De Rham Complexes and Derived Intersections

Dima Arinkin¹ Andrei Căldăraru¹ Márton Hablicsek²

¹University of Wisconsin–Madison ²University of Pennsylvania

Institute for Advanced Studies April 12, 2017

Two formal complexes

The story in this talk is about the similarity between two situations in algebraic geometry. In both the central result is the *formality* of a certain dg algebra.

Two formal complexes

The story in this talk is about the similarity between two situations in algebraic geometry. In both the central result is the *formality* of a certain dg algebra.

Throughout, X will denote a smooth projective variety.

The story in this talk is about the similarity between two situations in algebraic geometry. In both the central result is the *formality* of a certain dg algebra.

Throughout, X will denote a smooth projective variety. We say the complex

$$\mathscr{F}^{\bullet} = \cdots \longrightarrow \mathscr{F}^{i} \longrightarrow \mathscr{F}^{i+1} \longrightarrow \cdots$$

is formal if it is quasi-isomorphic to

$$\mathscr{H}^{\bullet}(\mathscr{F}) = \cdots \xrightarrow{0} \mathscr{H}^{i}(\mathscr{F}^{\bullet}) \xrightarrow{0} \mathscr{H}^{i+1}(\mathscr{F}^{\bullet}) \xrightarrow{0} \cdots$$

The story in this talk is about the similarity between two situations in algebraic geometry. In both the central result is the *formality* of a certain dg algebra.

Throughout, X will denote a smooth projective variety. We say the complex

$$\mathscr{F}^{\bullet} = \cdots \longrightarrow \mathscr{F}^{i} \longrightarrow \mathscr{F}^{i+1} \longrightarrow \cdots$$

is formal if it is quasi-isomorphic to

$$\mathscr{H}^{\bullet}(\mathscr{F}) = \cdots \xrightarrow{0} \mathscr{H}^{i}(\mathscr{F}^{\bullet}) \xrightarrow{0} \mathscr{H}^{i+1}(\mathscr{F}^{\bullet}) \xrightarrow{0} \cdots$$

If \mathscr{F}^{\bullet} is a dg algebra (has an algebra structure), want quasi-isomorphism to respect this.

The two instances where we prove formality are:

The two instances where we prove formality are:

 de Rham complexes in characteristic p > 0 (Deligne-Illusie 1988, Ogus-Vologodsky 2005) The two instances where we prove formality are:

- de Rham complexes in characteristic p > 0 (Deligne-Illusie 1988, Ogus-Vologodsky 2005)
- derived intersections of subvarieties (Arinkin-Căldăraru 2010, Arinkin-Căldăraru-Hablicsek 2014)

M. Mustață noticed a similarity between these two results, asked if one can be phrased in terms of the other.

(Grothendieck): Algebraic de Rham complex:

$$\Omega^{\bullet}_{X,\mathsf{dR}}\,:\, 0\longrightarrow \Omega^0_X \stackrel{d}{\longrightarrow} \Omega^1_X \stackrel{d}{\longrightarrow} \Omega^2_X \stackrel{d}{\longrightarrow} \cdots$$

• • = • • = •

(Grothendieck): Algebraic de Rham complex:

$$\Omega^{\bullet}_{X,\mathsf{dR}} \,:\, 0 \longrightarrow \Omega^0_X \stackrel{d}{\longrightarrow} \Omega^1_X \stackrel{d}{\longrightarrow} \Omega^2_X \stackrel{d}{\longrightarrow} \cdots$$

Algebraic de Rham cohomology:

$$H^*_{\mathsf{dR}}(X) = \mathbf{R}\Gamma(X, \Omega^{\bullet}_{X,\mathsf{dR}}).$$

(Grothendieck): Algebraic de Rham complex:

$$\Omega^{\bullet}_{X,\mathsf{dR}} \, : \, 0 \longrightarrow \Omega^0_X \stackrel{d}{\longrightarrow} \Omega^1_X \stackrel{d}{\longrightarrow} \Omega^2_X \stackrel{d}{\longrightarrow} \cdots$$

Algebraic de Rham cohomology:

$$H^*_{\mathsf{dR}}(X) = \mathbf{R}\Gamma(X, \Omega^{\bullet}_{X,\mathsf{dR}}).$$

Theorem (Grothendieck). If X is smooth, projective over \mathbb{C} ,

$$H^*_{\mathsf{dR}}(X) \cong H^*(X^{\mathsf{an}},\mathbb{C}).$$

• $\Omega^{\bullet}_{X,dR}$ is *not* a complex of coherent sheaves: *d* is not \mathscr{O}_X linear.

