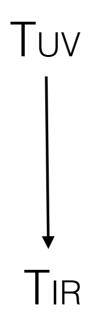
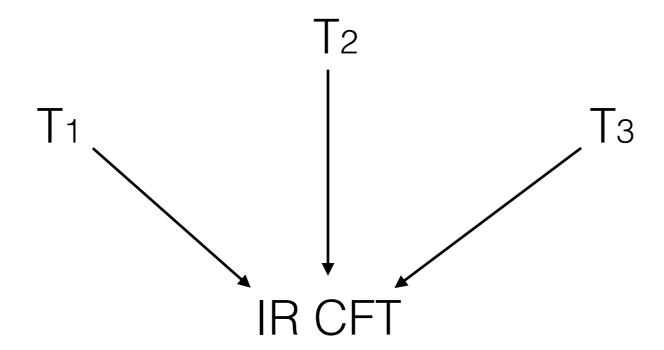
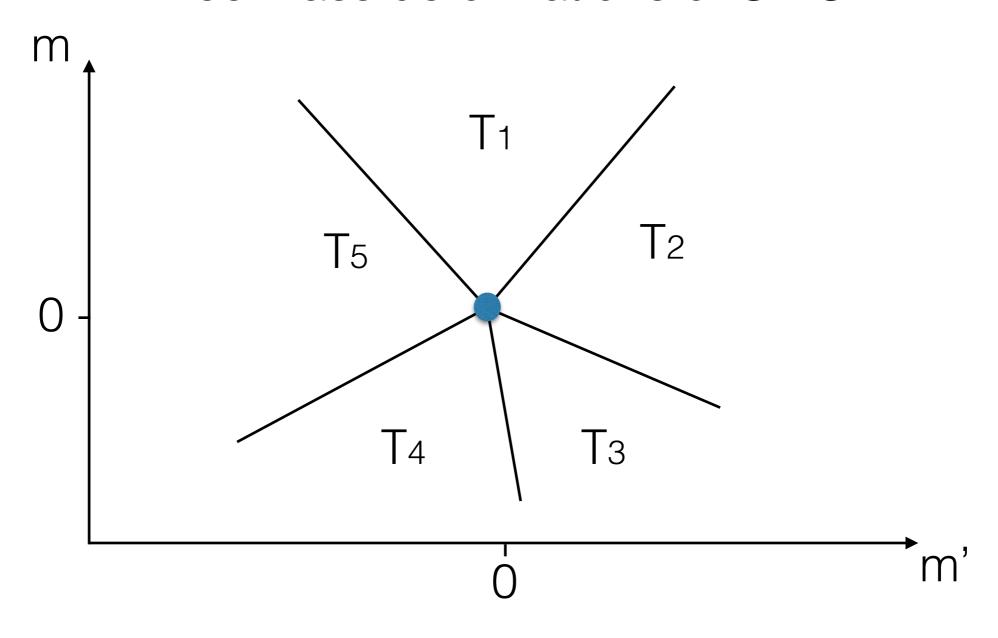

Boundaries, Interfaces and Dualities


Dualities I

Complementary weakly coupled descriptions in a space of exactly marginal couplings


Dualities II

IR free effective description of asymptotically free UV theory


Dualities III

Alternative UV definitions of a single CFT

Dualities IV

IR free mass deformations of UV CFT

A tale of many dimensions and supercharges

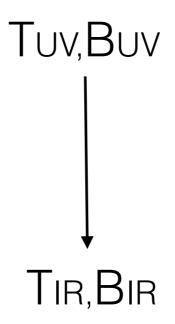
- IR gauge theory descriptions of 5d and 6d SCFTs
- 4d: N=4 S-duality, N=2 S-dualities and Seiberg-Witten theories, N=1 Seiberg dualities,
- 3d: N=4 mirror symmetries, N=2 mirror symmetries, N=2 Seiberg-like and level-rank dualities, N=0 level-rank dualities,
- 2d: (2,2) mirror symmetries, (2,2) Seiberg-like dualities, (0,2) dualities, level-rank dualities,.....

