
Emergent	Supersymmetry	from	a		
La2ce	of	Interac5ng	Majorana	Modes	

1	



2	

Armin	Rahmani	

Marcel	Franz	

Xiaoyu	Zhu	



3	

• No	conserved	par5cle	number	but		
important	discrete	symmetries	
• Not	Bethe	ansatz	integrable?	
• Can	be	studied	by	field	theory	and	DMRG	

€ 

H = [itγ jγ j+1 + gγ jγ j+1γ j+2γ j+3]
j
∑ ,

γ j
+ = γ j , {γ j ,γ l} = 2δ j , l

I)	Introduc5on	and	Mo5va5on	
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• Experimental	mo5va5on,	for	D=1	or	2,		
	is	provided,	for	example,	by	a	superconduc5ng		
film	on	top	of	a	strong	topological	insulator	in	a		
magne5c	field	which	produces	a	vortex	la2ce		
• A	Majorana	mode	is	localized	at	the	core	of		
each	vortex	
• In	general	tunneling	between	vor5ces	is	possible	
and	Coulomb	interac5ons	are	present	
• An	extra	symmetry	is	present	when	t=0:	γj!(-1)j	γj	
• This	symmetry	is	present	when	the	chemical		
poten5al	of	the	topological	insulator	is	tuned	to		
the	Dirac	point	of	the	surface	states	
• Could	allow	study	of	the	strong	g/t	regime	
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II)	Weak	coupling	phase	diagram	
from	field	theory/RG	methods	

Possibly	either	sign	of	g	might	occur	experimentally	
since	we	are	in	a	superconductor	–	we	studied		
both	signs.	
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Non-interac5ng	model	is	trivial	to	diagonalize:	
just	Fourier	transform:	

We	simply	iden5fy	γ(k)	as	an	annihila5on	operator	
for	0<k<π	and	as	a	crea5on	operator	for	–π<k<0:	

Annihila5on	and	crea5on	operators	defined	for		
k>0	only;	low	energy	states	near	k=0	and	k=π.	

€ 

γ j =
2
L

eikj
−π < k<π

∑ γ(k) , {γ(k),γ(k ')} = δk,−k' , γ
+(k) = γ(−k)

H = 2t γ(−k)γ(k)sin k.
−π < k<π

∑

€ 

H = 4t γ +(k)γ(k) sin k + E0(k)
0<k<π

∑
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k	

E/(4t)	

right-movers	 leh-movers	

€ 

γ j /2 ≈ γR ( j) + (−1) jγL ( j), {γR (x),γR (y)} ≈ (1/2)δ(x − y),

H0 ≈ iv dx γR∂xγR −γL∂xγL[ ]∫ , v ≡ 4t

Here	γR	and	γL	are	rela5vis5c	Majorana	fermions.	
Transla5on	symmetry:		
forbids	a	mass	term:																		.		Corresponds	to		
Ising	model	at	cri5cal	point.	

€ 

γR →γR , γL →−γL

€ 

imγRγL
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To	analyze	effects	of	interac5on	term	in	H,	we		
project	it	onto	low	energy	subspace	of	rela5vis5c	
Majorana	fermions.	Apart	from	renormalizing		
the	velocity,	these	also	produce	an	interac5on		
term	in	the	field	theory:	

Unlike	in		the	Hubbard	or	spinless	Dirac	chain,		
interac5ons	are	irrelevant	(dimension	4).	
So,	we	expect	the	gapless	non-interac5ng		
Majorana	phase	to	persist	up	to	a	cri5cal	g	for		
either	sign	of	g.	

