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Two formal complexes

The story in this talk is about the similarity between two situations
in algebraic geometry. In both the central result is the formality of
a certain dg algebra.

Throughout, X will denote a smooth projective variety.

We say the complex

F • = · · · �! F i �! F i+1 �! · · ·

is formal if it is quasi-isomorphic to

H •(F ) = · · · 0�! H i (F •)
0�! H i+1(F •)

0�! · · ·

If F • is a dg algebra (has an algebra structure), want
quasi-isomorphism to respect this.
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Two formal complexes (cont’d)

The two instances where we prove formality are:

de Rham complexes in characteristic p > 0
(Deligne-Illusie 1988, Ogus-Vologodsky 2005)

derived intersections of subvarieties
(Arinkin-Căldăraru 2010, Arinkin-Căldăraru-Hablicsek 2014)

M. Mustaţă noticed a similarity between these two results, asked if
one can be phrased in terms of the other.
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Algebraic de Rham cohomology

(Grothendieck): Algebraic de Rham complex:

⌦•
X ,dR : 0 �! ⌦0

X

d�! ⌦1
X

d�! ⌦2
X

d�! · · ·

Algebraic de Rham cohomology:

H⇤
dR(X ) = R�(X ,⌦•

X ,dR).

Theorem (Grothendieck). If X is smooth, projective over C,

H⇤
dR(X ) ⇠= H⇤(X an,C).
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Algebraic de Rham cohomology (cont’d)

Some observations:

⌦•
X ,dR is not a complex of coherent sheaves: d is not O

X

linear.

⌦•
X ,dR is not a resolution of C

X

; ⌦i

X

is not a fine sheaf.

Theorem. There is a Hodge-de Rham spectral sequence

1Epq = Hp(X ,⌦q

X

) =) Hp+q

dR (X ).

Over C, the Hodge theorem tells us this spectral sequence
degenerates at 1E .
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Cartier isomorphism

Question: How to deal with non-linearity of d?

Answer: If over a perfect field k of characteristic p > 0, use
Frobenius.

Let F : X ! X 0 be the relative Frobenius.

X 0 = X ⇥
k

k is the Frobenius twist of X .

Abstractly X 0 ⇠= X , but not as k-schemes.

Can think of O
X

0 ⇢ O
X

as the p-th powers of functions on X .

Theorem (Cartier). F⇤⌦•
X ,dR is a complex of coherent

O
X

0-modules. Its cohomology is

H i (F⇤⌦
•
X ,dR) ⇠= ⌦i

X

0 .
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Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Cartier isomorphism

Question: How to deal with non-linearity of d?

Answer: If over a perfect field k of characteristic p > 0, use
Frobenius.

Let F : X ! X 0 be the relative Frobenius.

X 0 = X ⇥
k

k is the Frobenius twist of X .

Abstractly X 0 ⇠= X , but not as k-schemes.

Can think of O
X

0 ⇢ O
X

as the p-th powers of functions on X .

Theorem (Cartier). F⇤⌦•
X ,dR is a complex of coherent

O
X

0-modules. Its cohomology is

H i (F⇤⌦
•
X ,dR) ⇠= ⌦i

X

0 .
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Deligne-Illusie’s result

Theorem (Deligne-Illusie). Assume p > dimX . If X admits a
flat lift to W2(k), then the complex F⇤⌦•

X ,dR is formal, i.e.,

F⇤⌦
•
X ,dR

⇠=
M

i

⌦i

X

0 [�i ].

From this Deligne-Illusie are able to get an algebraic proof of the
Hodge theorem in characteristic zero.
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Example

For example consider X = A1 over k = F
p

.

O
X

= k[x ];

O
X

0 = k[xp] ⇢ k[x ];

relative Frobenius F 0 : k[xp] ,! k[x ];

⌦•
X ,dR : 0 ! k[x ]

d�! k[x ]dx ! 0;

Deligne-Illusie + Cartier:

F⇤⌦
•
X ,dR : 0 - k[x ]

d - k[x ]dx - 0

M

i

⌦i

X

0 [�i ] : 0 - k[xp]
[

6

0- k[xp]d(xp)

C
6

- 0

C sends d(xp) to xp�1dx .
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Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Example

For example consider X = A1 over k = F
p

.

O
X

= k[x ];

O
X

0 = k[xp] ⇢ k[x ];

relative Frobenius F 0 : k[xp] ,! k[x ];

⌦•
X ,dR : 0 ! k[x ]

d�! k[x ]dx ! 0;

Deligne-Illusie + Cartier:

F⇤⌦
•
X ,dR : 0 - k[x ]

d - k[x ]dx - 0

M

i

⌦i

X

0 [�i ] : 0 - k[xp]
[

6

0- k[xp]d(xp)

C
6

- 0

C sends d(xp) to xp�1dx .
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Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Example

For example consider X = A1 over k = F
p

.

