PCMI Summer School problems with Galois cohomology

Danny Krashen

draft date: July 24, 2024

1 Quadratic forms

Definition 1.1. Let *F* be a field. We define the fundamental ideal $I(F) \subset W(F)$ to the classes of quadratic forms of even dimension. We let $I^n(F) = (I(F))^n$.

Definition 1.2. For $a \in F^*$, let $\langle\!\langle a \rangle\!\rangle$ denote the quadratic form $\langle 1, -a \rangle$. For $a_1, \ldots, a_n \in F^*$, let $\langle\!\langle a_1, \ldots, p_n \rangle\!\rangle = \langle\!\langle a_1 \rangle\!\rangle \otimes \cdots \otimes \langle\!\langle a_n \rangle\!\rangle$. We call such forms n-fold Pfister forms.

Exercise 1.3. Show that $I^n(F)$ is generated by the classes of *n*-fold Pfister forms.

Exercise 1.4. By Graham-Schmidt, if q is a quadratic form on a vector space V and $v \in V$, we can write $V = Fv \perp W$ for some complementary subspace W. Show that if V is 2 dimensional with $q = \langle a, b \rangle$ and if $v \in V$ with $q(v) = c \in F^*$, then we may write $q = \langle c, abc \rangle$.

As a hint for the above exercise, consider the determinant of the Graham matrix of the bilinear form associated to *q*.

Exercise 1.5. Show that $\langle\!\langle a, 1 - a \rangle\!\rangle$ is hyperbolic.

Exercise 1.6. Show that the map $\tilde{f} : F^* \times \cdots F^* \to W(F)$ sending (a_1, \ldots, a_n) to $\langle\langle a_1, \ldots, a_n \rangle\rangle$ satisfies $\tilde{f}(a_1, \ldots, a_n) = 0$ whenever $a_i + a_i = 1$ for some i, j.

Exercise 1.7. Show that \tilde{f} induces a homomorphism $f : K^M_{\bullet}(F) \to gr^L_{\bullet}W(F)$ of graded rings.

Exercise 1.8. *Show that* $f(2 K^{M}_{\bullet}(F)) = 0$ *.*

Definition 1.9. For a field F, the n'th Pfister number of F, denoted $Pf_n(F)$, is the minimum number m such that every element of $I^n(F)$ can be written as a sum (or difference/integral linear combination) of at most m n-fold Pfister forms.

Exercise 1.10. Show that the Pfister form $\langle \langle 1, a_2, ..., a_n \rangle$ is always isotropic.

We will use the following helpful fact: if $\phi = \langle \langle a_1, ..., a_n \rangle \rangle$ and if $\phi(x) = b$ has a solution, then we may write $\phi \cong \langle \langle -b, b_2, ..., b_n \rangle \rangle$.

Exercise 1.11. Show that if ϕ is a Pfister form and $\phi(x) = -1$ has a solution then ϕ is isotropic.

Exercise 1.12. Use the previous exercises to show that if a pfister form is isotropic, then it is hyperbolic.

Exercise 1.13. Show that if ϕ is a Pfister form and ψ is a subform of dimension greater than half the dimension of ϕ , then ϕ is isotropic if and only if ψ is isotropic.

2 Central simple algebras and Brauer groups

Definition 2.1 (quaternion algebras). For a field *F* of characteristic not 2, and elements $a, b \in F^*$, define the associative algebra $(a, b)_{-1}$ to be the algebra generated by elements u, v with the relations $u^2 = a, v^2 = b, uv = -vu$.

Exercise 2.2. Show that $(a, b)_{-1}$ is a division algebra if and only if the form $\langle\!\langle a, b \rangle\!\rangle$ is anisotropic.

Exercise 2.3 (not so easy without ingenuity). Show that if $(a, b)_{-1}$ is not division then it is isomorphic to $M_2(F)$.

3 Galois cohomology

Suppose *H* is a functor from fields to torsion Abelian groups. For *E*/*F*, denote the map $H(F) \rightarrow H(E)$ by $res_{E/F}$, and suppose we also have maps $cor_{E/F} : H(E) \rightarrow H(F)$ such that $cor_{E/F}res_{E/F}$ is multiplication by [E : F] when E/F is a finite extension.

As with Galois cohomology, for $\alpha \in H(F)$, define $ind(\alpha) = gcd\{[E : F] | res_{E/F}\alpha = 0\}$ and let $per(\alpha)$ be the order of α in H(F).

Exercise 3.1. Show that if $H(\overline{F}) = 0$ for \overline{F} an algebraically closed field, that $per(\alpha)|ind(\alpha)$ for $\alpha \in H(F)$ and that $per(\alpha)$ and $ind(\alpha)$ have the same prime divisors.

Recall that $ssd_{\ell}^{n,m}(F)$ is the minimum *d* such that $ind(\alpha)|per(\alpha)^{d}$ for any $\alpha \in H^{n}(E, \mu_{\ell}^{\otimes m})$ where E/F is any finite extension.

Exercise 3.2. Show that $ssd_{\ell_1\ell_2}^{n,m}(F)$ is the max of $ssd_{\ell_i}^{n,m}(F)$ for i = 1, 2 if $(\ell_1, \ell_2) = 1$.

Exercise 3.3. Show that $ssd_p^{n,m}(F)$ is independent of *m* if *p* is prime.

Exercise 3.4. Show that $ssd_{p^n}^{n,m}(F) \leq ssd_p^{n,m}(F)$.