IAS, Semester on Non-equilibrium dynamics and RMT

November 21st 2013

All order asymptotics for β-ensembles in the multi-cut regime

Gaëtan Borot
MPIM Bonn \& MIT

joint work
with Alice Guionnet

All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Ideas about the proof
4. Perspectives

The 1 d beta-ensemble is ...

- ... the probability measure on $A^{N} \subseteq \mathbb{R}^{N}$

$$
\mathrm{d} \mu_{N}^{A}=\frac{1}{Z_{N}^{A}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} e^{-N(\beta / 2) V\left(\lambda_{i}\right)} \mathbf{1}_{A}\left(\lambda_{i}\right) \mathrm{d} \lambda_{i} \quad \beta>0
$$

- It is the measure induced on eigenvalues of a random matrix M

$$
\begin{aligned}
& \mathrm{d} M e^{-N(\beta / 2) \operatorname{Tr} V(M)} \begin{cases}\beta=1 & \text { real symmetric matrices } \\
\beta=2 & \text { hermitian matrices } \\
\begin{array}{l}
\text { Wigner, Dyson, Mehta } \\
\text { (50s-60s) }
\end{array} & \begin{cases}\text { quaternionic self-dual matrices }\end{cases} \\
M=\text { triagonal } & \text { all } \beta>0, V \text { quadratic }\end{cases}
\end{aligned}
$$

Dumitriu, Edelman '02

We would like to study when $N \rightarrow \infty \ldots$

- the (random) empirical measure

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}
$$

Example : what kind of random variable is $\sum_{i=1}^{N} f\left(\lambda_{i}\right)$?

- the partition function

$$
Z_{N}^{A}=\int_{A^{N}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} e^{-N(\beta / 2) V\left(\lambda_{i}\right)} \mathrm{d} \lambda_{i}
$$

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad Z_{N}^{A}=\int_{A^{N}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} e^{-N(\beta / 2) V\left(\lambda_{i}\right)} \mathrm{d} \lambda_{i}
$$

The leading order ... is given by a continuous approximation

Anderson, Guionnet, Zeitouni (book '09)

Classical result

 Mhaskar, Saff '85 Boutet de Monvel, Pastur, Shcherbina '95Assume V continuous and confining $\left(\liminf _{|x| \rightarrow \infty} \frac{V(x)}{2 \ln |x|}>1\right)$

- $\mathcal{E}[\mu]=\iint \ln |x-y| \mathrm{d} \mu(x) \mathrm{d} \mu(y)-\int V(x) \mathrm{d} \mu(x)$ has a unique maximizer $\mu_{\mathrm{eq}} \in \mathcal{M}^{1}(A)$ characterized by
$\exists C \quad 2 \int_{A} \ln |x-y| \mathrm{d} \mu_{\mathrm{eq}}(y)-V(x) \leq C \quad$ with equality μ_{eq} everywhere
- $L_{N} \longrightarrow \mu_{\text {eq }} \quad$ almost surely and in expectation
- $Z_{N}^{A}=\exp \left\{N^{2}(\beta / 2)\left(\mathcal{E}\left[\mu_{\mathrm{eq}}\right]+o(1)\right)\right\}$

Large deviations (local result)

- $\lambda_{i}{ }^{\prime}$ s feel the effective potential

$$
V_{\mathrm{eff}}(x)=V(x)-2 \int \ln |x-y| \mathrm{d} \mu_{\mathrm{eq}}(y)-C \geq 0
$$

- For any closed $F \subseteq A$

$$
\operatorname{Prob}_{N}^{A}\left[\exists i \quad \lambda_{i} \in F\right] \leq \exp \left(-N(\beta / 2)\left\{\min _{x \in F} V_{\text {eff }}(x)+o(1)\right\}\right)
$$

\rightsquigarrow One can restrict to a compact $B \subseteq A$ neighborhood of $\left\{V_{\text {eff }}(x)=0\right\}$

$$
Z_{N}^{B}=Z_{N}^{A}\left(1+o\left(e^{-c N}\right)\right)
$$

Large deviations (global result)