O
X

= k[x ];

O
X

0 = k[xp] ⇢ k[x ];

relative Frobenius F 0 : k[xp] ,! k[x ];

⌦•
X ,dR : 0 ! k[x ]

d�! k[x ]dx ! 0;

Deligne-Illusie + Cartier:

F⇤⌦
•
X ,dR : 0 - k[x ]

d - k[x ]dx - 0

M

i

⌦i

X

0 [�i ] : 0 - k[xp]
[

6

0- k[xp]d(xp)

C
6

- 0

C sends d(xp) to xp�1dx .
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Derived intersections

Let X , Y be smooth subvarieties of a smooth space S .

Usual intersection W 0 = X \ Y is defined by

O
W

0 = O
X

⌦O
S

O
Y

.

The richer object

O
W

= O
X

⌦L

O
S

O
Y

still has the structure of commutative dg algebra. We can consider
it as the structure complex of an enhanced geometric object, the
dg scheme W = X ⇥R

S

Y , the derived intersection of X and Y .

Think of it as an infinitesimal thickening of W 0.
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Example

X = Y = pt, S = A1.

O
X

= k[x ]/(x) has resolution

0 ! k[x ]
·x�! k[x ] ! 0

O
W

is then

0 ! k[x ]/(x)
0�! k[x ]/(x) ! 0.

Think of O
W

as Sym
W

0(N_
X/S [1]).

So W = Tot
W

0 N
X/S [�1].
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Arinkin-Căldăraru-Hablicsek

Theorem (Arinkin-Căldăraru-Hablicsek). The cohomology
sheaves of O

W

are
H �i (O

W

) ⇠= ^iE_,

where

E =
TS

TX + TY

is the excess intersection bundle.

Assume p = 0 or p > dim S . If, moreover, the short exact sequence

0 ! TX + TY ! TS ! E ! 0

splits, then O
W

is formal:

O
W

⇠=
M

i

^iE_[i ] = Sym
W

0(E_[1])

so
W ⇠= Tot

W

0 E [�1].
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Theorem (Arinkin-Căldăraru-Hablicsek). The cohomology
sheaves of O

W

are
H �i (O

W

) ⇠= ^iE_,

where

E =
TS

TX + TY

is the excess intersection bundle.
Assume p = 0 or p > dim S . If, moreover, the short exact sequence

0 ! TX + TY ! TS ! E ! 0

splits, then O
W

is formal:

O
W

⇠=
M

i

^iE_[i ] = Sym
W

0(E_[1])

so
W ⇠= Tot

W

0 E [�1].
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Similarity with Deligne-Illusie

If X = Y , the splitting of the short exact sequence is equivalent to
the fact that N

X/S admits a flat lift to the first infinitesimal

neighborhood X (1) of X in S .

This is similar to the condition that X should admit a flat lift to
W2(k) in the Deligne-Illusie theorem. (W2(Z/pZ) = Z/p2Z is the
first infinitesimal neighborhood of SpecZ/pZ in SpecZ.)

Question (Mircea Mustaţă). Can one recast the computation
of F⇤⌦•

X ,dR in Deligne-Illusie as a derived intersection problem, to
deduce its formality from Arinkin-Căldăraru?
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Azumaya spaces

Need to generalize notion of space some more.

Definition. An Azumaya space S is a pair (S ,A ) consisting of a
space (scheme, dg scheme) X together with a sheaf A of
Azumaya algebras on S . A morphism (S ,A ) ! (T ,B) of
Azumaya spaces is a morphism f : S ! T of spaces, together with
a Morita equivalence between f ⇤B and A :

Mod(f ⇤B)
⇠�! Mod(A ).

Note. There are more morphisms in Aut(S ,O
S

): includes
tensoring with a line bundle.

Example. (S ,A ) an Azumaya space, X a subvariety of S such
that A |

X

splits (A |
X

⇠= End
X

(E ) for some vector bundle E on
X ). Get a morphism

(X ,O
X

) ! (S ,A ).
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Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Azumaya spaces

Need to generalize notion of space some more.

Definition. An Azumaya space S is a pair (S ,A ) consisting of a
space (scheme, dg scheme) X together with a sheaf A of
Azumaya algebras on S . A morphism (S ,A ) ! (T ,B) of
Azumaya spaces is a morphism f : S ! T of spaces, together with
a Morita equivalence between f ⇤B and A :

Mod(f ⇤B)
⇠�! Mod(A ).

Note. There are more morphisms in Aut(S ,O
S

): includes
tensoring with a line bundle.

Example. (S ,A ) an Azumaya space, X a subvariety of S such
that A |

X

splits (A |
X

⇠= End
X

(E ) for some vector bundle E on
X ). Get a morphism

(X ,O
X

) ! (S ,A ).

Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Derived intersections in Azumaya spaces

S a smooth space, A an Azumaya algebra on S .

