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The one-cut lemma

... the probability measure on 

The 1d beta-ensemble is ...

dµA
N =

1

ZA
N

�

1≤i<j≤N

��λi − λj

��β
N�

i=1

e−N(β/2)V (λi)1A(λi)dλi

AN ⊆ RN

It is the measure induced on eigenvalues of a random matrix 

■

■

dM e−N(β/2)TrV (M)

β = 2

β = 4

β = 1 real symmetric matrices

hermitian matrices

quaternionic self-dual matrices

M

β > 0

}
M = triagonal

Wigner, Dyson, Mehta 
(50s-60s)

Dumitriu, Edelman ’02

all           ,    quadraticβ > 0 V



what kind of random variable is                  ? 

We would like to study when N → ∞ ...

the (random) empirical measure

ZA
N =

�

AN

�

1≤i<j≤N

��λi − λj |β
N�

i=1

e−N(β/2)V (λi)dλi

the partition function

LN =
1

N

N�

i=1

δλi

■

■

Example : 
N�

i=1

f(λi)



ZA
N =

�

AN

�

1≤i<j≤N

��λi − λj |β
N�

i=1

e−N(β/2)V (λi)dλi

The leading order ... is given by a continuous approximation

Assume V continuous and confining

�
lim inf
|x|→∞

V (x)

2 ln |x| > 1

�

has a unique maximizer  µeq ∈ M1(A)

LN −→ µeq almost surely and in expectation

ZA
N = exp

�
N2(β/2)(E [µeq] + o(1))

�

Classical result

LN =
1

N

N�

i=1

δλi

with equality     -everywhereµeq

characterized by

∃C

Boutet de Monvel, Pastur, Shcherbina ’95Mhaskar, Saff ’85
Anderson, Guionnet, Zeitouni (book ’09)

E [µ] =
��

ln |x− y|dµ(x)dµ(y)−
�
V (x)dµ(x)■

■

■

2
�
A ln |x− y|dµeq(y)− V (x) ≤ C



          One can restrict to a compact
          neighborhood of 

Large deviations (local result)

          ‘s feel the effective potential■

■

Veff(x) = V (x)− 2

�
ln |x− y|dµeq(y)− C ≥ 0

λi

ProbAN
�
∃i λi ∈ F

�
≤ exp

�
−N(β/2)

�
min
x∈F

Veff(x) + o(1)
��

          For any closed F ⊆ A

�
Veff(x)

B
x ∈ A

{Veff(x) = 0}
B ⊆ A

ZB
N = ZA

N (1 + o(e−cN ))



Large deviations (global result)

       defines a distance                  on 

■

■

M1(A)∈ [0,+∞]

LN =
1

N

N�

i=1

δλi
          Let us pick a nice regularization � �LN

Proposition

ProbAN
�
D1/2[�LN , µeq] ≥ t

�
≤ exp

�
CN lnN −N2(β/2)t2

�
If V is     , we have for N large enough C3

       such that
���
�

f(x)d(µ1 − µ2)(x)
��� ≤

√
2
��

R
k
��FT[f ](k)

��2dk
�1/2

D1/2[µ1, µ2]

D[µ1, µ2] = −
�

ln |x− y|d(µ1 − µ2)(x)d(µ1 − µ2)(y) =

� ∞

0

��FT[µ1 − µ2](k)
��2

k

Borot, Guionnet (’11)

D



More on the equilibrium measure ...

          V real-analytic ■ =⇒
S =

g�

h=0

[ah, bh]

is supported on a finite number of segmentsµeq}
          is a hard edge if              , is a soft edge otherwise■ α ∈ ∂S α ∈ ∂A

dµeq(x) =
1S(x)dx

2π
M(x)

�

α soft

|x− α|1/2
�

α hard

|x− α|−1/2

1-cut regime

µ
eq
/d

x

x

(g + 1)-cuts regime

µ
eq
/d

x

transition
through

critical points
x

■         We say that        is off-critical when                  on   µeq M(x) > 0 A



          real analytic on 

          complex analytic on 

Finite size corrections : we assume ...