- $\mathfrak{D}\left[\mu_{1}, \mu_{2}\right]=-\int \ln |x-y| \mathrm{d}\left(\mu_{1}-\mu_{2}\right)(x) \mathrm{d}\left(\mu_{1}-\mu_{2}\right)(y)=\int_{0}^{\infty} \frac{\left|\mathrm{FT}\left[\mu_{1}-\mu_{2}\right](k)\right|^{2}}{k}$ defines a distance $\in[0,+\infty]$ on $\mathcal{M}^{1}(A)$ such that $\left|\int f(x) \mathrm{d}\left(\mu_{1}-\mu_{2}\right)(x)\right| \leq \sqrt{2}\left(\int_{\mathbb{R}} k|\mathrm{FT}[f](k)|^{2} \mathrm{~d} k\right)^{1 / 2} \mathfrak{D}^{1 / 2}\left[\mu_{1}, \mu_{2}\right]$
- Let us pick a nice regularization $\quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \leadsto \widetilde{L}_{N}$

Proposition

Borot, Guionnet ('11)
If V is \mathcal{C}^{3}, we have for N large enough

$$
\operatorname{Prob}_{N}^{A}\left[\mathfrak{D}^{1 / 2}\left[\widetilde{L}_{N}, \mu_{\mathrm{eq}}\right] \geq t\right] \leq \exp \left(C N \ln N-N^{2}(\beta / 2) t^{2}\right)
$$

More on the equilibrium measure ...

- V real-analytic $\Longrightarrow\left\{\begin{array}{l}\mu_{\mathrm{eq}} \text { is supported on a finite number of segments } \\ S=\bigcup_{h=0}^{g}\left[a_{h}, b_{h}\right]\end{array}\right.$
- $\alpha \in \partial S$ is a hard edge if $\alpha \in \partial A$, is a soft edge otherwise

$$
\mathrm{d} \mu_{\mathrm{eq}}(x)=\frac{\mathbf{1}_{S}(x) \mathrm{d} x}{2 \pi} M(x) \prod_{\alpha \text { soft }}|x-\alpha|^{1 / 2} \prod_{\alpha \text { hard }}|x-\alpha|^{-1 / 2}
$$

- We say that $\mu_{\text {eq }}$ is off-critical when $M(x)>0$ on A

Finite size corrections : we assume ...

- $V=V_{0}+(1 / N) V_{1}+\cdots \begin{cases}V_{0} & \text { real analytic on } A \\ V_{1} & \text { complex analytic on } A\end{cases}$
- Control of large deviations $\quad V_{\text {eff }}(x)>0$ for $x \in A \backslash S$
- μ_{eq} is off-critical
- $f=$ test function, analytic on A

Result in the 1 -cut regime

- $1 / \mathrm{N}$ asymptotic expansion

$$
Z_{N}^{A}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{k \geq-2} N^{-k} F_{k}+O\left(N^{-\infty}\right)\right]
$$

γ, γ^{\prime} depend only on β and the nature of the edges

$$
F_{k}=\sum_{h=0}^{\lfloor k / 2\rfloor+1}\left(\frac{\beta}{2}\right)^{1-h}\left(1-\frac{2}{\beta}\right)^{k+2-2 h} F_{[h] ; k+2-2 h}
$$

- Central limit theorem

$$
\left(\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int_{A} f(\xi) \mathrm{d} \mu_{\mathrm{eq}}(\xi)\right) \longrightarrow \text { (non-centered) gaussian }
$$

Result in the $(\mathrm{g}+1)$-cuts regime

- Oscillatory asymptotic expansion

$$
Z_{N}^{A}=N^{\gamma N+\gamma^{\prime}}\left(\mathcal{D}_{N} \Theta_{-N \epsilon_{*}}\right)\left(F_{-1}^{\prime} \mid F_{-2}^{\prime \prime}\right) \exp \left[\sum_{k \geq=2} N^{-k} F_{k}+O\left(N^{-\infty}\right)\right]
$$

