R3 —7 k4 =7 23
24 — 29 — 24

So the symmetry when repeated four times comes back where it began. It is
a four-fold symmetry.



Anticipating Galois and his successors

No matter which of the numbers 21, 2o, 23, 24 we take ( to be, the
collection of numbers

(I) a+bC+ceC®+d¢t, a,b, e d all fractions

is the same. Modern mathematicians usually call the collection a field. the
sum and the product of two numbers of this sort are again numbers of the
same sort. This we have seen already. I give another example.

14+ +C)=14+C¢+C+ ==

Any symmetry of this collection that respect the algebraic operations will
take 0 to 0 and 1 to 1. Then adding and dividing it takes any fraction a/b to
a/b. Moreover any root of

ZA 4+ 7234+ 7224+ 7Z4+41=0

will be taken to another root. Thus z; will be taken to zy, 29, 23 or z4.
In other words, the symmetry will be one of the four (including the trivial
symmetry!) we already have. Denote the one taking z; to zo by the letter o.
Then the repeating o to obtain oo = o we obtain the symmetry taking z; to
z,. Repeating again, we obtain oo = 03 which takes z; to z3. Repeating
again, we find that cooo = o? is the trivial symmetry.

Inside the collection of numbers there is a smaller collection of numbers
that have a special symmetry. We met them before. They are those that
are not affected by o2, thus by complex conjugation. They are the numbers
a+bw, w = z1+24. We were able to construct z; by succesive square roots, by
first singling out this special collection of numbers, finding that any number
in it satisfied a quadratic equation with fractions as coefficients, in particular
that w?4+w—1 =0, so that w = @, and then solving 22 — z;w +1 = 0.
We now apply these ideas, which I hope are clear, to the heptadecagon!



The Heptadecagon

Zsg Z4 .
3
Zg
Zy
Z7
Zy
Zg
Zo
Zg
Z1p
Z10
Z15
Z11
Z14
Z12 Z13

2 = cos(2k7/17) + isin(2kw /17)

10



From the Disquisitiones Arithmeticae

There is a famous remark from the introduction to the seventh
and last chapter of the Disquisitiones that I quote here. What it
anticipates is the study of the division points on elliptic curves, in
the remark a special elliptic curve, a study that led over the course
of the nineteenth and twentieth century to many things, especially
complex multiplication and /-adic representations, that are relevant
to the Shimura-Taniyama-Weil conjecture,

Ceterum principia theoriae, quam exponere aggredimur, multo
latius patent, quam hic extenduntur. Namque non solum ad func-
tiones circulares, sed part successu ad multas alias functiones transs-
cendentes applicart possunt, e. g. ad eas, quae ab integrali

/ dx

vV1—a4

pendent, praetereaque etiam ad variam congruentarium genera: sed
quoniam de illis functionibus transscendentibus amplum opus pe-
culiare paramus, de congruentibus autem in continuatione disquisi-

tionum arithmeticarum copiose tractabitur, hoc loco solas functiones
circulares considerare visum est.

11



Lecture 7
A proof by Gauss (beginning)
Recall that we want to show that z; is a root of the equation
I Z'+ 2P+ 22+ Z+1=0

but of no equation of the forms

7P+ aZ* +bZ+c=0 (I)
Z?+aZ+b=0 (IT)
Z+a=0 (I1T)

in which a, b ¢ and d are fractions.

The impossibility of the last equation is clear because z; is not a fraction.
If it were a root of the first, then using long division to divide (I) by Z3 +
aZ? 4+ bZ + ¢, we would find

A4 2P+ 2P+ 24+ 1= (2P +aZ? +0Z +c)(Z+d)+eZ* + fZ +g
Substitute z; to find that z; is also a root of
eZ’+fZ+9g=0

Then, as we just observed e is not 0, unless e = f = g = 0. If e is not 0,
divide by it. Thus either

(IV) ZY 4+ 23+ 2P+ Z+ 1= (23 +aZ? +0Z +¢)(Z + d)

or z1 satisfies an equation of type (II). If it satisfies (II), then perform a long
division to obtain

I 2P+ 2P+ 2+ 1=(Z2+aZ +b0)(Z* +cZ +d) +eZ +d
Since ez 4+ d cannot be 0 unlesse = d = 0, we conclude that

(V) ZA+ 234+ 722+ 2+ 1= (Z° 4+ aZ +b)(Z% 4+ cZ +d)

12



A proof by Gauss (continued)

We now show that the factorizations of (IV) and (V) are impossible. We
first observe a very important fact.