€ 

H int = 96g dx :γR∂xγR∫ γL∂xγL :
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III)	Symmetry	and		
Strong	Coupling	Phase	

Will	focus	on	g>0	here	–	SUSY	occurs.		
Unlike	the	Hubbard	or	spinless	Dirac	fermion		
model,	the	Majorana	chain	does	not	become	
trivial	in	the	strong	coupling	limit,	t=0.	
To	obtain	a	trivial	model	at	t=0	it	is	convenient	
to	explicitly	break	the	transla5onal	symmetry	–	
such	symmetry	breaking	might	occur		
spontaneously	if	not	put	in	by	hand:	
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€ 

H =
j
∑ [it1γ 2 jγ 2 j+1 + it2γ 2 j−1γ 2 j

+ g1γ 2 jγ 2 j+1γ 2 j+2γ 2 j+3 + g2γ 2 j−1γ 2 jγ 2 j+1γ 2 j+2 ]
• Simplicity	arises	when	g2=0	(and	t1=t2=0).	
• Then	it	is	convenient	to	combine	every	2nd		
pair	of	Majorana’s	to	make	a	Dirac:	

• For	g1>0	all	(doubled)	sites	are	filled	or	empty	
• Ground	state	is	2-fold	degenerate	
corresponding	to	a	further	spontaneous		
symmetry	breaking.	

€ 

c j ≡ (γ 2 j + iγ 2 j+1) /2, iγ 2 jγ 2 j+1 = 2c j
+c j −1 ≡ 2n j −1

H → − g1 (2n j −1)
j
∑ (2n j+1 −1)
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Of	course,	if	g1=t1=t2=0	we	can	combine		
Majoranas	to	make	Diracs	on	sites	(2j-1)	and	2j		
and	get	the	same	ground	states	translated	by	
1	site.	The	2	ground	states	for	only	g1	≠0	or		
only	g2≠0	are	sketched	below.	
Large	filled	circle	means	occupied	Dirac	level,		
empty	circle	means	unoccupied	Dirac	level.	

.	

g  >0}

} 2

1

g  >0



13	

Similar	states	occur	if	only	t1≠0:	

But	now	ground	state	is	unique.	Depending	on		
sign	of	t1,	all	states	are	filled	or	empty.	
There	is	a	par5cle-hole	symmetry	present	when	
t=0:		
The	ground	states	sketched	above		
spontaneously	break	transla5on	symmetry	for	case		
t1=t2,	g1=g2.	

€ 

H = t1 (c j
+c j −1)

j
∑

€ 

γ j →(−1)
jγ j , c j →c j

+
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For	t1=t2≠	0	and	g1=g2≠0,	we	might	expect	a	phase	
with	spontaneously	broken	transla5onal	symmetry	
and	2	ground	states.		
For	example,	for	t>0	the	2	ground	states	are:	

That	is,	we	form	Dirac	fermions	either	by		
combining	γ2i	with	γ2i+1	or	by	combining	γ2i-1		
with	γ2i.	In	either	case	all	Dirac	levels	are	empty.		
Ground	states	are	only	invariant	under	transla5on		
by	2	sites.	
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The	full	Hamiltonian	can	be	wrisen	in	terms	of	
Dirac	operators,	useful	for	DMRG	calcula5ons:	

Par5cle	number	is	not	conserved,		
2	types	of	pairing	terms,	3	site	interac5ons.	
Par5cle	number	is	only	conserved	mod	2.		
We	define	a	fermion	parity	operator:	

For	L	(even)	Majorana	sites:	j=0,1,2,	…	(L-1)	

€ 

H =
j
∑ {t[(2n j −1) + (−c j

+c j+1 + c jc j+1 + h.c.)]