where $\mathcal{D}_{N}=\sum_{r \geq 0} \frac{1}{r!} \sum_{\substack{\ell_{1}, \ldots, \ell_{r} \geq 1 \\ k_{1} \geq k^{2}}} N^{-\left(\sum_{i} k_{i}+\ell_{i}\right)} \prod_{i=1}^{r} \frac{F_{k_{i}}^{\left(\ell_{i}\right)} \cdot \nabla_{\mathbf{w}}^{\otimes \ell_{i}}}{\ell_{i}!}$

$$
\begin{aligned}
& k_{1}, \ldots, k_{r} \geq-2 \\
& \sum_{i}\left(k_{i}+\ell_{i}\right)>0
\end{aligned}
$$

acts as a differential operator on the Siegel theta function

$$
\Theta_{\mu}(\mathbf{w} \mid \mathbf{Q})=\sum_{\mathbf{m} \in \mathbb{Z}^{g}} e^{\mathbf{w} \cdot(\mathbf{m}+\mu)+\frac{1}{2}(\mathbf{m}+\mu) \cdot \mathbf{Q} \cdot(\mathbf{m}+\mu)}
$$

- Moving characteristics

$$
\mu=-N \epsilon_{\star} \bmod \mathbb{Z}^{g}
$$

Quadratic form

$$
\mathbf{Q}=F_{-2}^{\prime \prime}=2 \mathrm{i} \pi(\beta / 2) \times(\text { period matrix })<0
$$

Result in the $(\mathrm{g}+1)$-cuts regime

- No central limit theorem in general ...

+ discrete Gaussian, centered at $\mu=-N \epsilon_{\star} \bmod \mathbb{Z}^{g}$
step $v[f] \propto\left(\int_{S} \frac{f(x) x^{i} \mathrm{~d} x}{\prod_{\alpha}|x-\alpha|^{1 / 2}}\right)_{0 \leq i \leq g-1}$
Corollary

$$
\left(\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int_{A} f(\xi) \mathrm{d} \mu_{\mathrm{eq}}(\xi)\right)
$$

converges in law along subsequences

History in the 1 -cut regime

$\beta=2 \quad$ - If $1 / N$ expansion exists, then $Z_{N}=N^{\gamma N+\gamma^{\prime}} \exp \left(\sum_{h \geq 0} N^{2-2 h} F_{[h]}\right)$ and $\mathrm{F}_{[\mathrm{h}]}$ can be computed by the moment method ${ }^{h \geq 0}$ Ambjørn, Chekhov, Kristjansen, Makeenko, 90s

- Rewriting of $\mathrm{F}_{[\mathrm{hh}}$ in terms of a universal topological recursion Eynard, 04
- Existence of $1 / \mathrm{N}$ expansion by
- analysis of SD equations Albeverio, Pastur, Shcherbina '01
- RH techniques Ercolani, McLaughlin '02
- analysis of int. system Bleher, Its, '05

History in the 1-cut regime

$\beta>0 \quad$ - if $1 / \mathrm{N}$ expansion exists, then
$F_{k}=\sum_{h=0}^{\lfloor k / 2\rfloor+1}\left(\frac{\beta}{2}\right)^{1-h}\left(1-\frac{2}{\beta}\right)^{k+2-2 h} F_{[h] ; k+2-2 h}$
and $\mathrm{F}_{[\mathrm{h}] ; \mathrm{m}}$ computed by a β-topological recursion Chekhov, Eynard '06

- Central limit theorem Johansson '98
- Existence of $1 / \mathrm{N}$ expansion (analysis of SD eqn) Borot, Guionnet '11

History in the $(g+1)$-cuts regime

$\beta=2 \quad$ - numerous observations of oscillatory behavior physicists, '90s

- asymptotics of $\langle\operatorname{det}(x-M)\rangle_{N \times N}$ up to o(1) (RH techniques) Deift, Kriecherbauer, McLaughlin, Venakides, Zhou '99
- heuristic derivation up to o(1)

Bonnet, David, Eynard '00

- generalization to all orders

Eynard '07

- observation of "no CLT"

Pastur '06
$\beta>0 \quad$ • Proof of "no CLT" and asymptotics of Z_{N}^{A} up to o(1) Shcherbina ${ }^{12}$

- General proof Borot, Guionnet '13

All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Ideas about the proof
4. Perspectives

