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1 Quadratic forms

Definition 1.1. Let F be a field. We define the fundamental ideal I(F) ⊂ W(F) to the
classes of quadratic forms of even dimension. We let In(F) = (I(F))n.

Definition 1.2. For a ∈ F∗, let ⟨⟨a⟩⟩ denote the quadratic form ⟨1,−a⟩. For a1, . . . , an ∈

F∗, let ⟨⟨a1, . . . , pn⟩⟩ = ⟨⟨a1⟩⟩ ⊗ · · · ⊗ ⟨⟨an⟩⟩. We call such forms n-fold Pfister forms.

Exercise 1.3. Show that In(F) is generated by the classes of n-fold Pfister forms.

Exercise 1.4. By Graham-Schmidt, if q is a quadratic form on a vector space V and
v ∈ V, we can write V = Fv ⊥ W for some complementary subspace W. Show that if
V is 2 dimensional with q = ⟨a, b⟩ and if v ∈ V with q(v) = c ∈ F∗, then we may write
q = ⟨c, abc⟩.

As a hint for the above exercise, consider the determinant of the Graham
matrix of the bilinear form associated to q.

Exercise 1.5. Show that ⟨⟨a, 1 − a⟩⟩ is hyperbolic.

Exercise 1.6. Show that the map f̃ : F∗ × · · ·F∗ → W(F) sending (a1, . . . , an) to
⟨⟨a1, . . . , an⟩⟩ satisfies f̃ (a1, . . . , an) = 0 whenever ai + a j = 1 for some i, j.

Exercise 1.7. Show that f̃ induces a homomorphism f : KM
• (F)→ grI

•W(F) of graded
rings.

Exercise 1.8. Show that f (2 KM
• (F)) = 0.

Definition 1.9. For a field F, the n’th Pfister number of F, denoted Pfn(F), is the
minimum number m such that every element of In(F) can be written as a sum (or
difference/integral linear combination) of at most m n-fold Pfister forms.

Exercise 1.10. Show that the Pfister form ⟨⟨1, a2, . . . , an⟩⟩ is always isotropic.

We will use the following helpful fact: if ϕ = ⟨⟨a1, . . . , an⟩⟩ and if ϕ(x) = b has
a solution, then we may write ϕ � ⟨⟨−b, b2, . . . , bn⟩⟩.

1



Exercise 1.11. Show that if ϕ is a Pfister form and ϕ(x) = −1 has a solution then ϕ
is isotropic.

Exercise 1.12. Use the previous exercises to show that if a pfister form is isotropic,
then it is hyperbolic.

Exercise 1.13. Show that if ϕ is a Pfister form andψ is a subform of dimension greater
than half the dimension of ϕ, then ϕ is isotropic if and only if ψ is isotropic.

2 Central simple algebras and Brauer groups

Definition 2.1 (quaternion algebras). For a field F of characteristic not 2, and
elements a, b ∈ F∗, define the associative algebra (a, b)−1 to be the algebra generated by
elements u, v with the relations u2 = a, v2 = b,uv = −vu.

Exercise 2.2. Show that (a, b)−1 is a division algebra if and only if the form ⟨⟨a, b⟩⟩ is
anisotropic.

Exercise 2.3 (not so easy without ingenuity). Show that if (a, b)−1 is not division
then it is isomorphic to M2(F).

3 Galois cohomology

Suppose H is a functor from fields to torsion Abelian groups. For E/F, denote
the map H(F) → H(E) by resE/F, and suppose we also have maps corE/F :
H(E) → H(F) such that corE/FresE/F is multiplication by [E : F] when E/F is a
finite extension.

As with Galois cohomology, for α ∈ H(F), define ind(α) = gcd{[E : F] |
resE/Fα = 0} and let per(α) be the order of α in H(F).

Exercise 3.1. Show that if H(F) = 0 for F an algebraically closed field, that per(α)|ind(α)
for α ∈ H(F) and that per(α) and ind(α) have the same prime divisors.

Recall that ssdn,m
ℓ (F) is the minimum d such that ind(α)|per(α)d for any α ∈

Hn(E, µ⊗m
ℓ ) where E/F is any finite extension.

Exercise 3.2. Show that ssdn,m
ℓ1ℓ2

(F) is the max of ssdn,m
ℓi

(F) for i = 1, 2 if (ℓ1, ℓ2) = 1.

Exercise 3.3. Show that ssdn,m
p (F) is independent of m if p is prime.

Exercise 3.4. Show that ssdn,m
pn (F) ≤ ssdn,m

p (F).
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