• • = • • = •

- $\Omega^{\bullet}_{X,\mathrm{dR}}$ is *not* a complex of coherent sheaves: *d* is not \mathscr{O}_X linear.
- $\Omega^{\bullet}_{X,dR}$ is *not* a resolution of \mathbb{C}_X ; Ω^i_X is not a fine sheaf.

- $\Omega^{\bullet}_{X,dR}$ is *not* a complex of coherent sheaves: *d* is not \mathscr{O}_X linear.
- $\Omega^{\bullet}_{X,dR}$ is *not* a resolution of \mathbb{C}_X ; Ω^i_X is not a fine sheaf.

Theorem. There is a Hodge-de Rham spectral sequence

$$^{1}E^{pq} = H^{p}(X, \Omega^{q}_{X}) \Longrightarrow H^{p+q}_{\mathsf{dR}}(X).$$

- $\Omega^{\bullet}_{X,dR}$ is *not* a complex of coherent sheaves: *d* is not \mathscr{O}_X linear.
- $\Omega^{\bullet}_{X,dR}$ is *not* a resolution of \mathbb{C}_X ; Ω^i_X is not a fine sheaf.

Theorem. There is a Hodge-de Rham spectral sequence

$${}^{1}E^{pq} = H^{p}(X, \Omega^{q}_{X}) \Longrightarrow H^{p+q}_{dR}(X).$$

Over \mathbb{C} , the Hodge theorem tells us this spectral sequence degenerates at ${}^{1}E$.

э

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

4 B K 4 B K

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

• Let $F: X \to X'$ be the relative Frobenius.

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

- Let $F: X \to X'$ be the relative Frobenius.
- $X' = X \times_k k$ is the Frobenius twist of X.

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

- Let $F: X \to X'$ be the relative Frobenius.
- $X' = X \times_k k$ is the Frobenius twist of X.
- Abstractly $X' \cong X$, but not as k-schemes.

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

- Let $F: X \to X'$ be the relative Frobenius.
- $X' = X \times_k k$ is the Frobenius twist of X.
- Abstractly $X' \cong X$, but not as k-schemes.
- Can think of $\mathscr{O}_{X'} \subset \mathscr{O}_X$ as the *p*-th powers of functions on *X*.

Answer: If over a perfect field k of characteristic p > 0, use Frobenius.

- Let $F: X \to X'$ be the relative Frobenius.
- $X' = X \times_k k$ is the Frobenius twist of X.
- Abstractly $X' \cong X$, but not as k-schemes.
- Can think of $\mathscr{O}_{X'} \subset \mathscr{O}_X$ as the *p*-th powers of functions on *X*.

Theorem (Cartier). $F_*\Omega^{\bullet}_{X,dR}$ is a complex of coherent $\mathscr{O}_{X'}$ -modules. Its cohomology is

$$\mathscr{H}^{i}(F_{*}\Omega^{\bullet}_{X,\mathsf{dR}})\cong\Omega^{i}_{X'}.$$

Theorem (Deligne-Illusie). Assume $p > \dim X$. If X admits a flat lift to $W_2(k)$, then the complex $F_*\Omega^{\bullet}_{X,dR}$ is *formal*, i.e.,

$$F_*\Omega^{\bullet}_{X,\mathrm{dR}}\cong \bigoplus_i \Omega^i_{X'}[-i].$$

.

Theorem (Deligne-Illusie). Assume $p > \dim X$. If X admits a flat lift to $W_2(k)$, then the complex $F_*\Omega^{\bullet}_{X,dR}$ is *formal*, i.e.,

$$F_*\Omega^{\bullet}_{X,\mathsf{dR}}\cong \bigoplus_i \Omega^i_{X'}[-i].$$

From this Deligne-Illusie are able to get an algebraic proof of the Hodge theorem in characteristic zero.