An equation of degree n
(VI) Z" 4+ aZ" P+ b2+ +d=0
cannot have more than n roots!

Suppose (VI) has a root e. Using long division, divide by Z — e. The
result is

Z" 4 aZ" P4 b2 dd=(Z —e) (2" V4 AZV 2+ 4 D)+ f

Substitute e to see that f = 0. Now any other root ¢’ not equal to e of (VI)
must be a root of

(VII) Z" 4 AZ" 24 4+ D=0,

so that if (VI) had more than n roots, then (VII) would have more than n—1.
All we have to do now is continue, working our way down to lower and lower
degree until we arrive at an equation of degree one

Z+a=0

that clearly has only one root.

13



General comments

The proof we present is a proof that can be extended without too much

additional effort to the following statement.

Suppose p is a prime. Then the polynomial
Zp~v pgpm2 L zp3 7+ 1

admits no factorization.

This is a statement proved by Gauss in the Disquisitiones. We will need
it for p = 17.

According to Bourbaki’s Eléments de histoire des mathématiques, this
was the first general statement of this sort about polynomials ever proved.
It seems to me that in one sense, it is also the last. In the nature of things,
there are very few large classes of polynomials that are all irreducible. On
the other hand, if taken as a statement in the sense of Galois theory, as a
statement affirming that the Galois group of the equation is large, then there
are indeed other statements of this sort available and perhaps many more yet
to be proved. The size and nature of Galois groups is a reasonably important
mathematical topic, at least for mathematicians.

Since the proof in the general case is not so different from the proof for

p = 5, we can expect a certain amount of sophistication.

14



A proof by Gauss (continued)

Suppose we had a factorization (IV). Since 21, 22, 23 and z4 are all roots
of
ZA+ 234+ 7224+ 7 4+1=0

each of them is either a root of
(VIIT) Z3+aZ?+bZ +c=0

or of
Z+d=0

Since the latter is impossible, because —d is, in contrast to z1, 22, z3 and z4,
a fraction, they are all roots of (VIII) which gives (VIII) one root too many.
Thus we must have

(V) I+ 23+ 2P+ Z+ 1= (2> +aZ +b)(Z° + cZ + d)

The first thing is to establish that a, b, ¢ and d are all integral. For this
we need a little number theory. Suppose that one of these numbers is not
integral. Then it is of the form

m "
—, n positive, n>1
n

in which m and n have no common divisor. To be explicit, we write

3
30

as
1 1

10 2x5
Thus there is some prime number p such that n = rpt, ¢ > 0, p does not
divide r. For example, if m/n = 1/10 then p could be 5 and we would have
m=1,r=2,t=1.
We write each of a, b, c and d in this way.

ai bl C1 dl

a=—, — 7 cC=—1, — 7 1
asp? bap” cap?® dopt

15



Suppose that at least one of the numbers ¢, r, s, t is positive. If, for
example, ¢ = 0 then p might divide a,. Thus suppose that not all of a, b, ¢
and d are integral. We multiply (IV) out to obtain

Z*+(a+c)Z° + (b+ac+d)Z% + (bc+ ad)Z 4 bd = 0.

First of all, a + ¢ = 1 is an integer. This is possible only if ¢ = s, for if ¢ is
not equal to s then one of them is positive and larger than the other. The
denominator of a 4+ ¢ would contain the factor p™ if n is the larger of ¢ and s.

For example
2 3 249x5 A7

3x5 5 3x5.  3x52
We conclude that ¢ = s.

Looking at b+ ac+ d, we next conclude that either » =t or ¢+ s is equal
to one of r or t. This line of argument quickly becomes confusing. The best
thing is to follow Gauss and to prove a general theorem. Oddly enough, it is
an argument that can best be explained in the general case. Here is what we
want to show.

Suppose that the product of
2"+ a 2" Y+ a2 %+ . . +a, 1Z+a,
and of
Z™ 4+ b1 2™ 4 a0 22 4 4 by 1 Z + by

has integral coefficients and that all of the numbers a; and b; are
fractions (and not some more complicated kind of irrational num-
ber!). Then all of the numbers a; and b; are integers.

We suppose not and choose a p that divides the denominator of at least
one a; or one b;. Then we write

my;

n;p"

Sj
tjpsj

a; = bj =
It is understood that p does not divide n; and that it does not divide ¢;.
Starting with r1, examine all the r; and let r; be the first that is at least as
large as all the others. Thus ry is bigger than those that came before and at
least as large as those that come after. In the same way s; is to be larger than
the s; that come before and at least as large as those that come after.

