Isoperimetric Inequality and higher order curvatures

Yi Wang

Institute for Advanced Study, Oct 1, 2014

Classical isop inequalities

Classical isop inequality on a planar domain:

Suppose $\Omega \subset \mathbb{R}^{2}$ is a bounded domain, and $\partial \Omega$ is its smooth boundary. Then

$$
\begin{equation*}
\text { Area }(\Omega) \leq \frac{1}{4 \pi} \operatorname{Perimeter}(\partial \Omega)^{2} \tag{1}
\end{equation*}
$$

Classical isop inequalities

What about a curved surface?

The same Perimeter $(\partial \Omega)$ bounds a domain Ω with bigger area.

Classical isop inequalities

If $\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)$ is not too big, then the isop inequality is still valid.

For instance, on a cone, the isop inequality is valid and $\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)<2 \pi$.

Classical isop inequalities

Isop inequality on a curved surface (Fiala-Huber '1940-50's)
(M^{2}, g) is a noncompact complete simply connected surface, and $\Omega \subset M^{2}$. If $\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)<2 \pi$, then

$$
\begin{equation*}
\operatorname{Area}(\Omega) \leq \frac{1}{2\left(2 \pi-\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)\right)} \operatorname{Perimeter}(\partial \Omega)^{2} \tag{2}
\end{equation*}
$$

Here $K_{g}(x)$ denotes the Gaussian curvature.
$K_{g}^{+}(x) \stackrel{\text { def }}{=} \max \left\{K_{g}(x), 0\right\}$.
For $\mathbb{R}^{2}, K_{g}(x) \equiv 0$. Thus (2) covers (1) on a planar domain.

Classical isop inequalities

The bound 2π in $\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)<2 \pi$ is sharp:
Counter example: $M^{2}=$ Half Cylinder. $\int_{M^{2}} K_{g}^{+}(x) d v_{g}(x)=2 \pi$. It does not satisfy the isop inequality.

Classical isop inequalities

Isop inequality on a curved surface (P. Li and L. Tam '91)

$\left(M^{2}, g\right)$ is a noncompact complete simply connected surface, and $\Omega \subset M^{2}$. If K_{g} is integrable and $\int_{M^{2}} K_{g}(x) d v_{g}(x)<2 \pi$, then

$$
\begin{equation*}
\operatorname{Area}(\Omega) \leq C(g) \operatorname{Perimeter}(\partial \Omega)^{2} . \tag{3}
\end{equation*}
$$

Can C be independent of g ? No. Because:

Questions in higher dimensions

Known: Isop inequality under POINTWISE curvature assumptions:

- Aubin, Cantor '70's
- Coulhon '89 and Saloff-Coste, Varopoulos '93

Question 1

Can we prove isop inequality by assuming INTEGRAL condition instead of POINTWISE condition?

In other words, curvature may be ∞ on some points and the isop inequality is still valid.
For instance, the rotationally symmetric cone only has ∞ curvature at the vertex, it satisfies isoperimetric inequality.

Questions in higher dimensions

Question 2:

What is the suitable curvature?

Many possible choices: $R_{i e m}, R c_{g}, R_{g}$, etc.
Notice: on surfaces, they are all equal to the Gaussian curvature K_{g}.

Question 3:

Is conformal structure relevant to the isop inequality in higher dimensions?

Q-curvature

So far, we can answer the questions in the conformally flat case.
The isop behavior is controlled by the integrals of Q-curvature.

Definition

In dimension 4,

$$
Q_{g} \stackrel{\text { def }}{=} \frac{1}{12}\left\{-\Delta R+\frac{1}{4} R^{2}-3|E|^{2}\right\}
$$

E is traceless part of Ric. In other dimensions, it has other expressions.

Q-curvature

Analogy between Q_{g} and K_{g}

- Q-curvature has analogous transformation law as that of the Gaussian curvature.
- Q-curvature appears in the Chern-Gauss-Bonnet formular.

First result

Li-Tam's analogue in higher dimension holds.

Theorem

(W. '11) Suppose $\left(M^{n}, g\right)=\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)$ is a noncompact complete Riemannian manifold with $\lim _{|x| \rightarrow \infty} R_{g} \geq 0$. If its Q-curvature satisfies

$$
\begin{equation*}
\int_{M^{n}}\left|Q_{g}\right| d v_{g}<\infty, \quad \int_{M^{n}} Q_{g} d v_{g}<c_{n} \tag{4}
\end{equation*}
$$

then the manifold satisfies the isop inequality:

$$
\begin{equation*}
|\Omega|_{g} \leq C(g)|\partial \Omega|_{g}^{n /(n-1)} \tag{5}
\end{equation*}
$$

Here c_{n} is equal to the integral of the Q-curvature on a hemi-sphere. $c_{2}=2 \pi, c_{4}=4 \pi^{2}$, etc.

Results and questions

Fiala-Huber's analogue in higher dimension holds. c_{n} is sharp.

Theorem

(W. '13) Suppose $\left(M^{n}, g\right)=\left(\mathbb{R}^{n}, e^{2 u}|d x|^{2}\right)$ is a noncompact complete Riemannian manifold with $\lim _{|x| \rightarrow \infty} R_{g} \geq 0$. If its Q-curvature satisfies

$$
\begin{equation*}
\alpha \stackrel{\text { def }}{=} \int_{M^{n}} Q_{g}^{+} d v_{g}<c_{n} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta \stackrel{\text { def }}{=} \int_{M^{n}} Q_{g}^{-} d v_{g}<\infty \tag{7}
\end{equation*}
$$

then the manifold satisfies the isop inequality:

$$
\begin{equation*}
|\Omega|_{g} \leq C(\alpha, \beta, n)|\partial \Omega|_{g}^{n /(n-1)} . \tag{8}
\end{equation*}
$$

Results and questions

When c_{n} is replaced by ϵ, the result was known before by M . Bonk, J. Heinonen and E. Saksman '08. This assumption is pushed to the sharp ones in the above theorems.

Results and questions

What happens in non-conformally flat case? How does $\int|W|^{n} / 2$ play a role in the problem?

The end

Thank you!