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$.

э

伺 ト く ヨ ト く ヨ ト

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$. • $\mathcal{O}_X = k[x];$

э

伺 ト く ヨ ト く ヨ ト

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$.

•
$$\mathcal{O}_X = k[x];$$

•
$$\mathcal{O}_{X'} = k[x^p] \subset k[x];$$

э

伺 ト く ヨ ト く ヨ ト

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$.

•
$$\mathscr{O}_X = k[x];$$

•
$$\mathscr{O}_{X'} = k[x^p] \subset k[x];$$

• relative Frobenius $F': k[x^p] \hookrightarrow k[x];$

伺 ト く ヨ ト く ヨ ト

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$.

•
$$\mathscr{O}_X = k[x];$$

•
$$\mathcal{O}_{X'} = k[x^p] \subset k[x];$$

• relative Frobenius $F': k[x^p] \hookrightarrow k[x];$

•
$$\Omega^{\bullet}_{X,\mathrm{dR}}: 0 \to k[x] \stackrel{d}{\longrightarrow} k[x]dx \to 0;$$

伺 ト く ヨ ト く ヨ ト

For example consider $X = \mathbb{A}^1$ over $k = \mathbb{F}_p$.

•
$$\mathscr{O}_X = k[x];$$

•
$$\mathcal{O}_{X'} = k[x^p] \subset k[x];$$

• relative Frobenius $F': k[x^p] \hookrightarrow k[x];$

•
$$\Omega^{\bullet}_{X,\mathrm{dR}}: 0 \to k[x] \stackrel{d}{\longrightarrow} k[x]dx \to 0;$$

• Deligne-Illusie + Cartier:

C sends $d(x^p)$ to $x^{p-1}dx$.

Let X, Y be smooth subvarieties of a smooth space S.

· < E > < E >

Let X, Y be smooth subvarieties of a smooth space S. Usual intersection $W^0 = X \cap Y$ is defined by

$$\mathscr{O}_{W^0} = \mathscr{O}_X \otimes_{\mathscr{O}_S} \mathscr{O}_Y.$$

Let X, Y be smooth subvarieties of a smooth space S. Usual intersection $W^0 = X \cap Y$ is defined by

$$\mathscr{O}_{W^0} = \mathscr{O}_X \otimes_{\mathscr{O}_S} \mathscr{O}_Y.$$

The richer object

$$\mathscr{O}_W = \mathscr{O}_X \otimes^{\mathsf{L}}_{\mathscr{O}_S} \mathscr{O}_Y$$

still has the structure of commutative dg algebra. We can consider it as the structure complex of an enhanced geometric object, the dg scheme $W = X \times_S^R Y$, the derived intersection of X and Y. Let X, Y be smooth subvarieties of a smooth space S. Usual intersection $W^0 = X \cap Y$ is defined by

$$\mathscr{O}_{W^0} = \mathscr{O}_X \otimes_{\mathscr{O}_S} \mathscr{O}_Y.$$

The richer object

$$\mathscr{O}_W = \mathscr{O}_X \otimes^{\mathsf{L}}_{\mathscr{O}_S} \mathscr{O}_Y$$

still has the structure of commutative dg algebra. We can consider it as the structure complex of an enhanced geometric object, the dg scheme $W = X \times_S^R Y$, the derived intersection of X and Y.

Think of it as an infinitesimal thickening of W^0 .

$$X = Y = pt, S = \mathbb{A}^1.$$

æ

-

□ ▶ ▲ 三 ▶ ▲

$$X = Y = pt, \ S = \mathbb{A}^1.$$

 $\mathscr{O}_X = k[x]/(x)$ has resolution
 $0 \to k[x] \xrightarrow{\cdot x} k[x] \to 0$

<ロ> <同> <同> < 同> < 同>

æ

Example

$$X = Y = pt, S = \mathbb{A}^1.$$

 $\mathscr{O}_X = k[x]/(x)$ has resolution
 $0 \to k[x] \xrightarrow{\cdot x} k[x] \to 0$

$$\mathcal{O}_W$$
 is then

$$0 \rightarrow k[x]/(x) \stackrel{0}{\longrightarrow} k[x]/(x) \rightarrow 0.$$

日本・モン・

æ

-

Example

$$X = Y = pt, S = \mathbb{A}^1.$$

 $\mathscr{O}_X = k[x]/(x)$ has resolution
 $0 \to k[x] \xrightarrow{\cdot x} k[x] \to 0$