16



The product is of degree m + n. we look at the coefficient of the power
Zmin—k=l T is

mtn—k—1b0 + Gmyn—k—1-101 + Gman—p—1-2b2 + ... + @0bmin—k—1

Some of these terms are purely fictive, those in which a; appears with ¢ larger
than n or b; with j larger than m. If ap or by appear they are taken to be 1.
For example, if n = 5, m = 3 then the coefficient of Z4 is

a4 + asby + azbs + a1bs

In general, the coefficient of Z**! is supposed integral and contains the
term azb; in whose denominator p™* 5t occurs. It also contains terms like
ar_1bi+1 whose denominator contains at most the factor p™—!'*5t or like
ap+1b;—1 whose denominator contains at most the factor p"*+$:=1. Thus when
we put everything over a common denominator, we will have a p™* 75 in the
denominator that cannot be removed. This is a contradiction.

An example.

1 92 1 4 7
734+ 724+ 274 = 724+ 27+ —
(Z° + 3 + 5 + 9) X (Z°+ 3 + 3)

Here k = 2,1 = 1, so that m +n — k — [ = 2. The coefficient of Z2 in the
product is

21 8 3 32

1 1
0379 3 r 9y Ty T T o7

17



Final step

We now know that in (V) the four numbers a, b, ¢ and d are integral.
The argument we used was taken from §42 of the Disquisitones, thus from
an early chapter. The next part is from §341, thus from a very late, indeed
the last chapter, the one devoted to the division of the circle, thus to regular
polygons. The number z; will be a root of

Z2+aZ+b=0

or of
Z24+c¢Z=d=0

We can suppose that it is a root of the first. Then z4, its complex conjugate
will also be a root, so that the roots of the second are z5 and z3.
The polynomial Z2 4 aZ + b is divisible by Z — z;

7P 4vaZ+b=(Z—2)(Z—24) = 2%~ (1 +24)Z+1 = Z*—2cos(2m/5) Z + 1
which we write as
Z? —2cos(2m/5) Z 4 cos? (27 /5) +sin? (27 /5) = (Z — cos(27/5))? +sin? (27 /5)
In the same way,

7%+ cZ +d = (Z — cos(4n/5))? + sin® (4 /5)

Thus if Z is an ordinary real number, both Z? +aZ +b and Z2 + ¢Z + d are
positive. If Z is an integer, they are integers.
Since

(Z2+aZ +b)(Z* +cZ+d) =2+ 22+ 722+ Z+1
we have first of all, for Z =1,
(I+a+b)(1+c+d) =5
Thus one of these numbers is 1 and the other is 5. On the other hand,
72+ aZ +b+ 2> +cZ+d=2"— (1 + 2+ +u)Z+2=22*+3

which is 5 when Z = 1. We conclude that 1 +5 = 5, which is out of the
question.

18
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.res, Geoffroi, Olivier, Rofe.
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Vater des Worterbuchs dee Academie niicht Vort hiaben.

* Den tften Nivofe (21. Decembr. 1795) hiclten dic t4g
bis jetrt ernannten und beflatigien Muglieder ihre Scanee
d'osverture, die Dujoxit als Prifident nach dem Alter, .
durch Voriefung des Gefetzes, wodurch -das Jullitut (eio .
me Conftitution erhilt, erdfinete.. Delisle de ia Sulle. pa- -
negyrifirte hieraufl die neue Einrichtung mit siner zicme-
lich ermiidenden Weitfchweifigkeit.  Fowrcroy und La
Lande thun Yor(chlige wegen der Ernennung einzeluse
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Laploce driage.dacsuf, dafs die Arbeiten dec sinzelnen
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. folle. Die Deckerfche Buchhandlung in Batel bat, wis