+g[−(2n j −1)(2n j+1 −1) + (c j−1
+ − c j−1)(2n j −1)(c j+1

+ + c j+1)]}

€ 

F = (1− 2n j )
j=0

L / 2−1

∏ = (−iγ 2 jγ 2 j+1
j=0

L / 2−1

∏ ) = ±1
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As	we	go	to	large	g,	it	is	natural	to		
expect	a	transi5on	into	the	gapped	phase	with		
broken	transla5onal	symmetry,	allowing		
genera5on	of	a	mass	term.	There	are	2	ground		
states,	corresponding	to	the	2	signs	of	the	mass.	
It	is	also	natural	for	the	transi5on	to	the	broken	
symmetry	phase	to	be	in	the	tri-cri5cal	Ising		
universality	class.		This	is	unique	candidate		
cri5cal	theory	with	precisely	1	relevant	operator	
allowed	by	symmetry.		It	is	a	c=7/10	conformal		
field	theory	whereas	the	free	massless	Majorana	
phase	has	c=1/2-		Ising	model.		
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Purely	fermionic	model	with	irrelevant		
interac5ons	arises	from	integra5ng	out	boson		
In	SUSY	model	and	can	therefore	be	expected		
to	realize	tri-cri5cal	Ising	transi5on	and	SUSY	
behavior:	
Akulov	and	Volkov,	1973	
Kastor,	Mar5nec	and	Shenker,	1989	



18	

g/t	0	 gc/t	

TCI	
Ising	 broken	symmetry	

Note	that	the	2-fold	degenerate	ground	state		
of	the	gapped	phase	for	g>0	is	consistent		
with	this	tri-cri5cal	Ising	transi5on.	The	broken	
Z2	symmetry	is	called	Kramers-Wannier	duality	
in	Ising	model.	It	forbids	a	mass	term	in		
the	Majorana	fermion	representa5on.		
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Tri-cri5cal	Ising	point	known	from	diluted	classical		
Ising	model,	equivalent	to	a	spin-1	Ising	chain:	

€ 

H = −S j
zS j+1

z + hS j
x +D S j

z( )
2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

j
∑

h	

D	

Low	T	

High	T	

2nd	order	

1st	order	

g/t	

t1-t2	

Tri-cri5cal	Ising	point	

Kramers-Wannier	
duality	is	a	symmetry	
between	high	T	
and	low	T	phases-	
spontaneously		
broken	on	1st	order	line	
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Tri-cri5cal	Ising	model	is	supersymmetric.	
(Friedan,	Qiu	and	Shenker,	1985).		The		
Neveu-Schwartz	sector	occurs	for	our	model-		
Ising	order	parameter	is	non-local	in	fermions.		
chiral	operators	are		
(I,ε,ε’,ε’’),	dimension	d=(0,1/10,3/5,3/2).	
Boson	fields:		
(ε,ε)-	energy	operator	in	Ising	model.	
-odd	under	Kramers-Wannier	Z2	symmetry	
(ε’,ε’)	is	even	under	Z2,	(ε’’,ε’’)	odd	
Fermions:	ΧR/L=	(ε,ε’),	(ε’,ε),	Χ’R/L=(I,ε’’),	(ε’’,I)	

(conformal	spin	½,	3/2).	
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€ 

Φ = ε +θRχL +θLχR +θRθLε '
Superfield:	

Ginsburg-Landau	Lagrangian	density:	

€ 

L =
1
4
(D αΦ)(DαΦ) +W (Φ),

W (Φ) =
1
3
Φ3
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The	only	relevant	operator	at	the	TCI	point,		
allowed	by	Kramers-Wannier	symmetry	is	ε’,	
(sub-leading	energy	perturba5on),	preserves		
supersymmetry:	
V(ϕ)=(1/2)(ϕ2+gc-g)2.	For	g<gc,	minimum	is	at		
ϕ=0,	E0>0,	W’’(0)=0.		SUSY	is	spontaneously		
broken,	Majorana	fermion	is	massless	
	golds5no:	Ising	phase.	
For	g>gc,	minimum	at	ϕ=±(g-gc)1/2.,	E0=0.	
SUSY	unbroken	but	Z2	spontaneously	broken,		
fermion	massive:	
1st	order	region	on	Ising	transi5on	line.	
Kastor,	Mar5nec,	Shenker,	1989	

€ 

δW = (gc − g)Φ
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Establishing	the	tri-cri5cial	Ising	point	with		
Density	Matrix	Renormaliza5on	Group	
was	extremely	challenging:	
-it	occurs	at	extremely	large	g/t≈250	
-correla5on	length	at	g/t=∞	probably	>1000	
-we	demonstrated	TCI	from	finite	size	spectrum:	