 \mathcal{O}_W is then

$$0 \rightarrow k[x]/(x) \stackrel{0}{\longrightarrow} k[x]/(x) \rightarrow 0.$$

Think of
$$\mathscr{O}_W$$
 as $\operatorname{Sym}_{W^0}(N_{X/S}^{\vee}[1])$.
So $W = \operatorname{Tot}_{W^0} N_{X/S}[-1]$.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

æ

Arinkin-Căldăraru-Hablicsek

Theorem (Arinkin-Căldăraru-Hablicsek). The cohomology sheaves of \mathcal{O}_W are

$$\mathscr{H}^{-i}(\mathscr{O}_W)\cong\wedge^i E^{\vee},$$

where

$$E = \frac{TS}{TX + TY}$$

is the excess intersection bundle.

Arinkin-Căldăraru-Hablicsek

Theorem (Arinkin-Căldăraru-Hablicsek). The cohomology sheaves of \mathcal{O}_W are

$$\mathscr{H}^{-i}(\mathscr{O}_W)\cong\wedge^i E^{\vee},$$

where

$$E = \frac{TS}{TX + TY}$$

is the excess intersection bundle.

Assume p = 0 or $p > \dim S$. If, moreover, the short exact sequence

$$0 \rightarrow TX + TY \rightarrow TS \rightarrow E \rightarrow 0$$

splits, then \mathcal{O}_W is formal:

$$\mathscr{O}_W \cong \bigoplus_i \wedge^i E^{\vee}[i] = \operatorname{Sym}_{W^0}(E^{\vee}[1])$$

so

$$W \cong \operatorname{Tot}_{W^0} E[-1].$$

If X = Y, the splitting of the short exact sequence is equivalent to the fact that $N_{X/S}$ admits a flat lift to the first infinitesimal neighborhood $X^{(1)}$ of X in S.

If X = Y, the splitting of the short exact sequence is equivalent to the fact that $N_{X/S}$ admits a flat lift to the first infinitesimal neighborhood $X^{(1)}$ of X in S.

This is similar to the condition that X should admit a flat lift to $W_2(k)$ in the Deligne-Illusie theorem. $(W_2(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}/p^2\mathbb{Z}$ is the first infinitesimal neighborhood of Spec $\mathbb{Z}/p\mathbb{Z}$ in Spec \mathbb{Z} .)

If X = Y, the splitting of the short exact sequence is equivalent to the fact that $N_{X/S}$ admits a flat lift to the first infinitesimal neighborhood $X^{(1)}$ of X in S.

This is similar to the condition that X should admit a flat lift to $W_2(k)$ in the Deligne-Illusie theorem. $(W_2(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}/p^2\mathbb{Z}$ is the first infinitesimal neighborhood of Spec $\mathbb{Z}/p\mathbb{Z}$ in Spec \mathbb{Z} .)

Question (Mircea Mustață). Can one recast the computation of $F_*\Omega^{\bullet}_{X,dR}$ in Deligne-Illusie as a derived intersection problem, to deduce its formality from Arinkin-Căldăraru?

< ∃ >

Definition. An Azumaya space \overline{S} is a pair (S, \mathscr{A}) consisting of a space (scheme, dg scheme) X together with a sheaf \mathscr{A} of Azumaya algebras on S. A morphism $(S, \mathscr{A}) \to (T, \mathscr{B})$ of Azumaya spaces is a morphism $f : S \to T$ of spaces, together with a Morita equivalence between $f^*\mathscr{B}$ and \mathscr{A} :

 $\mathfrak{Mod}(f^*\mathscr{B}) \xrightarrow{\sim} \mathfrak{Mod}(\mathscr{A}).$

Definition. An Azumaya space \overline{S} is a pair (S, \mathscr{A}) consisting of a space (scheme, dg scheme) X together with a sheaf \mathscr{A} of Azumaya algebras on S. A morphism $(S, \mathscr{A}) \to (T, \mathscr{B})$ of Azumaya spaces is a morphism $f : S \to T$ of spaces, together with a Morita equivalence between $f^*\mathscr{B}$ and \mathscr{A} :

$$\mathfrak{Mod}(f^*\mathscr{B}) \overset{\sim}{\longrightarrow} \mathfrak{Mod}(\mathscr{A}).$$

Note. There are more morphisms in $Aut(S, \mathcal{O}_S)$: includes tensoring with a line bundle.