verlautet, die Ueberfatsung diefer Bchrift ainem fachkun- -

digen Manue aufgetrsgen, der O noch durch einige Zu-

igen wird, .- - .
In Riickfiche~ auf sntiqusrifche und hiftorifche Fore

fchungen ift- Dapujs Origise de tous les caltes, on religion

wuiserfelle, wovon 2 Ausgsben, eine in drey Quanbin. -

den, die andere in 12 Ocuvbinden, zu ciner jeden ein
Bindchen Kupfer, erfchienen find, unbezweifelt das wich-
tigfte Werk, das nach Barthelemys Anacherfis in Frank.
teich erfchienen ift, Dwpuis, ein Schiiler und Licbling
des grofsen J.a Londe, bat dic ganze Mythologie der al-
ten Welt auf die neueften Refuliste der Sternkunde zu
griinden, und dabey sine weit feltere Balis, als Cosrt do
Guebrlin und apdere vor ibm, su finden gewufst. Indem
er den Zodiacus umdrehit, und fo zum richtiglten Acker-
‘kalender der Aegypter macht, indem er ferner die be-
lw}me Erfalirung des Forstiickens um ein ganzes Him-
melszeichen in 2181 Jaheen fehr gefchicke suf die Ver-
wirrung diefer Jimmelshicroglyphen anwendet, wird al-
Jerdings in der agypeifchen Sternibeologie alles hell und
deutlich. - Wer ‘unfers Gattarers Jdeen, befonders einige
feiner Vorlefungen in den Comment. Soe, Gotting, fleifvig
fudiers hat, wird sych bey Dupais bald s Haufe feyn,
ohne jedoch die grundlofen Polgerungen fiir die fpitere
geiechifche Aythologie, dis bLier viel zu fehr atropomi-
- firs wird, zu unterfchreiben. . .. .

Die neuslle Reitubelchreibung von siniger Bedeutung
iR Vepage do denx Frenpalt on Allemagne, Danemark,
Suede, Hufie ot Pologue foit en 1790-91. § Vol. in g.
(10 liv. numer.) . Bey aller Oberflichlichkelt werden die
Anckdotenliebhaber hier doch, befonders in den letatcn
8 Thailen,” wo von Schweden, Rufsland und Polen die
Rede ift, ibre Nechnang fehr gut finden, Merkwiindig
it der Unftands - Auf der gonsen Reife befuchien dis
Meren Voyageurs nur efnen Mann, der nicht sum Hofe
Sehirte, Kiopfork,: und von diefem Cprechen Ge niche
sinmal mit Achtung. Das Buch muls alfo auch in Deusfch.
1and in allen den Zirkedn grofses Glisck machen, wo dis
Gelehirfamkels verboten und der Gelehrre im Baun ift,

. . . Die neuelten Romane, die auch woh! aufser Frank.
- peich den Liecbhabern dlcfer Leferey a'nige Befrlvdigung
" gewihran kéanten, Oud Leitres do dovx amans, habi-
tans do Lyon, par lo cir. Leonard, 3 Vol in 18, gehion
sur emp’ndfamen Klale, und kann mitunter erfchiittern s
- Lllule, en la beanti outragie par elle mime, ein Feene
- mahirchen, das ferkes Glauben foderss und les trois forurs,
por Madnme Bosrnos« Alullrme, ¢ Vol. in 38, ein dchte
 franzdlifches Machwerk, miz anglifinen Namen, , |
- Das wowelle gute Lififpict wurde put demThester der
. Ropublik gegeben, und ift von Picart: Les emis dv Cole
© degey. on Lhkomme oifif o8 I'drtifon, 3 Acie in Verfen.
- Drey Schulfreunde baben Och gegenfoliige Unterfliitaung
angelebt, und der eine, eln Dichter, komme nun iy dep
Fall, tle wirklich von den beyden andern su fodern. Ein
. clu: angelogter Plan,. reich. an gliicklich benuisien Sicug.
tlonen, - "~ .. S o

Bey sinenr Usberblick der meusften frans. Lierstur

dasf GIMR das Unfrere l‘min'lr:h.nkh gas {iberfakn

r

¢ Den 18 April g8,
wus "

werden. Unter denin dor A. L. 2. nych nlcht angezeig-
ten Werken' diefer Art find dic Memoires fur la vie ot lo
¢avecteve de Mad. la Ducheffe do Polignec avec des Anece
‘doter interefantes fur la vevointion Frangelfe ot la pevfon
‘ue de Mar.. duteinests, London, Debrest. 1796, (300,
€ 4.) befonders merkwiirdig. . Sis w«dmnufdn_m 5

-der Diane von Polignsc felbft zugefchrieben. .»...

© Zu den iltern in Paris cricheinenden ZeitlchriRen goe
fellen fich jetas sway neue: le Conrrier des Enfons, eine

Kinderfchriir, in der Berguin's Leichtigkeic - glicklich P

nachgealimt ilt.  Von ihe Gud bis jerzt ¢ Mefre herausges
kommen. © Und eili granmeziiches, dur.di den revolutive
nsiren Spraclunfug doppelt nthig gewordencs Werk:' -

Journgl de lu lungue Franjaife von Domaivgue, dcr Mit-"" . |

glied des NationalinRitue ift, und Thwrot, dim Ucber-?
fetzer von Haris's philufephical Grommar. Ex verfiiit'in .-