Exact tests

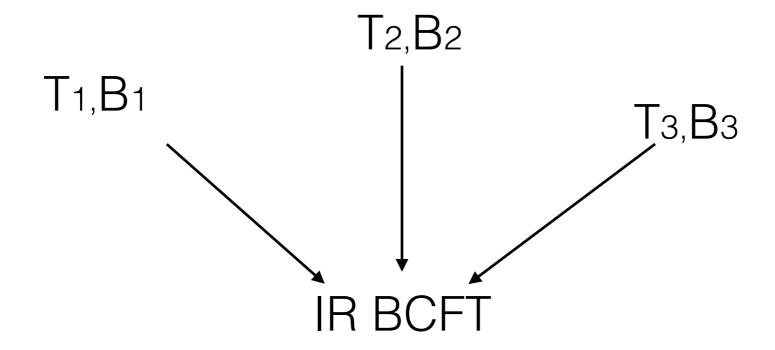
- Anomaly matching, relevant deformations, etc.
- Many supersymmetric dualities can be tested by moduli space of vacua, localization for sphere partition functions, supersymmetric indices, etc.
- The match between dual quantum field theories is often a very non-trivial property of intricate mathematical objects

Matching defects

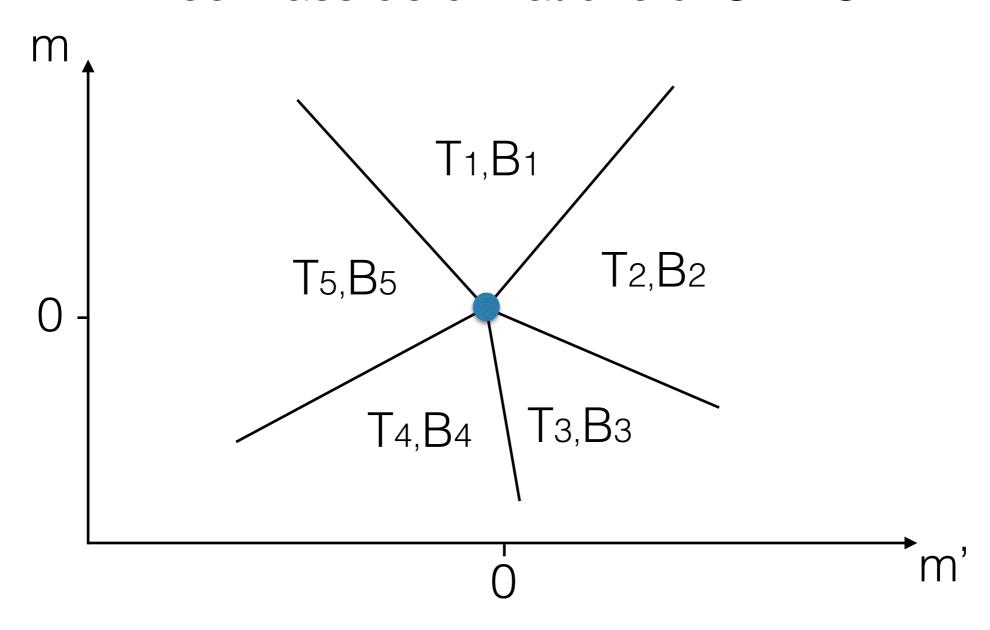
- Quantum field theories can be enriched by local extended defects of various dimensions.
- Can we match them across dualities? More precisely, can we extend dualities of the bulk theory to include defects?
- Today focus on boundary conditions


Dualities I

Transport boundary conditions along moduli space


Dualities II

IR effective description of UV boundary condition


Dualities III

Alternative UV definitions of a single Boundary Conformal Field Theory

Dualities IV

IR free mass deformations of UV BCFT

Duality interfaces

- Often dualities can be "implemented" by duality interfaces
- Interfaces between dual theories which are dual to trivial (or better "Janus") interfaces in either theory
- Duality interfaces often "compose" according to duality group law. Relations follow from lower dimensional dualities.