Definition. An Azumaya space \overline{S} is a pair (S, \mathscr{A}) consisting of a space (scheme, dg scheme) X together with a sheaf \mathscr{A} of Azumaya algebras on S. A morphism $(S, \mathscr{A}) \to (T, \mathscr{B})$ of Azumaya spaces is a morphism $f : S \to T$ of spaces, together with a Morita equivalence between $f^*\mathscr{B}$ and \mathscr{A} :

$$\mathfrak{Mod}(f^*\mathscr{B}) \xrightarrow{\sim} \mathfrak{Mod}(\mathscr{A}).$$

Note. There are more morphisms in $Aut(S, \mathcal{O}_S)$: includes tensoring with a line bundle.

Example. (S, \mathscr{A}) an Azumaya space, X a subvariety of S such that $\mathscr{A}|_X$ splits $(\mathscr{A}|_X \cong \operatorname{End}_X(E)$ for some vector bundle E on X). Get a morphism

$$(X, \mathscr{O}_X) \to (S, \mathscr{A}).$$

伺 ト イ ヨ ト イ ヨ ト

Derived intersections in Azumaya spaces

• S a smooth space, \mathscr{A} an Azumaya algebra on S.

Derived intersections in Azumaya spaces

- S a smooth space, \mathscr{A} an Azumaya algebra on S.
- X, Y smooth subvarieties of S, such that A splits on X and Y:

 $\mathscr{A}|_X \cong \operatorname{End}_X(E_X)$ $\mathscr{A}|_Y \cong \operatorname{End}_X(E_Y)$

Derived intersections in Azumaya spaces

- S a smooth space, \mathscr{A} an Azumaya algebra on S.
- X, Y smooth subvarieties of S, such that A splits on X and Y:

$$\mathscr{A}|_X \cong \operatorname{End}_X(E_X)$$

 $\mathscr{A}|_Y \cong \operatorname{End}_X(E_Y)$

• Splittings compatible on the underived intersection W^0 :

$$E_X|_{W_0}\cong E_Y|_{W_0}.$$

Derived intersections in Azumaya spaces (cont'd)

In the above setup we can consider X and Y as subvarieties of either $S = (S, \mathcal{O}_S)$ or of $\overline{S} = (S, \mathcal{A})$.

In the above setup we can consider X and Y as subvarieties of either $S = (S, \mathcal{O}_S)$ or of $\overline{S} = (S, \mathcal{A})$.

Want to compare the untwisted derived intersection

$$W = X \times_{S}^{R} Y$$

with the twisted one

$$\overline{W} = X \times \frac{R}{S} Y.$$

In the above setup we can consider X and Y as subvarieties of either $S = (S, \mathcal{O}_S)$ or of $\overline{S} = (S, \mathcal{A})$.

Want to compare the untwisted derived intersection

$$W = X \times_S^R Y$$

with the twisted one

$$\overline{W} = X \times \frac{R}{S} Y.$$

If both of them are formal (Arinkin-Căldăraru-Hablicsek theorem) we conclude that $\mathscr{O}_W \cong \mathscr{O}_{\overline{W}}$.

Moreover, $D|_{X'}$ splits:

 $D|_{X'} \cong \operatorname{End}_{X'}(F_*\mathscr{O}_X).$

Moreover, $D|_{X'}$ splits:

 $D|_{X'} \cong \operatorname{End}_{X'}(F_*\mathscr{O}_X).$

Example. $X = \mathbb{A}^1$, $\mathcal{O}_X = k[x]$, $D = k\langle x, \partial \rangle / ([\partial, x] = 1)$ is the Weyl algebra $k\{x, \partial\}$.

