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1 Introduction

What are the natural sizes of parameters in a quantum field theory? The original
notion is the result of an aggregation of different ideas, starting with Dirac’s Large
Numbers Hypothesis (“Any two of the very large dimensionless numbers occurring
in Nature are connected by a simple mathematical relation, in which the coefficients
are of the order of magnitude unity” [1]), which was not quantum in nature, to Gell-
Mann’s Totalitarian Principle (“Anything that is not compulsory is forbidden.” [2]),
to refinements by Wilson and 't Hooft in more modern language. In any event, for
simplicity we will refer to this aggregate notion of naturalness as Dirac naturalness:

In a theory with a fundamental scale A, given an operator O of the form
L D co0 (1)

with scaling dimension A, the natural size of the coefficient co in natural units
is

co = O(1) x A*=5o (2)

This has the flavor of mere dimensional analysis, but it is reinforced by the nature
of quantum corrections in QFT.

Of course, we have many examples of QFT which appear to violate this expecta-
tion. This leads to a refined notion of naturalness, due primarily to 't Hooft!, which
we will refer to as technical naturalness:

Coefficients can be much smaller than their Dirac natural value if there is an
enhanced symmetry of the theory when the coefficient is taken to zero. In this
case, the natural size of the coefficient co is

co=38 x O(1) x A*"o (3)

where S is a parameter that violates the symmetry in question.

!Though certainly anticipated by Gell-Mann, who in the sentence after articulating the Totali-
tarian Principle notes “Use of this principle is somewhat dangerous, since it may be that while the
laws proposed in this communication are correct, there are others, yet to be discussed, which forbid
some of the processes that we suppose to be allowed.”



The origin of this is fairly transparent: if the parameter § is zero, then there is an
enhanced symmetry of the theory. Quantum corrections respect symmetries of the
quantum action, and so radiative corrections will not regenerate co. If the symmetry
is violated by nonzero S, then there is a selection rule: radiative corrections must be
proportional to the symmetry violation. We can formalize this at the level of spurion
analyses, familiar from the chiral Lagrangianin QCD.

The two notions of naturalness are clearly on different footings. Ultimately, we
expect Dirac naturalness to hold in all underlying field theories. But technical nat-
uralness gives us the ability to understand how hierarchies observed in the infrared
can be protected against radiative corrections that would otherwise spoil them.

These two notions of naturalness have been borne out countless times in nature,
and provide a successful characterization of many of the parameters in the Standard
Model. Two classic examples are the proton mass and flavor hierarchies.

1.0.1 The proton mass

This was the problem that originally motivated Dirac, and his own answer was wildly
off the mark. Dirac understood that there was a mass scale associated with gravity,
Mp; ~ 10" GeV, as well as a mass scale associated with the proton, m, ~ 1 GeV,
and wished to understand why m, < Mp;.

Although the true explanation eluded Dirac, we now understand it to be a beauti-
ful triumph of naturalness criteria. The answer is that the proton mass is dynamically
generated by confinement, which in turn arises from the logarithmic evolution of a
dimensionless coupling. This phenomenon, known as dimensional transmutation, ex-
plains the existence of exponentially different scales.

The essential idea is that the QCD coupling, like all couplings in the Standard
Model, runs as a function of scale, giving rise to a renormalization group equation

of the form 5 ,

=—T7T—=4... 4
Olnp 2 + (4)
where a = ¢g*/47. We can solve the RGE at one loop, starting from couplings defined

at a fundamental scale (taken to be, e.g., Mp;) down to some lower scale

S :lln(@> (5)

as(Mp;) as(p) 2w %
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This tells us that, starting from a finite value of g, it will eventually diverge in the
infrared. Although there is no rigorous proof, we understand this to be associated
with confinement in QCD. At one loop, we can take the scale of confinement Agep
to be the scale at which the coupling diverges, in which case

1 7 (Mpl
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Lo and behold, we observe a new scale that is exponentially far from the fundamental
scale, where the exponential difference owes to the gentle, logarithmic evolution of a
dimensionless coupling.

As the proton acquires most of its mass from confinement, m, ~ Agcp, we
see there is a Dirac natural explanation for m, < Mp;: all parameters can take a
Dirac-natural size at the scale Mp;, and a new scale is generated dynamically.

1.0.2 Flavor hierarchies

A more subtle example is provided by the flavor hierarchies of the Standard Model.
In the Standard Model, we see large hierarchies in fermion masses, e.g.
Me

—£ ~107°
my my

my,

~ 1071 (7)

Of course, in the Standard Model fermion masses are generated by electroweak sym-
metry breaking, so that these hierarchies emerge from hierarchies of Yukawa cou-
plings.