3 Abtheilungen. : 1iie ertle Yilm grammaifche Yragen aufe ™

Die swove giebt einen Conrs fuivi de la langue, fRelle
Mufterflicke aus den franz. Clallikern auf, und beurs _

theile Ge, _
Il. Befrderungen, - -

Der bi;bcrige Profefflor der Rechte su Ahirf. lfr.'
Dr. Emminghans, ift zum ordenglichen Profeffor der Reche

-te nach Erlangen berufen worden, und hat diefen Ruf -

angenomaren. -

Ebendalelblt it dem Mn. Dr.C. Grofr, sus Ursch, - .

ehemaligem Inftructor der Prinzen von Wiirtemberg, VL.,

der mit Beyfall aufgenommuen Gefchivhte der Uerfihrung S
-wach vimi{fchem Reckte, einc ordendiche Profefflur deax
-Rechie entheilt worden, s

ML Neve Emdeckuhgen.

. Es il jedem Aufinger der Geometrie bexannt, dals -

verfchiedene ordemliche Vielecke, uamentlich das Drey.
wk, Vierevky Funfechieck, und dic, welche durch wiee -

~ derhoite Verdoppelung der Seitenzah) eines derfelben ente * -

fichen, Gich geometrifch confruiren laffen. 8o walt war :

man fchon gu Buklide Zeit, uud es fcheint, man habe _
fich feitdem allgemein iiberreder, dafs das Gebiet der Elge ,
mentargeomtrie fich niche weiter erftracke: wenigltens

kenne ih keinen gegliickten Verfuch, lhnGnnun af

dicfer Beite zu erweitern. -
Deflo mebr, dinks mich, verdient die Entdeckung

Aufmerkfamkeit, dafs avfier jenen ordentlichen Vidltcken

soch eine Menge onderer, 8. B, das Siedenzehnechk, einer

geomesrifehon Confruction fuhlg N,  Diefs Ente - -

deckung iRt eigentlich nur ein Corollarium elner noch
wichs gans vollendeten Theorie von grifeerm Umfange
uidl Ge foll; folaid diefe Ihra Volleidung erbalien hat,
dan Publicum vorgelyt werden, . S
- ... .. GT.Gaufs, s Baunfchwelg,
A, Siud. der Mathematik zu Goutlngen,
.. Es. verdiem angemcrkt zu werden, dafs Hr, Gauth :
Jesat.iu Geinem s2uen Jalhire fihie, und ich hior in Braune -
fehwelg amis wben (o gliicklichem Erfolg der Fhilofophle
und der clallifchen Lictoratur als der hihern Mathematlh
@ewidmes Bat, | -

b 3

A W. Zimmermansn, Prof.
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[Il. Neue Entdeckungen.

Es ist jedem Anfanger der Geometrie bekannt, dass
verschiedene ordentliche Vielecke, namentlich das
Dreyeck, Viereck, Funfzehneck, und die,welche durch
wiederholte Verdoppelung der Seitenzahl eines derselben
entstehen, sich geometrisch construiren lassen. So weit
war man schon zu Euklids Zeit, und es scheint, man habe
sich seitdem allgemein Uberredet, dass das Gebiet der
Elementargeometrie sich nicht weiter erstrecke: wenig-
stens kenne ich keinen gegliickten Versuch, ihre Grenzen
auf dieser Seite zu erweiten.

Desto mehr, dunkt mich, verdient die Entdeckung
Aufmerksamkeit, dass ausser jenen ordentlichen Vielecken
noch eine Menge anderer, z. B,. das Siebenzehneck, einer ge-
ometrischen Construction fihig ist. Diese Entdeckung ist
eigentlich nur ein Corollarium einer noch nicht ganz vol-
lendeten Theorie von grosserem Umfange, und sie soll,
sobald diese ihre Vollendung erhalten hat, dem Publicum
vorgelegt werden.

C. F. Gauss, a. Braunschweig,
Stud. der Mathematik zu Gottingen.

Es verdient angemerkt zu werden, dass Hr. Gauss
jetzt in seinem 18ten Jahr steht, und sich hier in Braun-
schweig mit eben so glucklichem Erfolg der Philosophie
und der classischen Litteratur als der hoheren Mathe-
matik gewidmet hat.

Den 18 April 96.

E. A. W. Zimmermann, Prof.
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Die Allgemeine Literatur-Zeitung
From Meyers Enzyklopadisches Lexikon:

This review appeared in Jena from 1785 to 1803 and in Halle from 1804 to 1849 and
was a leading organ of German classical and romantic literature. Goethe, Schiller and
Kant were among the editors and authors. It moved to Halle as a result of an effort of
the romantics to increase their control over the review and was replaced in Jena, on the
initiative of Goethe by the Jenaische Allgemeine Literatur-Zeitung.