■ V = V0 + (1/N)V1 + · · ·
V0

V1

A

A

■          Control of large deviations Veff(x) > 0 x ∈ A \ Sfor

}

■                is off-criticalµeq

■                = test function, analytic on f A



Result in the 1-cut regime

    (non-centered) gaussian

γ, γ�    depend only on     and the nature of the edges

Z
A
N = N

γN+γ�
exp

� �

k≥−2

N
−k

Fk +O(N−∞)
�

■                Central limit theorem
� N�

i=1

f(λi)−N

�

A
f(ξ)dµeq(ξ)

�
−→

■                1/N asymptotic expansion

β

Fk =

�k/2�+1�

h=0

�β
2

�1−h�
1− 2

β

�k+2−2h
F[h];k+2−2h

µ
eq
/d

x

x



Result in the (g + 1)-cuts regime

■                Oscillatory asymptotic expansion 

DN =
�

r≥0

1

r!

�

�1,...,�r≥1
k1,...,kr≥−2�

i(ki+�i)>0

N−(
�

i ki+�i)
r�

i=1

F (�i)
ki

· ∇⊗�i
w

�i!

    acts as a differential operator on 

    where

    the Siegel theta function

Q = F ��
−2 = 2iπ (β/2)× (period matrix) < 0

Θµ(w|Q) =
�

m∈Zg

ew·(m+µ)+ 1
2 (m+µ)·Q·(m+µ)

Z
A
N = N

γN+γ�
(DNΘ−N��)

�
F

�
−1

��F ��
−2

�
exp

� �

k≥−2

N
−k

Fk +O(N−∞)
�

µ
eq
/d

x

x

1− (��1 + ��2)

��1 ��2

■                Moving characteristics µ = −N�� mod Zg

                Quadratic form



� N�

i=1

f(λi)−N

�

A
f(ξ)dµeq(ξ)

�
−→

Result in the (g + 1)-cuts regime

■                No central limit theorem in general ...

µ
eq
/d

x

1− (��1 + ��2)

��1 ��2

E
�
eis

��N
i=1 f(λi)−N

�
f(x)dµeq(x)

��
∼

N∞
eism1[f ]−m2[f ]s

2/2 Θ−N��
�
F �
−1 + is v[f ]|F ��

−2

�

Θ−N��
�
F �
−1|F ��

−2

�

    (non-centered) gaussian

    discrete Gaussian, µ = −N�� mod Zg+

    converges in law along subsequences

Corollary

µ

    centered at 

x

    step v[f ] ∝
��

S

f(x)xi dx�
α |x− α|1/2

�

0≤i≤g−1



   Existence of 1/N expansion by
   - analysis of SD equations
   - RH techniques
   - analysis of int. system

Ercolani, McLaughlin ’02

    Rewriting of F[h] in terms of a universal topological recursion

β = 2     If 1/N expansion exists, then ZN = NγN+γ�
exp

��

h≥0

N2−2h F[h]

�

    and F[h] can be computed by the moment method
Ambjørn, Chekhov, Kristjansen, Makeenko, 90s

Eynard, ’04

Albeverio, Pastur, Shcherbina ’01

History in the 1-cut regime

■

■

■

Bleher, Its, ’05



    if 1/N expansion exists, then

Fk =

�k/2�+1�

h=0

�β
2

�1−h�
1− 2

β

�k+2−2h
F[h];k+2−2h

    and F[h];m computed by a β-topological recursion
Chekhov, Eynard ’06

    Central limit theorem
Johansson ’98

    Existence of 1/N expansion (analysis of SD eqn)
Borot, Guionnet ’11

β > 0

History in the 1-cut regime

■

■

■



    numerous observations of oscillatory behavior 
physicists, ‘90s

    asymptotics of                               up to o(1) (RH techniques)
Deift, Kriecherbauer, McLaughlin, Venakides, Zhou ’99

�det(x−M)�N×N

    heuristic derivation up to o(1)
Bonnet, David, Eynard ’00

β = 2

    generalization to all orders
Eynard ’07

β > 0

    observation of ‘‘no CLT”
Pastur ’06

    Proof of “no CLT” and asymptotics of       up to o(1)
Shcherbina ’12

ZA
N

History in the (g + 1)-cuts regime

    General proof
Borot, Guionnet ’13

■

■

■

■

■

■

■
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    is the Nth orthogonal polynomial for the weight                   on 

Orthogonal polynomials and random matrices

Let         = norm of 

For         β = 2 V (x) = V0(x) +
�

j≥1
tj
j xj

    measure over the space of 
                hermitian matrices

1
ZN,n

dM e−nTrV (M)
N ×N

dx e−nV (x)

           hN,n

satisfies a 3-term recurrence relation

(x− βN,n) �PN,n(x) =
�
hN,n

�PN+1,n(x) +
�

hN−1,n
�PN−1,n(x)