Orthogonal polynomials and random matrices

For $\beta=2$
measure over the space of $N \times N$ hermitian matrices

$$
V(x)=V_{0}(x)+\sum_{j \geq 1} \frac{t_{j}}{j} x^{j}
$$

$$
\frac{1}{Z_{N, n}} \mathrm{~d} M e^{-n \operatorname{Tr} V(M)}
$$

- $P_{N, n}=\mathbb{E}_{N \times N}[\operatorname{det}(x-M)]$
is the N th orthogonal polynomial for the weight $\mathrm{d} x e^{-n V(x)}$ on \mathbb{R}
- Let $h_{N, n}=$ norm of $P_{N, n}$
$\widehat{P}_{N, n}=P_{N, n} / \sqrt{h_{N, n}}$ satisfies a 3-term recurrence relation

$$
\left(x-\beta_{N, n}\right) \widehat{P}_{N, n}(x)=\sqrt{h_{N, n}} \widehat{P}_{N+1, n}(x)+\sqrt{h_{N-1, n}} \widehat{P}_{N-1, n}(x)
$$

Orthogonal polynomials and random matrices

For $\beta=2$
measure over the space of $N \times N$ hermitian matrices

$$
V(x)=V_{0}(x)+\sum_{j \geq 1} \frac{t_{j}}{j} x^{j}
$$

$$
\frac{1}{Z_{N, n}} \mathrm{~d} M e^{-n \operatorname{Tr} V(M)}
$$

- The coefficients are solutions of a Toda chain :

$$
\left\{\begin{array} { c }
{ u _ { N , n } = \operatorname { l n } h _ { N , n } } \\
{ v _ { N , n } = - \beta _ { N , n } }
\end{array} \quad \left\{\begin{array}{c}
\partial_{t_{1}} u_{N, n}=v_{N, n}-v_{N-1, n} \\
\partial_{t_{1}} v_{N, n}=e^{u_{N+1, n}}-e^{u_{N, n}}
\end{array}\right.\right.
$$

- $\partial_{t_{j}}$ are the higher Toda flows
- initial condition prescribed by the string equations
- $Z_{N, n}=N!\prod_{j=0}^{N-1} h_{j, n}$ is the Tau function

The continuum limit of Toda $\quad N, n \rightarrow \infty \quad N / n=t$ fixed

from Jurkiewicz '91 Phys. Lett. B, 261, 3

- if the model with V / t has $(g+1)$-cuts and is off-critical
main result \& $h_{N, n}=\frac{1}{N+1} \frac{Z_{N+1, n N /(N+1)}}{Z_{N, n}}$

$$
\downarrow
$$

all-order oscillatory asymptotics for $u_{N, n}=\ln h_{N, n}$

Asymptotics of orthogonal polynomials

$N, n \rightarrow \infty$
$N / n=t$ fixed

- main result $+P_{N, n}(x)=\frac{Z_{N, n}^{V-(1 / N) \ln (x-\bullet)}}{Z_{N, n}^{V}}$
\Longrightarrow all-order asymptotics of $P_{N, n}(x)$ for x away from its zero locus
- $\beta=1,4$ are related to skew orthogonal polynomials/Pfaff latice $\left\langle P_{j, n} \mid P_{k, n}\right\rangle=\left(\delta_{j, k-1}-\delta_{j-1, k}\right) h_{j, n}$
$\beta=1 \quad\left\{\begin{array}{l}M=\text { real symmetric } \\ \langle f \mid g\rangle_{\beta=1}=\int_{\mathbb{R}^{2}} \mathrm{~d} x \mathrm{~d} y e^{-n(V(x)+V(y))} \operatorname{sgn}(x-y) f(x) g(y) \\ N_{\beta=1}=2 N\end{array}\right.$
$\beta=4 \quad\left\{\begin{array}{l}M=\text { quaternionic self-dual } \\ \langle f \mid g\rangle_{\beta=4}=\int_{\mathbb{R}} \mathrm{d} x e^{-n V(x)}\left(f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right) \\ N_{\beta=4}=N\end{array}\right.$
$P_{2 N, n}(x)=\mathbb{E}_{N_{\beta} \times N_{\beta}}[\operatorname{det}(x-M)]$
$P_{2 N+1, n}(x)=\mathbb{E}_{N_{\beta} \times N_{\beta}}[(x+\operatorname{Tr} M) \operatorname{det}(x-M)]$
\Longrightarrow similar asymptotic results

