Problem sheet 3, PCMI

Burt Totaro

July 2024, Park City, Utah

You could also look at problems on earlier problem sheets, if you like.
(1) Let $Q=Q_{8}$ be the quaternion group of order 8 ,

$$
Q=\left\langle i, j \mid i^{4}=1, j^{2}=i^{2}, j i j^{-1}=i^{-1}\right\rangle .
$$

Consider Q as a group scheme over \mathbf{C}.
(a) Show that Q has a faithful representation V of dimension 2 over \mathbf{C}. Show that Q acts freely on $V-0$ (by inspection of your representation).
(b) Apply the localization sequence for equivariant Chow groups to $\{0\} \subset V$ to show that $C H^{*} B Q$ is generated as a module over the polynomial ring $\mathbf{Z}\left[c_{2} V\right]$ by elements of degree ≤ 1.
(c) You may use the facts that $C H^{1} B G \cong \operatorname{Hom}\left(G, \mathbf{C}^{*}\right)$ for every finite group G and that

$$
H^{*}(B Q, \mathbf{Z}) \cong \mathbf{Z}\left[a, b, c_{2} V\right] /\left(2 a, 2 b, 8 c_{2} V, a^{2}, b^{2}, a b-4 c_{2} V\right)
$$

Also using (b), compute the Chow ring of $B Q$.
(2) (a) Let G be an affine group scheme over a field k with a faithful representation V of dimension n. You may use that

$$
C H^{*}(G L(n) / G) \cong C H^{*} B G /\left(c_{1} V, \ldots, c_{n} V\right) .
$$

Deduce that $C H^{*} B G$ is generated as a module over $\mathbf{Z}\left[c_{1} V, \ldots, c_{n} V\right]$ by elements of degree at most $n^{2}-\operatorname{dim}(G)$.
(b) Show that $G L(n) / O(n)$ over \mathbf{C} is isomorphic to a Zariski open subset of affine space. (Note that $O(n)$ here denotes the complex orthogonal group, the subgroup of $G L(n)_{\mathbf{C}}$ that preserves the symmetric bilinear form on \mathbf{C}^{n} given by $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$. The maximal compact subgroup of $O(n)_{\mathbf{C}}$ is the compact real orthogonal group $O(n)$, so they're homotopy equivalent, but they're not the same group.) (Hint: consider the action of $G L(n)$ on the vector space of symmetric bilinear forms on \mathbf{C}^{n}.)
(c) Using (a) and (b), show that the Chow ring of $B O(n)$ is generated by the Chern classes of the standard n-dimensional representation V of $O(n)$.
(d) More precisely, show that

$$
C H^{*} B O(n) \cong \mathbf{Z}\left[c_{1} V, \ldots, c_{n} V\right] /\left(2 c_{i}=0 \text { for } i \text { odd }\right) .
$$

(Use whatever methods you can. E.g., what do you get from the fact that V is self-dual as a representation of $O(n)$? It may also be useful to remember what $H^{*}(B O(n), \mathbf{Q})$ and $H^{*}(B O(n), \mathbf{Z} / 2)$ are, from Milnor-Stasheff's Characteristic Classes.)