PN,n

�PN,n = PN,n/
�

hN,n

R

■ PN,n = EN×N

�
det(x−M)

�

■



  The coefficients are solutions of a Toda chain :
�

uN,n = lnhN,n

vN,n = −βN,n

�
∂t1uN,n = vN,n − vN−1,n

∂t1vN,n = euN+1,n − euN,n

initial condition prescribed by the string equations

  are the higher Toda flows∂tj

is the Tau functionZN,n = N !
�N−1

j=0 hj,n

Orthogonal polynomials and random matrices

■

■

■

■

For         β = 2 V (x) = V0(x) +
�

j≥1
tj
j xj

    measure over the space of 
                hermitian matrices

1
ZN,n

dM e−nTrV (M)
N ×N



if the model with       has (g + 1)-cuts and is off-critical

The continuum limit of Toda
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Fig. 4. Spectral density function p(y) for G= -2 ,  h=0.5 and 
N=50 dashed line), N=400 (solid line) and N=oo (dotted 
line). 

in this region. We find that this is indeed the case. 
Next examples follow the line G = - 2  toward smaller 
h. In fig. 5a we show the case h = 0.15 and N =  50, 100. 
This point corresponds also to the P~ phase but much 
closer to the phase transition line (b) (see fig. 1 ). As 
before we mark the values Xb and xd to show the onset 
of  the oscillatory phase. In fig. 6a we show the spec- 
tral density functions for N---100 together with the 
saddle point solution. We see that again the agree- 
ment is very good. 

Fig. 5b shows the N =  50 and N =  100 solutions for 
h=  hb= 0.8 and fig. 6b the spectral density function 
for N =  100. For this case the oscillatory behaviour 
extends to x =  1. The spectral density function devel- 
ops a zero for a finite value of  y. In fact following 
(36) we see that for finite N, p(y) can never be zero 
(or negative) and therefore its value will only be zero 
up to non-perturbative, exponentially small 
corrections. 

Fig. 5c shows the r, 's for h=0 .06  and N = 5 0 ,  100. 
In fig. 6c we show the spectral density function for 
N =  100. This point is in the P3 phase in fig. 1 and 
indeed the spectral density function becomes expo- 
nentially small where the saddle point solution is zero. 
We have plotted the saddle point spectral density 
function satisfying ( 2 2 ) - (  25 ) and we see that again 
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0.4 

.0 

0.8 

4 
q X b 

0 4  

0 
-.< 

v 08  

04 

0 

08  

0 4  

: f " l  

xt; 

o 
0 0.4 0.8 1.2 1.6 

x 

Fig. 5. Coefficients r,, versus x for G=  - 2 ,  N =  50 (dashed line) 
a n d N =  100 (solidline).  (a) h=0.15,  (b) h=0.08,  (c) h=0.06,  
( d )  h=O.05.  

the agreement is remarkable. From fig. 1 we see that 
phase P3 corresponds to the situation when we have 
the oscillatory behaviour of  rN for x close to one. 

Figs. 5d and 6d show the r, 's for N =  50, 100 and 
p(y) for N =  100 and h=0.05 .  In fig. 1 we see that 
this is the point where in the saddle point approxi- 
mation we have both the Ps and P~ solutions. As was 
argued in ref. [ 1 ] the P3 solution is the dominant one, 
as can be easily seen from fig. 6d. 

For h values below the h = hd the oscillatory region 
shifts to values x >  1 and consequently we have again 
the P ~ solution. We do not show here the correspond- 
ing measurements, which fully confirm this 
behaviour. 

266 

hN,n =
1

N + 1

ZN+1,nN/(N+1)

ZN,n
main result &

all-order oscillatory asymptotics for uN,n = lnhN,n

=⇒

Volume 26 l, number 3 PHYSICS LETTERS B 30 May 1991 

Chaotic behaviour in one-matrix models 

J. J u r k i e w i c z  l 
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark 

Received 28 February 1991 

We study numerically the recurrence relations in the orthogonal polynomial method for a one-matrix model with a six-order 
even potential. We show how the phase structure derived in the saddle point approximation is reflected in this method. We find a 
new type of solution responsible for the phase transitions observed in the saddle point approach. 