Moreover, $D|_{X'}$ splits:

 $D|_{X'} \cong \operatorname{End}_{X'}(F_*\mathscr{O}_X).$

Example. $X = \mathbb{A}^1$, $\mathcal{O}_X = k[x]$, $D = k\langle x, \partial \rangle / ([\partial, x] = 1)$ is the Weyl algebra $k\{x, \partial\}$.

Then $Z(D) = k[x^p, \partial^p] = \mathscr{O}_{T^*X'}$ and

$$D|_{X'} = k\{x,\partial\}/(\partial^p) = \operatorname{End}_{k[x^p]}(k[x]).$$

Deligne-Illusie vs. Arinkin-Căldăraru

Theorem. Let $S = T^*X'$, $\overline{S} = (S, D)$. *D* splits on the subvariety X' of *S*, so we can consider the twisted and untwisted derived intersections

$$W = X' \times_{S}^{R} X'$$
$$\overline{W} = X' \times_{\overline{S}}^{R} X'.$$

Deligne-Illusie vs. Arinkin-Căldăraru

Theorem. Let $S = T^*X'$, $\overline{S} = (S, D)$. *D* splits on the subvariety X' of *S*, so we can consider the twisted and untwisted derived intersections

$$W = X' \times_{S}^{R} X'$$
$$\overline{W} = X' \times_{\overline{S}}^{R} X'.$$

Then we have

$$(\mathscr{O}_W)^{\vee} = \bigoplus_i \Omega^i_{X'}[-i]$$

 $(\mathscr{O}_{\overline{W}})^{\vee} = F_*\Omega^{\bullet}_{X,\mathsf{dR}}.$

Deligne-Illusie vs. Arinkin-Căldăraru

Theorem. Let $S = T^*X'$, $\overline{S} = (S, D)$. *D* splits on the subvariety X' of *S*, so we can consider the twisted and untwisted derived intersections

$$W = X' \times_{S}^{R} X'$$
$$\overline{W} = X' \times_{\overline{S}}^{R} X'.$$

Then we have

$$(\mathscr{O}_W)^{\vee} = \bigoplus_i \Omega^i_{X'}[-i]$$

 $(\mathscr{O}_{\overline{W}})^{\vee} = F_*\Omega^{\bullet}_{X,\mathsf{dR}}.$

Applying the theorem comparing \mathcal{O}_W and $\mathcal{O}_{\overline{W}}$ yields the Deligne-Illusie theorem.

Twisted de Rham cohomology

Definition. Assume X quasi-projective, and fix a regular function f on X.

The twisted de Rham complex is

$$\Omega^{\bullet}_{X,d+df} \, : \, 0 \longrightarrow \Omega^0_X \stackrel{d+df}{\longrightarrow} \Omega^1_X \stackrel{d+df}{\longrightarrow} \Omega^2_X \stackrel{d+df}{\longrightarrow} \cdots$$

Its hypercohomology is the twisted de Rham cohomology of (X, f).

Twisted de Rham cohomology

Definition. Assume X quasi-projective, and fix a regular function f on X.

The twisted de Rham complex is

$$\Omega^{\bullet}_{X,d+df} : 0 \longrightarrow \Omega^{0}_{X} \stackrel{d+df}{\longrightarrow} \Omega^{1}_{X} \stackrel{d+df}{\longrightarrow} \Omega^{2}_{X} \stackrel{d+df}{\longrightarrow} \cdots$$

Its hypercohomology is the twisted de Rham cohomology of (X, f). There is another interesting complex

$$\Omega^{\bullet}_{X,df} \, : \, 0 \longrightarrow \Omega^{0}_{X} \stackrel{df}{\longrightarrow} \Omega^{1}_{X} \stackrel{df}{\longrightarrow} \Omega^{2}_{X} \stackrel{df}{\longrightarrow} \cdots$$

Theorem (Barannikov-Kontsevich, Sabbah). For any *f* we have

$$\mathbf{R}\Gamma(X,\Omega^{\bullet}_{X,d+df})\cong\mathbf{R}\Gamma(X,\Omega^{\bullet}_{X,df}).$$

Twisted de Rham cohomology

Definition. Assume X quasi-projective, and fix a regular function f on X.