Gauss

Gauss, who was born in 1777, wrote the Disquisitones between 1796 and 1798, thus
between his nineteenth and twenty-first years. It did not appear until 1801. It contains a
great deal in the way both of theorems and theories, the most important being;:

1. Proof of law of quadratic reciprocity. The statement was already known at the
time, but even the best of the eighteenth century mathematicians were unable to find a
proof. It remains a central mathematical theorem.

2. Developed the theory of binary quadratic forms. In particular, he introduced
the notion of composition of quadratic forms and established its properties. Although
in some respects, namely in the context of the notion of ideal number, composition has
become a common working tool of all algebraists and number-theorists, Gauss’s theory
itself is still difficult and little known. His form of the theory would appear to be that best
suited to computation.

3. Cyclotomic fields. The construction of the regular heptadecagon, and, more gen-
erally, the analysis of the numbers formed from roots of unity. This is thus one of the
earliest manifestations of Galois theory. Gauss presumably knew more than he included
in the book, but he, apparently, published very little more on the subject.

His thesis of 1799 established, in effect and for the first time, that every polynomial
equation has a root.
Z"+aZ" P+ bZ" 4 +d=0

As the root may be complex and the thesis did not refer to complex numbers, the formula-
tion of the thesis was necessarily somewhat different. I have already emphasized that this
is a basic mathematical fact.

These are all theories and results to which the contributions of Gauss are clear. In
addition, he appears to have occupied himself as a very young man, even as an adolescent,
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with other important problems and observations, for example, with the nature of geome-
tries in which the parallel axiom of Euclid is not satisfied and with the arithmetic-geometric
mean, which is both an elementary and an advanced topic. Here, however, the evidence is
different. It consists of Gauss’s recollections as a somewhat saturnine older man, so that
it appears to be difficult to disentangle what he himself discovered later, what he learned
from other authors as an adolescent — he had an early and extensive acquaintance with the
work of various leading eighteenth century mathematicians — as well as what he learned
later, from what he discovered early. One could certainly spend a lot of time with Gauss’s
Collected Works and with his correspondence, reflecting on these matters.

One extremely useful reference is a diary that Gauss kept between 1796 and 1814,
with 146 entries that record his principal discoveries. The lemniscate function to which, as
I noticed, Gauss alludes in the first lines of chapter 7 of the Disquisitiones appears several
times. I was asked what Gauss what may have meant with his allusion to the lemniscate.
A brief examination of the diary and of the collected works, which contain ample editorial
comments, makes perfectly clear what Gauss knew. Although it is a digression from my
main purpose, it is worthwhile to tarry a little on the matter.

The goal of this year’s lectures is after all to communicate, starting at the beginning,
some genuine mathematical understanding, beyond the gee-whiz or what I refer to as the
Jack Horner manner, of recent achievements in number theory, and it would be a shame,
since we are now in a position to appreciate a more detailed explanation of Gauss’s allusion,
to let slip the occasion of acquiring more concrete information.

Gauss was an overwhelming presence in nineteenth century mathematics, Even though
he exerted little active influence. The German pre-eminence in mathematics as a whole,
and in certain domains such as number theory in particular, that lasted throughout the
nineteenth century and until the early thirties is due in good part to him, although the
Prussian university system was probably also a significant factor. I have not studied these
matters. Oddly enough it appears to have been André Weil who was most thoroughly
imbued with the aspirations of German number theory, both through direct, personal
experience as a young man during the twenties and through his studies of variou nineteenth
century authors. Simplifying, for the purposes of brevity, an elaborate development in
which a large number of mathematicians took part, one might say that he not only brought
it intact through the war at its highest level but also was the principal source of its
transformation into the theories that were finally and successfully exploited in the proof
of Fermat’s theorem.

His major contribution was, oddly enough, a set of conjectures, the Weil conjectures,
now demonstrated, but by others. He is, in various comments to his papers, quite explicit
about the relation of these conjectures to Gauss and the lemniscate.

I quote from Weil’'s Two lectures on number theory, past and present, an essay 1
recommend to your attention.