1. Introduction 

In the last year matrix models were extensively 
studied in the at tempt to unders tand the critical 
properties of the two-dimensional  gravity (coupled 
or not coupled to the matter fields). We feel unable 
to give at this point even an approximate list of im- 
portant contributions. The most interesting infor- 
mat ion comes in these models from the neighbour- 
hood of their critical points, where we expect to have 
a possibility of defining a continuous theory. An im- 
portant and as yet not fully resolved problem is there- 
fore to understand the phase structure of the matrix 
models. 

In our earlier paper ref. [ 1 ] we studied the phase 
of the one-matrix model 

Z =  f ~ M e x p [ - N U ( M ) ]  (1) 

in the saddle point  approximation. In ( 1 ) the inte- 
gral is over the space of N!  N matrices M and 

U(M)  = t r (  "M2+ !GhM4+lh2M 6) . (2) 

In (2) we use the parametrization from refi [ 1 ]. With 
this parametrization, integral ( 1 ) is well defined for 
all values of G. In ref. [ 1 ] it was argued that the six- 
order term cannot be used as a regulator of a fourth- 
order theory, since the resulting theory has no stan- 
dard m = 2 multicritical con t inuum limit. In the sad- 

Permanent address: Institute of Physics, Jagellonian Univer- 
sity, ul. Reymonta 4, PL-30059 Cracow 16, Poland. 

die point approach the system described above was 
shown to be in one of three possible phases. These 
phases, denoted P~, P2 and P3 are characterized by 
spectral density functions having support on one, two 
or three arcs. The phase diagram obtained in ref. [ 1 ] 
is shown in fig. 1. The critical line (a) corresponding 
to the m = 2  multicritical one-matrix theory (or a 
standard con t inuum limit of the one-matrix model as 
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G 

Fig. 1. The phase structure in the {G, h} plane. The region G< Gc 
is shaded. The measured points are on the dashed line G= -2.  
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h

1-cut

t

hN,n

hN−1,n
solid line

G

1 cut2 cuts

3
cuts

1 cut

3
cuts

h = 0.05

Phys. Lett. B, 261, 3from Jurkiewicz ’91

N = 100

N/n = t fixed

V (x) = x2

2 + hG x4

4 + h2 x6

6

V/t

N,n → ∞

■



main result + 

=⇒ all-order asymptotics of

PN,n(x) =
ZV−(1/N) ln(x−•)
N,n

ZV
N,n

Asymptotics of orthogonal polynomials

■

PN,n(x)

N/n = t fixed
N,n → ∞

for     away from its zero locusx

M = real symmetric

M = quaternionic self-dual

Nβ=1 = 2N

Nβ=4 = N

�Pj,n|Pk,n� = (δj,k−1 − δj−1,k)hj,n

are related to skew orthogonal polynomials/Pfaff latice■ β = 1, 4

�f |g�β=1 =
�
R2 dxdy e−n(V (x)+V (y)) sgn(x− y) f(x)g(y)

�f |g�β=4 =
�
R dx e−nV (x)

�
f(x)g�(x)− f �(x)g(x)

�

β = 1

β = 4

}
}

=⇒P2N,n(x) = ENβ×Nβ

�
det(x−M)

�

P2N+1,n(x) = ENβ×Nβ

�
(x+TrM)det(x−M)

� similar asymptotic results
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  first    ‘s in 

x

Conditioning on the filling fractions

From local large deviations : up to             , we can chooseo(e−cN )■

A =
�g

h=0 Ah

A0 A1 A2

We will study ■

ZA
N =

�

N0+···Ng=N

N !�g
h=0 Nh!

Z
(A0,...,Ag)
(N0,...,Ng)

µ
(A0,...,Ag)
(N0,...,Ng)

= µA
N conditioned to have      

N0 λ A0

N1 next    ‘s in  λ A1}etc.