The twisted de Rham complex is

$$\Omega^{\bullet}_{X,d+df} : 0 \longrightarrow \Omega^{0}_{X} \stackrel{d+df}{\longrightarrow} \Omega^{1}_{X} \stackrel{d+df}{\longrightarrow} \Omega^{2}_{X} \stackrel{d+df}{\longrightarrow} \cdots$$

Its hypercohomology is the twisted de Rham cohomology of (X, f). There is another interesting complex

$$\Omega^{\bullet}_{X,df} \, : \, 0 \longrightarrow \Omega^{0}_{X} \stackrel{df}{\longrightarrow} \Omega^{1}_{X} \stackrel{df}{\longrightarrow} \Omega^{2}_{X} \stackrel{df}{\longrightarrow} \cdots$$

Theorem (Barannikov-Kontsevich, Sabbah). For any *f* we have

$$\mathbf{R}\Gamma(X,\Omega^{\bullet}_{X,d+df})\cong\mathbf{R}\Gamma(X,\Omega^{\bullet}_{X,df}).$$

Analogue of the Hodge-de Rham degeneration for matrix factorizations.

Barannikov-Kontsevich via derived intersections

Question. Can we prove the Barannikov-Kontsevich claim with derived intersection techniques?

Idea. Instead of intersecting X' (graph of the zero 1-form) with itself, intersect with X'_f , the graph of df.

Idea. Instead of intersecting X' (graph of the zero 1-form) with itself, intersect with X'_f , the graph of df.

Untwisted intersection W computes the dual of $\Omega^{\bullet}_{X,df}$.

Idea. Instead of intersecting X' (graph of the zero 1-form) with itself, intersect with X'_f , the graph of df.

Untwisted intersection W computes the dual of $\Omega^{\bullet}_{X,df}$.

Twisted intersection \overline{W} computes the dual of $F_*\Omega^{\bullet}_{X,d+df}$.

Idea. Instead of intersecting X' (graph of the zero 1-form) with itself, intersect with X'_f , the graph of df.

Untwisted intersection W computes the dual of $\Omega^{\bullet}_{X,df}$.

Twisted intersection \overline{W} computes the dual of $F_*\Omega^{\bullet}_{X,d+df}$.

So all we need to prove is again that $W \cong \overline{W}$, but now neither of them is formal.

Idea. Instead of intersecting X' (graph of the zero 1-form) with itself, intersect with X'_f , the graph of df.

Untwisted intersection W computes the dual of $\Omega^{\bullet}_{X,df}$.

Twisted intersection \overline{W} computes the dual of $F_*\Omega^{\bullet}_{X,d+df}$.

So all we need to prove is again that $W \cong \overline{W}$, but now neither of them is formal.

We can prove this isomorphism using new techniques. However, we need to use an elementary-looking statement from Ogus-Vologodsky for which we do not know any easy proof.

Problem. Construct a solution g to the differential equation

$$\frac{dg}{g} = df \bmod I,$$

independent of choices of coordinates, where I is the ideal given locally by (f_1^p, \ldots, f_n^p) , f_1, \ldots, f_n the partial derivatives of f.

Problem. Construct a solution g to the differential equation

$$\frac{dg}{g} = df \bmod I,$$

independent of choices of coordinates, where I is the ideal given locally by (f_1^p, \ldots, f_n^p) , f_1, \ldots, f_n the partial derivatives of f.

(This is the problem of showing that $E_X|_{W^0} \cong E_Y|_{W^0}$ in the twisted derived intersection problem.)

Problem. Construct a solution g to the differential equation

$$\frac{dg}{g} = df \bmod I,$$

independent of choices of coordinates, where I is the ideal given locally by (f_1^p, \ldots, f_n^p) , f_1, \ldots, f_n the partial derivatives of f.

(This is the problem of showing that $E_X|_{W^0} \cong E_Y|_{W^0}$ in the twisted derived intersection problem.)

We know this is true using a difficult result of Ogus-Vologodsky.

Conjecture. A solution (over affine space) can be given as

$$g = \prod_i \operatorname{hexp}(m_i)$$

where

$$f = \sum_{i} m_{i}$$

is a decomposition of f into monomials, in some coordinates, and

$$hexp(x) = exp(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \cdots)$$

is the Artin-Hasse exponential.

Thank you!

Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections

э

э

< ∃ >