“In 1947, in Chicago, I felt bored and depressed and, not knowing what to do, I started read-
ing Gauss’s two memoirs on biquadratic residues, which I had never read before. ... This
led me in turn to some conjectures.”
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A few lines later Weil draws attention to the very last entry in Gauss’s diary, an entry to
which we shall come in a moment.
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Digression

The digression at first sight seems to demand some knowledge of the
calculus, but it does not. I first write down a formula that may be familiar
to some, but not to all. No matter! Do not puzzle over the left side. It is
no more than the mathematician’s usual fastidious way of writing down the
length of the arc from the point (1,0) on the circle to the point (z,y) and
that is what we mean by 6, which of course has to be measured in radians,
thus in units in which the radius is 1, but that is the unit chosen. If

Yooodt
(4) | ==

then y = sin(f). If y =1 then 6 = 7/2.

(xy)

(1.0)

We now do something similar for the lemniscate, a curve defined by the
equation
(2® +9%)° = (2° —y*) =0
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The lemniscate is the curve in the form of a bow. The point (z,y) is the
point where the line through the points (0,0) and (1,u) cut the curve. The
length of the curve from (1,0) to the point (x,y) is expressed mathematically
as

(B) 6.

/ voodt
0o V1—t?
Once again, there is no need to be troubled by the integral. It is again just a
way of expressing the length of an arc of a curve. Observe that 6 plays here
the role of the angle in a circle measured in radians. Gauss wrote

u =sin lemn(6).

If w =1, then € is some number that I call, following Gauss, w/2. Thus
w /2 is the length of the upper loop on the right running from (1,0) to (0,0).

/
/
/
/
/
" T (k)
/ ]
. (Lu) vV1—u2
/ T—= ——F
/ 1+U2
0.5 0.‘5
AN
\ uv1 — u?
AN —_—
N Y 1+ u?
0.5 AN
AN
AN
AN
AN
AN
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Constructing a regular triangle, a regular pentagon, or a regular hep-
tadecagon is the problem of dividing the total circumference of the circle into
three, five or seventeen arcs of equal length. We could consider the same
problem for the lemniscate, taking the initial point, which is now important
as it was not, because of symmetry, for the circle, to be the point (0,1). In
an entry for March 19, 1797 Gauss notes that this leads to an equation for
u of degree m?, whereas for the circle it was an equation of degree m. In
the cases already considered, m was 3 or 5. We remove one easy root, u = 0
corresponding to the first point of division. This leads to equations of degree
m — 1 or for a lemniscate m? — 1. In a later entry, apparently for April 15,
he observes there is a problem of separating the real roots of this equation
from the complex. He is seeking the real roots. The corresponding equation
for the circle, thus for y, has only real roots. It is the numbers x + 7y that
are complex. The real roots of the equation of degree m? —1 give the division
points and there are m — 1 of them.

In an entry dated March 21, he observes implicitly (all the entries are
cryptic) that these m — 1 roots are numbers that can be constructed with a
ruler and compass.

Lemniscata geometrice in quinque partes dividitur.

The young Norwegian mathematician Abel published in 1827 and 1828
proofs of the assertions implicit in Gauss’s remark in the Disquisitiones. For
m = 3,5 the necessary constructions had been found much earlier, by 1750,
by the Italian geometer Count Fagnano

The connections of the lemniscate with number theory are too ramified
for us to discuss them in any more detail. The division points were important
then and are important now, but so are what are called congruences modulo a
prime. The two topics are very closely related. I end with the entry to which
Weil alluded, the very last in the diary, dated July 9, 1814.
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' TEILUNG DER LEMNISKATE.

(Eintragungen im LEISTE.

[1.]

1 —=53 —3 <41

4
16(1""")(1 +20 —9% F9%0 F1

2.]

Sit sin4k R = (k), tum habebuntur aequationis radices (0), *

0+ (B)4(1)y—-1
1)~ 5)...

4+ 141y=-1
1) -441)y-1

@ -@4) V-1
M+ 2)3) @) y—1

. O @ _1+may-1
1, y—1 [(-27 @
@

1) 1—@)@y—1

@ 14+@@v-1
@ 1-@avy-1 |

29

).

_(3 *—6 *—1)=
T\l ¥+6 %-3/°

(XD

Die Theilung der Lemniscata in sieben Theile gibt die Gleichung:



ALTESTE UNTERSUCHUNGEN UBER LEMNISKATISCHE FUNKTIONEN. IIL 161

(3.]
'S, su=—91]
lcos 18°]
0,965425785 [= n 1301
1,034180311 = 18"
1 1,31102877 [_—_ 32‘.] sin 36°
- - o
2 1,71879545 0,524411511 [= F]
4 2,95416 - 661011
5 3,87311 - 292
6 507777 0,523750208 (= M 36
3 1 [m\*
8  8,72765 1,006302208 [= 1 + 37 (3)]
9 11,44320 - 567
10 15,00 1,006301641 = N36%)
sin] 36° =
0523750208 _ .-
1,006301641 0,5204703904.
'sin] 72° = cos 18°
0,965425 785 _ -
Tosatsosy = 0,9335177577.
(4]
‘8. 102}