The partition function decomposes



Correlators and partition function 

Wm(x1, . . . , xm) = µA
N−cumulant

� N�

i1=1

1

x1 − λi1

, . . . ,
N�

im=1

1

xm − λim

�
We will show a 1/N expansion for the m-point correlators :■

If          is a smooth family of potentials respecting our assumptions ■ (Vt)t

xi ∈ C \A

ZA;V1

N

ZA;V0

N

= exp
�
−N(β/2)

�

A

dx

2iπ
∂tVt(x)W

Vt
1 (x)

�
will have a large N expansion 

We need a reference      where           can be exactly computed ■ V0 ZA;V0

N



The Schwinger-Dyson equations

Integration by parts =⇒ exact relations between      -cumulantsµA
N■

E.g :  ■

� �

1≤i<j≤N

|λi − λj |β
N�

i=1

e−N(β/2)V (λi)dλi

which can be rewritten :

W2(x, x) +
�
W1(x)

�2
+ (1− 2/β)W �

1(x)−
�

A

dξ

2iπ

V �(ξ)W1(ξ)

x− ξ
+ boundary terms = 0+

�

a∈∂A

∂a lnZA
N

x− a
= 0

For any          ,■ n ≥ 1 there is a quadratic relation between Wn+1,Wn, . . . ,W1

µA
N

� N�

i=1

1

(x− λi)2
+

�

1≤i<j≤N

β

(x− λi)(x− λj)
− Nβ

2

N�

i=1

V �(λi)

x− λi

�
+

�

a∈∂A

∂a lnZA
N

x− a
= 0



So :

A priori control on correlators

There is an equilibrium measure        (depending smoothly on   )■

For the conditioned measure 

���W1(x)−N
� dµ�

eq(ξ)

x−ξ

��� ≤ c1[d(x,A)] (N lnN)1/2

��Wm(x1, . . . , xm)
�� ≤

��m
i=1 cm[d(xi, A)]

�
(N lnN)m/2

µA
N

�h = Nh/N fixed, close enough to ��hN, (Nh)h → ∞consider                         with 

µ�
eq �

From global large deviations :■

N−1W1(x)−→
N∞

�
dµeq(ξ)

x− ξ



Rigidity of the Schwinger-Dyson equations 

By recursive analysis of the Schwinger-Dyson equation :
���W1(x)−N

� dµ�
eq(ξ)

x−ξ

��� ≤ c1[d(x,A)] (N lnN)1/2

��Wm(x1, . . . , xm)
�� ≤

��m
i=1 cm[d(xi, A)]

�
(N lnN)m/2

=⇒ thanks to off-criticality

�
W1(x)−N

� dµ�
eq(ξ)

x−ξ

�
−→ W [0]

1 (x)

��Wm(x1, . . . , xm)
�� ≤

��m
i=1 c

�
m[d(xi, A)]

�
N2−m concentration

phenomenon

=⇒

Wm(x1, . . . , xm) =
�

k≥m−2

N
−k

W
[k]
m (x1, . . . , xm) +O(N−K)

for all K

(no uniformity)



is exactly knownsuch that 

an interpolation                from  

Back to the partition function

To deduce an expansion for         , we need

V0■ ZA;V0

N

■

Z
A;V1

N

Z
A;V0

N

= exp
�
− (β/2)

�

k≥−2

N
−k

�

A

dx

2iπ
∂tVt(x)W

Vt;[k+1]
1 (x) +O(N−(K−1))

�

ZA;V
N

Vt=1 = V(Vt)t∈[0,1]

staying uniformly (g + 1)-cuts and off-critical

Idea : interpolate in the space of equilibrium measures

(µt
eq)t∈[0,1] (Vt)t∈[0,1]

�

A
ln |x− y|dµt

eq(y)− Vt(x) = Ct with equality     -everywhereµt
eq



a0 b0 b2a1 b1 a2

a0 b0 b2a1 b1 a2

semi-circles 

semi-circles 

t → 0

t = 1

t = 1/2

a0+b0
2

a1+b1
2

a2+b2
2

convex linear 
combination 

with semi-circles

squeezing the 

supports

ZA
N [Vt] ∼

t→0

�

0≤h<h�≤g

���
ah + bh − ah� − bh�

2

���
N2�h�h�

g�

h=0

�
Selberg

Gaussian integral

�β

An interpolation path ...

�1
�2�0

�1
�2

�0

�1 �2�0

�
Selberg β−Gaussian
integral over RNh

�



Extra lemma :           are smooth functions of 

Sums and interferences - 1/3

ZA
N =

�

N0+···Ng=N

N !�g
h=0 Nh!

Z
(A0,...,Ag)
(N0,...,Ng)

We initially wanted to compute 

From global large deviations :■

Z
A
N =

� �

|N−N��|≤lnN

N !�g
h=0 Nh!

Z
A
N

�
(1 +O(e−cN ))

For                          , we just proved, with   ■ N−N�� ∈ o(N) � = (Nh/N)1≤h≤g

■
F �
−2(�

�) = 0 F ��
−2(�

�) < 0

Fk(�) � ≈ ��

N !�g
h=0 Nh!