A tale of many dimensions and supercharges

- 4d N=1 boundaries of 5d SCFTs
- S-duality of 3d N=4, N=2 boundary conditions, N=2 boundary conditions in Seiberg-Witten theory,
- Mirror symmetry of 2d (2,2) and (0,2) boundary conditions. Level rank duality of (0,2) boundary conditions. Level-rank duality of N=0 boundary conditions.
- Brane dualities.

A simple duality

A 3d fermion coupled to $U(1)_{-\frac{1}{2}}$ Chern-Simons

A 3d complex scalar with quartic potential

Boundary conditions for fermions

 Set to zero a chiral half of the fermion at the boundary:

•
$$B_{\psi}^{+}: \psi_{+}|_{\partial} = 0$$

•
$$B_{\psi}^{-}:\psi_{-}|_{\partial}=0$$

•
$$B_{\psi}^- \equiv B^+ + \lambda_+^{2d} + \left(\int_{\partial} \psi_- \lambda_+^{2d} \right)$$

 Boundary conditions have half of anomalies of a 2d fermion

Neumann b.c.

- Neumann b.c for gauge field: gauge transformation non-trivial at the boundary, $F_{\perp\parallel}=J_{\parallel}$
- Require anomaly cancellation at the boundary
- Classically breaks Topological U(1) symmetry:

$$J_{\perp}^{\mathrm{top}} = F_{\parallel \parallel}$$

Bare Neumann b.c.

- B_{ψ}^+ cancels bulk Chern-Simons anomaly inflow
- Breaks U(1) topological!
- Monopole charge has opposite image.
- Flows to "exceptional transition" boundary condition. $ce^{i\theta_{2d}}$

$$\phi \sim \frac{ce^{i\theta_{2d}}}{x_{\perp}^{\Delta_{\phi}}} + \cdots$$

Enriched Neumann

- $B_{\psi}^- + \lambda_+^{2\mathrm{d}}$ Cancels anomaly from bulk CS term
- Topological U(1) restored by acting on 2d fermion!

$$J_{\perp}^{\text{top}} = F_{\parallel \parallel} = \partial_{\parallel} J_{\lambda}^{\parallel}$$

Flows to generic O(2) preserving b.c.: "ordinary transition"

$$\psi_-|_{\partial}\lambda_+^{\mathrm{2d}} \to \partial_\perp\phi|_{\partial}$$

Dirichlet b.c.

- Dirichlet b.c. for gauge fields: gauge tranformations trivial at boundary, $A_{\rm ||}=0$
- Gauge symmetry becomes global symmetry at the boundary.
- Interesting for dualities! Dual boundary condition remembers original gauge group.
- Boundary monopoles! Flow to "special transition"?

General level-rank duality

$$U(k)_{\frac{N_f}{2}-N} + N_f \text{ fermions} \leftrightarrow SU(N)_k + N_f \text{ WF scalars}$$

- Observation: $B_{\psi}^- + N \times \lambda_+^{2d}$ cancels anomaly for Neumann b.c. on the left hand side
- Global symmetry and anomalies match Dirichlet b.c. on the right hand side
- Observation: $k \times \eta_-^{\rm 2d}$ cancels anomaly for Neumann b.c. on the right hand side
- Global symmetry and anomalies match Dirichlet b.c. on the left hand side

Level rank duality in pure Chern-Simons

- Relation between boundary conditions already nontrivial:
 - SU(N)k Chern-Simons + Dirichlet b.c
 - U(k)N Chern-Simons + N x k 2d fermions + Neumann b.c.
- Follows from 2d coset formulation of level rank duality: 2d bifundamental fermions are secretly the product of two WZW models.

Tests

- Large N,k calculations (Radicevic)
- Supersymmetrize: level rank duality has a 3d N=2 ancestor.
- Bifundamental fermions -> bifundamental (0,2)
 Fermi multiplets
- Test with supersymmetric index of boundary operators (Dimofte)

Happy Birthday!