All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Ideas about the proof
4. Perspectives

Conditioning on the filling fractions

- From local large deviations : up to $o\left(e^{-c N}\right)$, we can choose

$$
A=\bigcup_{h=0}^{g} A_{h}
$$

- We will study $\mu_{\left(N_{0}, \ldots, N_{g}\right)}^{\left(A_{0}, \ldots, A_{g}\right)}=\mu_{N}^{A}$ conditioned to have $\left\{\begin{array}{l}N_{0} \text { first } \lambda^{\prime} \mathrm{s} \text { in } A_{0} \\ N_{1} \text { next } \lambda^{\prime} \mathrm{s} \text { in } A_{1} \\ \text { etc. }\end{array}\right.$

The partition function decomposes $\quad Z_{N}^{A}=\sum_{N_{0}+\cdots N_{g}=N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{\left(N_{0}, \ldots, N_{g}\right)}^{\left(A_{0}, \ldots, A_{g}\right)}$

Correlators and partition function

- We will show a $1 / \mathrm{N}$ expansion for the m-point correlators :

$$
\begin{aligned}
& W_{m}\left(x_{1}, \ldots, x_{m}\right)=\mu_{\mathbf{N}}^{\mathbf{A}}-\mathrm{cumulant}\left(\sum_{i_{1}=1}^{N} \frac{1}{x_{1}-\lambda_{i_{1}}}, \ldots, \sum_{i_{m}=1}^{N} \frac{1}{x_{m}-\lambda_{i_{m}}}\right) \\
& x_{i} \in \mathbb{C} \backslash A
\end{aligned}
$$

- If $\left(V_{t}\right)_{t}$ is a smooth family of potentials respecting our assumptions $\frac{Z_{\mathbf{N}}^{\mathbf{A} ; V_{1}}}{Z_{\mathbf{N}}^{\mathbf{A}, V_{0}}}=\exp \left[-N(\beta / 2) \oint_{A} \frac{\mathrm{~d} x}{2 \mathrm{i} \pi} \partial_{t} V_{t}(x) W_{1}^{V_{t}}(x)\right]$ will have a large N expansion
- We need a reference V_{0} where $Z_{\mathbf{N}}^{\mathbf{A} ; V_{0}}$ can be exactly computed

The Schwinger-Dyson equations

- Integration by parts \Longrightarrow exact relations between $\mu_{\mathrm{N}}^{\mathrm{A}}$-cumulants

$$
\int \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} e^{-N(\beta / 2) V\left(\lambda_{i}\right)} \mathrm{d} \lambda_{i}
$$

- E.g :
$\mu_{\mathbf{N}}^{\mathbf{A}}\left[\sum_{i=1}^{N} \frac{1}{\left(x-\lambda_{i}\right)^{2}}+\sum_{1 \leq i<j \leq N} \frac{\beta}{\left(x-\lambda_{i}\right)\left(x-\lambda_{j}\right)}-\frac{N \beta}{2} \sum_{i=1}^{N} \frac{V^{\prime}\left(\lambda_{i}\right)}{x-\lambda_{i}}\right]+\sum_{a \in \partial A} \frac{\partial_{a} \ln Z_{\mathbf{N}}^{\mathbf{A}}}{x-a}=0$
which can be rewritten :
$W_{2}(x, x)+\left(W_{1}(x)\right)^{2}+(1-2 / \beta) W_{1}^{\prime}(x)-\oint_{A} \frac{\mathrm{~d} \xi}{2 \mathrm{i} \pi} \frac{V^{\prime}(\xi) W_{1}(\xi)}{x-\xi}+\sum_{a \in \partial A} \frac{\partial_{a} \ln Z_{\mathbf{N}}^{\mathbf{A}}}{x-a}=0$
- For any $n \geq 1$, there is a quadratic relation between $W_{n+1}, W_{n}, \ldots, W_{1}$