Z
A
N = N

γN+γ�
exp

� �

k≥−2

N
−k

Fk(�) +O(N−K)
�

and 



Sums and interferences - 2/3

We plug the asymptotic formula and use a Taylor expansion at � ≈ ��

ZA
N = NγN+γ�

eN
2F−2(�

�)+NF−1(�
�)+F0(�

�)

E.g. up to o(1) :■

It is the general term of a super-exponentially fast converging series :

ZA
N = NγN+γ�

eN
2F−2(�

�)+NF−1(�
�)+F0(�

�)

Θ−N��(F
�
−1|F ��

−2)We recognize■

×
� �

N∈Zg

e
1
2F

��
−2(�

�)·(N−N��)⊗2+F �
−1(�

�)·(N−N��)
��

1 +O(e−c(lnN)2)
�

×
� �

|N−N��|≤lnN

e
1
2F

��
−2(�

�)·(N−N��)⊗2+F �
−1(�

�)·(N−N��)
��

1 +O(e−c(lnN)3/N )
�



Sums and interferences - 3/3

Including higher orders yields terms of the form

�

N∈Zg

� 1

r!

r�

i=1

F (�i)
ki

(��) · (N−N��)⊗�i

�i!

�
e

1
2Q·(N−N��)⊗2+w·(N−N��)

Q = F ��
−2(�

�)

■

We recognize
� 1

r!

r�

i=1

F (�i)
ki

(��) · ∇⊗�i
w

�i!

�
Θ−N��(w|Q)

We justified step by step the heuristics of ■ Bonnet, David, Eynard ’00, Eynard ’07

Here                       and w = F−1(�
�)



■                Oscillatory asymptotic expansion 

DN =
�

r≥0

1

r!

�

�1,...,�r≥1
k1,...,kr≥−2�

i(ki+�i)>0

N−(
�

i ki+�i)
r�

i=1

F (�i)
ki

· ∇⊗�i
w

�i!

    acts as a differential operator on 

    where

    the Siegel theta function

Q = F ��
−2 = 2iπ (β/2)× (period matrix) < 0

Θµ(w|Q) =
�

m∈Zg

ew·(m+µ)+ 1
2 (m+µ)·Q·(m+µ)

Z
A
N = N

γN+γ�
(DNΘ−N��)

�
F

�
−1

��F ��
−2

�
exp

� �

k≥−2

N
−k

Fk +O(N−∞)
�

µ
eq
/d

x

x

1− (��1 + ��2)

��1 ��2

■                Moving characteristics µ = −N�� mod Zg

                Quadratic form

Summary : the (g + 1)-cuts regime



The one-cut lemma

1. Beta-ensembles and random matrices

2. Applications to orthogonal polynomials

3. Ideas about the proof

4. Perspectives

All order asymptotics for β-ensembles
in the multi-cut regime



Generalization ...

dµA
N =

�

1≤i<j≤N

��λi − λj |β exp
� r�

k=1

N2−k

k!

N�

i1,...,ik=1

Tk(λi1 , . . . , λik)
� N�

i=1

dλi

... to real-analytic k-body interactions

Equilibrium measure & local large deviations provided

Global large deviations provided 

E [µ] = β
2

��
ln |x1−x2|dµ(x1)dµ(x2)+

�r
k=1

1
k!

�
Tk(x1, . . . , xk)

�k
i=1 dµ(xi)

■

has a unique minimum

■

E ��[µeq] < 0

Similar asymptotic results■

Coefs. of expansions are given by a “blobbed” topological recursion■
Borot ’13

in progress with
Guionnet, Kozlowski}



Nature of expansion depends on the topology of the spectrum

General ideas

connected 

■

1/N expansion

gaps ... + interference patterns

■ Structure of expansion is influenced by singularities of the measure

on the “moduli space”

�
i<j |λj − λj |β = non-analyticity on

M = AN/SN

∂M



Same questions for 

Singular V’s and uniform asymptotics around critical points

Open problems

■
☐ asymptotics of (skew) orthogonal polynomials in the bulk

universality and computing tails of universal laws☐

■ λi ∈ C

Complex-valued V■
☐ Berry-Esséen type estimates in CLT

Same questions for multi-matrix models■
☐ asymptotics of biorthogonal polynomials