-c	is	conformal	charge	(Ising:1/2,	TCI:	7/10)	
-frac5ons	xn	are	scaling	dimensions	of	operators	
-different	(and	known)	for	both	Ising	and	TCI	€ 

En = ε0L +
2πv
L

−
c
12

+ xn
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Finite	size	spectra	with	periodic	or	an5-periodic		
boundary	condi5ons	on	the	fermions	are	readily		
worked	out	for	both	Ising	and	TCI	models.		
(An5-periodic	is	modular	invariant	and	corresponds	
to	operator	content.)	
Ising:	ZA=(ΧI+Χε)2,	ZP=2(Xσ)2.	
TCI:	ZA=(Χε+Χε’)2+(ΧI+Χε’’)2,	ZP=2(Xσ)2+2(Xσ’)2	

Here	Χ	labels	conformal	towers,	σ	is	order		
parameter,	σ’	sub-leading	order	parameter	in	TCI.	
We	can	also	readily	iden5fy	fermion	parity	of	all	
states.		
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c	can	also	be	measured	from	entanglement	entropy:	
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• We	studied	ground	state	and	1st	excited	state	of		
even	and	odd	fermion	parity	with	an5-periodic	B.C.’s	
• 	ra5o=1/2	for	Ising,	7/2	for	TCI	

g=1	



27	

80 90 100 110 120 130 140 150 1600

1

2

3

4

5

Also	did	DMRG	for	periodic	boundary	condi5ons.	
Scaling	dimensions	x=7/24,	3/8,	7/2,	35/8		
agree	well	with	DMRG	data	at	t/g=.00405	

even	 even	
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Fermion	correla5on	func5on	has	power-law		
decay	(for	infinite	length	chain)		
-exponent	η=1	in	Ising	phase,	η=7/5	in	TCI	phase	
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Scanning	Tunnelling	Microscopy		
Signatures	of	Majoranas	

Voltage	dependence	of	tunneling	rate	determined	
by	Fourier	transform	of	retarded	Green’s	func5on	
	<γj(t)γj(0)>.	In	Ising	phase,	~1/t	corresponding		
to	a	constant	density	of	states;	I~V.	At	TCI	point,		
assuming	low	frequency	Green’s	func5on	is		
dominated	by	low	energy	excita5ons,		I~|V|7/5	

Related	equal	5me	correla5on	func5on	decays	as		
1/x	in	Ising	phase	and	1/|x|7/5	at	TCI-	agrees		
with	DMRG	as	I	showed	earlier.	
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For	g>gc	there	is	a	gap	in	density	of	states.	
SUSY	implies	same	gap	for	fermionic	excita5on	
(STM)	as	bosonic	excita5ons	(Cooper	pair		
tunnelling	or	par5cle-hole	excita5ons	induced		
by	photon	absorp5on).		
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How	should	we	think	about	gapped	phase	
with	broken	Z2	symmetry	and	unbroken	SUSY?	

Basic	excita5ons	are	solitons	between	2	ordered		
phases.		Apparently,	there	are	no	bound	states:	
A.  Zamalodchikov,	1989	
Lassig,	Mussardo,	Cardy,	1991	
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Soliton	has	Majorana	mode	at	core.	
2	Majorana	operators	can	be	combined	to	
make	a	normal	crea5on	operator	so		
a	soliton-an5soliton	pair	can	be	bosonic	or		
fermionic.	SUSY	implies	they	have	exactly	the		
same	energy.	Difficult	to	detect	because	soliton-	
an5soliton	interac5on	drops	off	exponen5ally		
with	separa5on	and	they	don’t	form	boundstates.	
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Complete	phase	diagram		
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gapped,		
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Lifshitz	Generalized	
C-IC	
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(not	to	scale)	
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