Die Theilung der Lemniscata in 5 Theile fiihrt auf diese Gleichung

9 —36x* +30z* 4 122 4 z*¢ — 4(1—z*
1+ 12x* 4 30z* — 362** 4 92** 142z 4+ 2%
9 —36 - 30 4+ 12 + 1
418 — 72 + 60 + 24 + 2
4~ 9 — 36 4 30 +12 41 — 0
—4 —48 —120 +144 — 36
4 4 = 48 4120 —144 + 36
5 —62 —105 -+-300 —125 —+50 -1
21
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162 ANALYSIS. NACHLASS.
U . - . . . ko .
(Wurzeln dieser Gleichung vom 24. Grade sind sin lemn — fird=1,2,3,4,

die iibrigen sind imaginidr, also:]

Determ. rad. imag.

O _ 41-2Y
g=—ga

[setze ' =y, 80 ist]
3—6y—yy)(1+y) =2(1-+6y—3yyV{l—y)
S = 720 —26 [= 125 — 26]
[= (!sin lemn —2—;1)‘ -+ (sin lemn 4—:‘)1
349 — 156 /5
—9+ 4y5

340 — 1525 [:—_ —;— (sin lemn 4—:—). — %(sin lemn 27‘“)']’.

Zwei Wurzeln obiger Gleichung sind
40,0733810047 [= (sin lemn 30‘5)]

40,7594355 [= (sin lemni:l)]

(5.]
[S. 100—101]

Auflssung der Gleichung
5— 622 — 10522+ 3002° — 1252 +502°+2° [= 0%)]

'Es folgt eine Zahlenrechnung, anscheinend nach der Regula falsi].
Also eine Wurzel

2o

— 0,07338100477 [= (sin lemn 27}

und folglich
sin 36° = 0,52047024 [= y0,073381].

%) Das x in dieser Gleichung ist die vierte Potenz der im art. [4.] ebenso bezeichneten Unbekannten;

die Gleichung hat also die Wurzeln (sin lemn -kTm-)‘ fir k = 1,2, 3, 4]
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SLTESTE UNTERSUCHUNGEN UBER LEMNISKATISCHE FUNKTIONEN. IIL 163

Hieraus aber folgt eine zweite VWurzel

1+t7
116 = 1,2041200
It = 0,8655836—2 [= log, 0,073381... = log,, /sin lemn 36°)"]
(1 —1¢*=0,9338025—1
— 1+ =0,8769844—1
0,8804905 — 1 [= log,] 0,7594348 [= logy (sin lemn 72°)"].

Also
Isin 72° = 0,9701226

und
sin 72° = 0,9335179.

(6.

(Ein Zettel Fh Nr. t, Kapsel 50.]

Rechnungen zur Lemniscata gehorig,

‘sin 0,4)* -+ (sin 0,8)" = 125 — 26 [*)]
= 2(0,4164078649 9873817845 5042012387 65741)

(4(sin 0,8)¢ — 4 (sin 0,4)) = 340 — 1525
= 0,1176674200 3196614580 5602352846 01228.

Daraus Radix
0,3430268503 0761971797 7310507555 85731

—0463415326 98758
6847092228 86973

Also
(sin 0,4)* = 0,0733810146 9111846047 7731504831 80010

Daraus Radix

(sin 0,4)' = 0,2708893033 8999814497 30710

. . . 4m . 8@ . o . o
[‘) gin 0,4 und sin 0,8 bedeuten sin Ty und sin T d. h. also sin lemn —25— und sin lemn ‘T]
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Observatio per inductionem facta gravissima theoriam residuorum
biquadraticorum cum functionibus lemniscatis elegantissime nec-
tens. Puta si a+bi est numerus primus, a-1+bi per 242i divisibilis,
multitudo omnium solutionum congruentiae

l=zx+yy+zzryy (mod a+ bi)

inclusis
r=o00, Y= =ti; r =41, y=00,

fit
= (a —1)* + bb.

We have progressed a little beyond this last entry in the intervening 185
years, but not so much as one might think! Without going into further detail,
which would be too much of a digression, I observe that if

1:x2+y2+x2y2

and
z=y(l+2?)

then

22 = y?(1+22° +2) = y?*(1+22) +y°2* (1+2%) = 1 -2 +2°(1—2?) = 1 -2,
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