A priori control on correlators

For the conditioned measure $\mu_{\mathbf{N}}^{\mathbf{A}}$
consider $N,\left(N_{h}\right)_{h} \rightarrow \infty$ with $\epsilon_{h}=N_{h} / N$ fixed, close enough to ϵ_{h}^{\star}

- There is an equilibrium measure $\mu_{\text {eq }}^{\epsilon}$ (depending smoothly on ϵ)

So : $N^{-1} W_{1}(x) \underset{N \infty}{\longrightarrow} \int \frac{\mathrm{~d} \mu_{\mathrm{eq}}(\xi)}{x-\xi}$

- From global large deviations :

$$
\begin{aligned}
& \left|W_{1}(x)-N \int \frac{\mathrm{~d} \mu_{\mathrm{eq}}^{\epsilon}(\xi)}{x-\xi}\right| \leq c_{1}[d(x, A)](N \ln N)^{1 / 2} \\
& \left|W_{m}\left(x_{1}, \ldots, x_{m}\right)\right| \leq\left(\prod_{i=1}^{m} c_{m}\left[d\left(x_{i}, A\right)\right]\right)(N \ln N)^{m / 2}
\end{aligned}
$$

Rigidity of the Schwinger-Dyson equations

By recursive analysis of the Schwinger-Dyson equation:

$$
\begin{aligned}
& \left|W_{1}(x)-N \int \frac{\mathrm{~d} \mu_{\text {eq }}^{\epsilon}(\xi)}{x-\xi}\right| \leq c_{1}[d(x, A)](N \ln N)^{1 / 2} \\
& \left|W_{m}\left(x_{1}, \ldots, x_{m}\right)\right| \leq\left(\prod_{i=1}^{m} c_{m}\left[d\left(x_{i}, A\right)\right]\right)(N \ln N)^{m / 2}
\end{aligned}
$$

\Downarrow thanks to off-criticality

$$
\begin{aligned}
& \left(W_{1}(x)-N \int \frac{\mathrm{~d} \mu_{\mathrm{eq}}^{\epsilon}(\xi)}{x-\xi}\right) \longrightarrow W_{1}^{[0]}(x) \\
& \left|W_{m}\left(x_{1}, \ldots, x_{m}\right)\right| \leq\left(\prod_{i=1}^{m} c_{m}^{\prime}\left[d\left(x_{i}, A\right)\right]\right) N^{2-m}
\end{aligned}
$$

$W_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{k \geq m-2} N^{-k} W_{m}^{[k]}\left(x_{1}, \ldots, x_{m}\right)+O\left(N^{-K}\right) \quad$ for all K \quad (no uniformity)

Back to the partition function

$\frac{Z_{\mathbf{N}}^{\mathbf{A} ; V_{1}}}{Z_{\mathbf{N}}^{\mathbf{A} ; V_{0}}}=\exp \left[-(\beta / 2) \sum_{k \geq-2} N^{-k} \oint_{A} \frac{\mathrm{~d} x}{2 \mathrm{i} \pi} \partial_{t} V_{t}(x) W_{1}^{V_{t} ;[k+1]}(x)+O\left(N^{-(K-1)}\right)\right]$
To deduce an expansion for $Z_{\mathbf{N}}^{\mathbf{A} ; V}$, we need

- V_{0} such that $Z_{\mathbf{N}}^{\mathbf{A} ; V_{0}}$ is exactly known
- an interpolation $\left(V_{t}\right)_{t \in[0,1]}$ from $V_{t=1}=V$ staying uniformly ($\mathrm{g}+1$)-cuts and off-critical

Idea : interpolate in the space of equilibrium measures

$$
\left(\mu_{\mathrm{eq}}^{t}\right)_{t \in[0,1]} \longleftrightarrow\left(V_{t}\right)_{t \in[0,1]}
$$

$\int_{A} \ln |x-y| \mathrm{d} \mu_{\mathrm{eq}}^{t}(y)-V_{t}(x)=C_{t}$ with equality μ_{eq}^{t}-everywhere

An interpolation path ...