X , Y smooth subvarieties of S , such that A splits on X and
Y :

A |
X

⇠= End
X

(E
X

)

A |
Y

⇠= End
X

(E
Y

)

Splittings compatible on the underived intersection W 0:

E
X

|
W0

⇠= E
Y

|
W0 .
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Derived intersections in Azumaya spaces (cont’d)

In the above setup we can consider X and Y as subvarieties of
either S = (S ,O

S

) or of S = (S ,A ).

Want to compare the untwisted derived intersection

W = X ⇥R

S

Y

with the twisted one
W = X ⇥R

S

Y .

If both of them are formal (Arinkin-Căldăraru-Hablicsek theorem)
we conclude that O

W

⇠= O
W

.
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Di↵erential operators

Theorem. Let X be smooth over a field k of characteristic p > 0.
Then the ring D of di↵erential operators on X can be regarded as
an Azumaya algebra on T ⇤X 0.

Moreover, D|
X

0 splits:

D|
X

0 ⇠= End
X

0(F⇤O
X

).

Example. X = A1, O
X

= k[x ], D = khx , @i/([@, x ] = 1) is the
Weyl algebra k{x , @}.

Then Z (D) = k[xp, @p] = O
T

⇤
X

0 and

D|
X

0 = k{x , @}/(@p) = End
k[xp ](k[x ]).
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Deligne-Illusie vs. Arinkin-Căldăraru

Theorem. Let S = T ⇤X 0, S = (S ,D). D splits on the subvariety
X 0 of S , so we can consider the twisted and untwisted derived
intersections

W = X 0 ⇥R

S

X 0

W = X 0 ⇥R

S

X 0.

Then we have

(O
W

)_ =
M

i

⌦i

X

0 [�i ]

�
O

W

�_
= F⇤⌦

•
X ,dR.

Applying the theorem comparing O
W

and O
W

yields the
Deligne-Illusie theorem.
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Twisted de Rham cohomology

Definition. Assume X quasi-projective, and fix a regular function
f on X .
The twisted de Rham complex is

⌦•
X ,d+df

: 0 �! ⌦0
X

d+df�! ⌦1
X

d+df�! ⌦2
X

d+df�! · · ·

Its hypercohomology is the twisted de Rham cohomology of (X , f ).

There is another interesting complex

⌦•
X ,df : 0 �! ⌦0

X

df�! ⌦1
X

df�! ⌦2
X

df�! · · ·

Theorem (Barannikov-Kontsevich, Sabbah). For any f we have

R�(X ,⌦•
X ,d+df

) ⇠= R�(X ,⌦•
X ,df ).

Analogue of the Hodge-de Rham degeneration for matrix
factorizations.
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Barannikov-Kontsevich via derived intersections

Question. Can we prove the Barannikov-Kontsevich claim with
derived intersection techniques?

Idea. Instead of intersecting X 0 (graph of the zero 1-form) with
itself, intersect with X 0

f

, the graph of df .

Untwisted intersection W computes the dual of ⌦•
X ,df .

Twisted intersection W computes the dual of F⇤⌦•
X ,d+df

.

So all we need to prove is again that W ⇠= W , but now neither of
them is formal.

We can prove this isomorphism using new techniques. However, we
need to use an elementary-looking statement from
Ogus-Vologodsky for which we do not know any easy proof.
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An elementary problem

Let f be a regular function on a smooth quasi-projective variety X ,
over a field k of characteristic p > 0.

Problem. Construct a solution g to the di↵erential equation

dg

g
= df mod I ,

independent of choices of coordinates, where I is the ideal given
locally by (f p1 , . . . , f

p

n

), f1, . . . , fn the partial derivatives of f .

(This is the problem of showing that E
X

|
W

0
⇠= E

Y

|
W

0 in the
twisted derived intersection problem.)

We know this is true using a di�cult result of Ogus-Vologodsky.

Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



An elementary problem

Let f be a regular function on a smooth quasi-projective variety X ,
over a field k of characteristic p > 0.

Problem. Construct a solution g to the di↵erential equation

dg

g
= df mod I ,

independent of choices of coordinates, where I is the ideal given
locally by (f p1 , . . . , f

p

n

), f1, . . . , fn the partial derivatives of f .

(This is the problem of showing that E
X

|
W

0
⇠= E

Y

|
W

0 in the
twisted derived intersection problem.)

We know this is true using a di�cult result of Ogus-Vologodsky.
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An elementary problem (cont’d)

Conjecture. A solution (over a�ne space) can be given as

g =
Y

i

hexp(m
i

)

where
f =

X

i

m
i

is a decomposition of f into monomials, in some coordinates, and

hexp(x) = exp(x +
xp

p
+

xp
2

p2
+ · · · )

is the Artin-Hasse exponential.

Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections



Thank you!

Dima Arinkin, Andrei Căldăraru, Márton Hablicsek De Rham Complexes and Derived Intersections


