PCMI Summer School problems with Galois cohomology

Danny Krashen

draft date: July 24, 2024

1 Quadratic forms

Definition 1.1. Let *F* be a field. We define the fundamental ideal $I(F)$ ⊂ *W*(*F*) to the *classes of quadratic forms of even dimension. We let* $Iⁿ(F) = (I(F))ⁿ$.

Definition 1.2. *For a* ∈ *F*^{*}, *let* $\langle \langle a \rangle$ *denote the quadratic form* $\langle 1, -a \rangle$ *. For* $a_1, ..., a_n$ ∈ F^* , let $\langle\langle a_1,\ldots,a_n\rangle\rangle = \langle\langle a_1\rangle\rangle \otimes \cdots \otimes \langle\langle a_n\rangle\rangle$. We call such forms n-fold Pfister forms.

Exercise 1.3. *Show that Iⁿ* (*F*) *is generated by the classes of n-fold Pfister forms.*

Exercise 1.4. *By Graham-Schmidt, if q is a quadratic form on a vector space V and v* ∈ *V, we can write V* = *Fv* ⊥ *W for some complementary subspace W. Show that if V* is 2 *dimensional with* $q = \langle a, b \rangle$ *and if* $v \in V$ *with* $q(v) = c \in F^*$, *then we may write* $q = \langle c, abc \rangle$ *.*

As a hint for the above exercise, consider the determinant of the Graham matrix of the bilinear form associated to *q*.

Exercise 1.5. *Show that* $\langle \langle a, 1 - a \rangle \rangle$ *is hyperbolic.*

Exercise 1.6. *Show that the map* $\widetilde{f}: F^* \times \cdots F^* \rightarrow W(F)$ *sending* (a_1, \ldots, a_n) *to* $\langle\langle a_1,\ldots,a_n\rangle\rangle$ *satisfies* $\widetilde{f}(a_1,\ldots,a_n)=0$ *whenever* $a_i + a_j = 1$ *for some i, j.*

Exercise 1.7. *Show that* \widetilde{f} *induces a homomorphism* $f : K^M_{\bullet}(F) \to gr^I_{\bullet}W(F)$ *of graded rings.*

Exercise 1.8. *Show that* $f(2 K_{\bullet}^{M}(F)) = 0$ *.*

Definition 1.9. For a field F, the n'th Pfister number of F, denoted $Pf_n(F)$, is the *minimum number m such that every element of Iⁿ* (*F*) *can be written as a sum (or di*ff*erence*/*integral linear combination) of at most m n-fold Pfister forms.*

Exercise 1.10. *Show that the Pfister form* $\langle\langle 1, a_2, \ldots, a_n \rangle\rangle$ *is always isotropic.*

We will use the following helpful fact: if $\phi = \langle\langle a_1, \ldots, a_n \rangle\rangle$ and if $\phi(x) = b$ has a solution, then we may write $\phi \cong \langle \neg b, b_2, \dots, b_n \rangle$.

Exercise 1.11. *Show that if* ϕ *is a Pfister form and* $\phi(x) = -1$ *has a solution then* ϕ *is isotropic.*

Exercise 1.12. *Use the previous exercises to show that if a pfister form is isotropic, then it is hyperbolic.*

Exercise 1.13. *Show that if* ϕ *is a Pfister form and* ψ *is a subform of dimension greater than half the dimension of* ϕ*, then* ϕ *is isotropic if and only if* ψ *is isotropic.*

2 Central simple algebras and Brauer groups

Definition 2.1 (quaternion algebras)**.** *For a field F of characteristic not* 2*, and elements a*, *b* ∈ *F* ∗ *, define the associative algebra* (*a*, *b*)[−]¹ *to be the algebra generated by elements u, v with the relations* $u^2 = a$, $v^2 = b$, $uv = -vu$.

Exercise 2.2. *Show that* (*a*, *b*)[−]¹ *is a division algebra if and only if the form* ⟨⟨*a*, *b*⟩⟩ *is anisotropic.*

Exercise 2.3 (not so easy without ingenuity)**.** *Show that if* (*a*, *b*)[−]¹ *is not division then it is isomorphic to* $M_2(F)$ *.*

3 Galois cohomology

Suppose *H* is a functor from fields to torsion Abelian groups. For *E*/*F*, denote the map $H(F) \rightarrow H(E)$ by $res_{E/F}$, and suppose we also have maps $cor_{E/F}$: $H(E) \rightarrow H(F)$ such that $cor_{E/F}res_{E/F}$ is multiplication by $[E : F]$ when E/F is a finite extension.

As with Galois cohomology, for $\alpha \in H(F)$, define $ind(\alpha) = gcd\{[E : F]$ *res*_{*E*/*F* α = 0} and let *per*(α) be the order of α in *H*(*F*).}

Exercise 3.1. *Show that if* $H(\overline{F}) = 0$ *for* \overline{F} *an algebraically closed field, that per*(α)*ind*(α) *for* $\alpha \in H(F)$ *and that per*(α) *and ind*(α) *have the same prime divisors.*

Recall that $sd_\ell^{n,m}(F)$ is the minimum *d* such that $ind(\alpha)|per(\alpha)^d$ for any $\alpha \in$ $H^n(E, \mu_{\ell}^{\otimes m})$ where E/F is any finite extension.

Exercise 3.2. *Show that ssd*^{*n*,*m*}</sup>(*F*) *is the max of ssd*^{*n*,*m*}(*F*) *for i* = 1, 2 *if* (ℓ_1, ℓ_2) = 1.

Exercise 3.3. *Show that ssd*^{*n*,*m*}(*F*) *is independent of m if p is prime.*

Exercise 3.4. *Show that ssd*^{*n*,*m*}</sup>(*F*) \leq *ssd*^{*n*},*m*</sup>(*F*).