Sums and interferences $-1 / 3$

We initially wanted to compute $\quad Z_{N}^{A}=\sum_{N_{0}+\cdots N_{g}=N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{\left(N_{0}, \ldots, N_{s}\right)}^{\left(A_{0}, \ldots, N_{g}\right)}$

- From global large deviations :

$$
Z_{N}^{A}=\left(\sum_{\left|\mathbf{N}-N \epsilon^{\star}\right| \leq \ln N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{\mathbf{N}}^{\mathbf{A}}\right)\left(1+O\left(e^{-c N}\right)\right)
$$

- For $\mathbf{N}-N \epsilon^{\star} \in o(N)$, we just proved, with $\epsilon=\left(N_{h} / N\right)_{1 \leq h \leq g}$

$$
\frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{\mathbf{N}}^{\mathbf{A}}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{k \geq-2} N^{-k} F_{k}(\epsilon)+O\left(N^{-K}\right)\right]
$$

- Extra lemma : $F_{k}(\epsilon)$ are smooth functions of $\epsilon \approx \epsilon^{\star}$

$$
F_{-2}^{\prime}\left(\epsilon^{\star}\right)=0 \quad \text { and } \quad F_{-2}^{\prime \prime}\left(\epsilon^{\star}\right)<0
$$

Sums and interferences $-2 / 3$

We plug the asymptotic formula and use a Taylor expansion at $\epsilon \approx \epsilon^{\star}$

- E.g. up to o(1) :

$$
\begin{aligned}
Z_{N}^{A} & =N^{\gamma N+\gamma^{\prime}} e^{N^{2} F_{-2}\left(\epsilon^{\star}\right)+N F_{-1}\left(\epsilon^{\star}\right)+F_{0}\left(\epsilon^{\star}\right)} \\
& \times\left(\sum_{\left|\mathbf{N}-N \epsilon^{\star}\right| \leq \ln N} e^{\frac{1}{2} F_{-2}^{\prime \prime}\left(\epsilon^{\star}\right) \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)^{\otimes 2}+F_{-1}^{\prime}\left(\epsilon^{\star}\right) \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)}\right)\left(1+O\left(e^{-c(\ln N)^{3} / N}\right)\right)
\end{aligned}
$$

It is the general term of a super-exponentially fast converging series :

$$
\begin{aligned}
Z_{N}^{A} & =N^{\gamma N+\gamma^{\prime}} e^{N^{2} F_{-2}\left(\epsilon^{\star}\right)+N F_{-1}\left(\epsilon^{\star}\right)+F_{0}\left(\epsilon^{\star}\right)} \\
& \times\left(\sum_{\mathbf{N} \in \mathbb{Z}^{g}} e^{\frac{1}{2} F_{-2}^{\prime \prime}\left(\epsilon^{\star}\right) \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)^{\otimes 2}+F_{-1}^{\prime}\left(\epsilon^{\star}\right) \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)}\right)\left(1+O\left(e^{-c(\ln N)^{2}}\right)\right)
\end{aligned}
$$

- We recognize $\Theta_{-N \epsilon^{\star}}\left(F_{-1}^{\prime} \mid F_{-2}^{\prime \prime}\right)$

Sums and interferences $-3 / 3$

- Including higher orders yields terms of the form
$\sum_{\mathbf{N} \in \mathbb{Z}^{g}}\left(\frac{1}{r!} \prod_{i=1}^{r} \frac{F_{k_{i}}^{\left(\ell_{i}\right)}\left(\epsilon^{\star}\right) \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)^{\otimes \ell_{i}}}{\ell_{i}!}\right) e^{\frac{1}{2} \mathbf{Q} \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)^{\otimes 2}+\mathbf{w} \cdot\left(\mathbf{N}-N \epsilon^{\star}\right)}$
We recognize $\left(\frac{1}{r!} \prod_{i=1}^{r} \frac{F_{k_{i}}^{\left(\ell_{i}\right)}\left(\epsilon^{\star}\right) \cdot \nabla_{\mathbf{w}}^{\otimes \ell_{i}}}{\ell_{i}!}\right) \Theta_{-N \epsilon^{\star}}(\mathbf{w} \mid \mathbf{Q})$
Here $\mathbf{Q}=F_{-2}^{\prime \prime}\left(\epsilon^{\star}\right)$ and $\mathbf{w}=F_{-1}\left(\epsilon^{\star}\right)$
- We justified step by step the heuristics of Bonnet, David, Eynard '00, Eynard '07

Summary: the $(g+1)$-cuts regime

- Oscillatory asymptotic expansion

$$
\xrightarrow{\text { - }}
$$

$$
Z_{N}^{A}=N^{\gamma N+\gamma^{\prime}}\left(\mathcal{D}_{N} \Theta_{-N \epsilon_{*}}\right)\left(F_{-1}^{\prime} \mid F_{-2}^{\prime \prime}\right) \exp \left[\sum_{k \geq=2} N^{-k} F_{k}+O\left(N^{-\infty}\right)\right]
$$

where $\mathcal{D}_{N}=\sum_{r \geq 0} \frac{1}{r!} \sum_{\substack{\ell_{1}, \ldots, \ell_{r} \geq 1 \\ k_{1} \geq k^{2}}} N^{-\left(\sum_{i} k_{i}+\ell_{i}\right)} \prod_{i=1}^{r} \frac{F_{k_{i}}^{\left(\ell_{i}\right)} \cdot \nabla_{\mathbf{w}}^{\otimes \ell_{i}}}{\ell_{i}!}$

$$
\begin{aligned}
& k_{1}, \ldots, r_{r}>-2=-2 \\
& \sum_{i}\left(k_{i}+f_{i}\right)>0
\end{aligned}
$$

acts as a differential operator on the Siegel theta function

$$
\Theta_{\mu}(\mathbf{w} \mid \mathbf{Q})=\sum_{\mathbf{m} \in \mathbb{Z}^{g}} e^{\mathbf{w} \cdot(\mathbf{m}+\mu)+\frac{1}{2}(\mathbf{m}+\mu) \cdot \mathbf{Q} \cdot(\mathbf{m}+\mu)}
$$

- Moving characteristics

$$
\mu=-N \epsilon_{\star} \bmod \mathbb{Z}^{g}
$$

Quadratic form

$$
\mathbf{Q}=F_{-2}^{\prime \prime}=2 \mathrm{i} \pi(\beta / 2) \times(\text { period matrix })<0
$$

All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Ideas about the proof
4. Perspectives

Generalization ...

... to real-analytic k-body interactions

$$
\mathrm{d} \mu_{N}^{A}=\prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \exp \left(\sum_{k=1}^{r} \frac{N^{2-k}}{k!} \sum_{i_{1}, \ldots, i_{k}=1}^{N} T_{k}\left(\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)\right) \prod_{i=1}^{N} \mathrm{~d} \lambda_{i}
$$

- Equilibrium measure \& local large deviations provided
$\mathcal{E}[\mu]=\frac{\beta}{2} \iint \ln \left|x_{1}-x_{2}\right| \mathrm{d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right)+\sum_{k=1}^{r} \frac{1}{k!} \int T_{k}\left(x_{1}, \ldots, x_{k}\right) \prod_{i=1}^{k} \mathrm{~d} \mu\left(x_{i}\right)$
has a unique minimum
- Global large deviations provided $\mathcal{E}^{\prime \prime}\left[\mu_{\mathrm{eq}}\right]<0$
- Similar asymptotic results
in progress with Guionnet, Kozlowski
- Coefs. of expansions are given by a "blobbed" topological recursion Borot '13

General ideas

- Nature of expansion depends on the topology of the spectrum

- Structure of expansion is influenced by singularities of the measure on the "moduli space" $\mathfrak{M}=A^{N} / \mathfrak{S}_{N}$

$$
\prod_{i<j}\left|\lambda_{j}-\lambda_{j}\right|^{\beta}=\text { non-analyticity on } \partial \mathfrak{M}
$$

Open problems

- Singular V's and uniform asymptotics around critical points
\square asymptotics of (skew) orthogonal polynomials in the bulk
\square universality and computing tails of universal laws
- Complex-valued V
\square Berry-Esséen type estimates in CLT
- Same questions for $\lambda_{i} \in \mathbb{C}$
- Same questions for multi-matrix models
\square asymptotics of biorthogonal polynomials