These numerical hierarchies are not Dirac natural, but are technically natural. In
the limit that the Yukawa couplings are taken to zero, there is an enhanced symmetry
of the Standard Model, namely a U(3)° flavor symmetry. This corresponds to a
U(3) symmetry for each type of left-handed Weyl fermion, although it is often more
conveniently decomposed into the following symmetries:

SU(3)o x SU@3)u x SU3)p x SU(3);, x SU(3)m (8)
XU(l)BXU(l)LXU(l)yXU(l)pQXU(l)E (

Ne)
N

We can then think of the yukawas as spurions for breaking the symmetry. For
example, the up- and down-type Yukawa couplings break the SU (3)2 = SU(3)g X
SU(3)y x SU(3)p global symmetry, while the lepton yukawas break the SU(2)? =



SU(3), x SU(3)g symmetry. We can track the symmetry breaking by treating
the yukawas as fields transforming in definite representations of the global flavor
symmetry, whose vacuum expectation values spontaneously break the symmetry. In
this sense the yukawas are “spurion fields” for the broken symmetry. Qua spurions,
the various yukawas transform as

Y~ (3,3, Dsus (10)
Yd ~ (37 73)SU(3)3 (11)
Y€~ (3, g)SU(S)? (12)

Consequently, radiative corrections to the yukawa couplings are proportional to these
spurions. Any numerical hierachies in the spurions are therefore radiatively stable.

Of course, we would still like an explanation for the origin of the numerical
hierarchies — why the yukawas might have hierarchical values to begin with — but
this can be accomplished by model-building at some fundamental scale at which the
yukawas are generated. Once the hierarchies are generated, they persist into the
infrared.

2 The Electroweak Hierarchy Problem

Of course, there are places where our expectations of naturalness fail. The most
notable examples are the cosmological constant problem, the electroweak hierarchy
problem, and the strong CP problem. Each regards operators of different dimension
— the parameters of interest have classical mass dimension four, two, and zero, re-
spectively. The second of these, the electroweak hierarchy problem, will be our focus
for the remainder of these lectures, and relates to the natural sizes of mass terms in
a quantum field theory. There are various levels to the problem, but the essential
issue is that the observed Higgs mass is some sixteen orders of magnitude smaller
than the apparent cutoff of the Standard Model EFT, associated with the scale of
quantum gravity. While this would not be a concern if the mass parameter were
technically natural in the Standard Model, we are not so fortunate, and so we are
faced with a striking violation of our notions of naturalness.

Of course, not all mass parameters need be problematic. Consider, for example,
the mass of a Dirac fermion ¥ with a mass term of the form

myw. (13)



This mass term is invariant under a vector-like U(1) global symmetry under which
U — e, but in the limit m — 0 there is an additional symmetry, namely axial
transformations of the form ¥ — ¢W. We could equivalently think of the sym-
metries in the massless limit as the two U(1) symmetries of two free Weyl fermions.

Quantum corrections respect the symmetries of the quantum action, so provided
that this axial symmetry is a good symmetry of the quantum theory (i.e., is not
anomalous), when when m = 0 this implies that quantum corrections will not gener-
ate a mass term. Moreover, when the chiral symmetry is broken by m # 0, quantum
corrections will be proportional to the symmetry-breaking term. Thus a large hier-
archy between fermion masses is a curiosity, but not a deeply troubling one. If the
fundamental theory of the universe generates fermions with very different masses,
quantum corrections need not disturb the hierarchy.

The same does not in general hold for the mass terms for scalar fields. In partic-
ular, in the Standard Model the mass term

m?H'H (14)

is in general a complete invariant under any gauge or global symmetry acting on
H, and no symmetry is enhanced when the mass is zero. Thus we are without any
argument to justify the stability of the Higgs mass parameter against radiative cor-
rections. Indeed, we find in any theory with multiple mass scales that the Higgs
accumulates radiative corrections from every scale with which it interacts, propor-
tional to those scales. Unlike the case of spin-1/2 or spin-1, we do not have dm? oc m?,
but rather dm? oc A%, where A stands for all other scales probed by the Higgs.

The hierarchy problem is often framed in the language of quadratic divergences.
The idea is to consider the Standard Model as an effective field theory up to some
cutoff A. One can infer the sensitivity of the Higgs mass parameter to the cutoff by
computing one-loop radiative corrections up to the scale A, which give the famous
quadratic divergence,

A? 9, 3
6A+ ~g5 + Sgv — 6y + ... (15)

Sm2 =
= 1602 127y

On top of this, one should include a bare term, so that the expectation for the Higgs
mass in the Standard Model EFT is

m3 = cA® 4+ dm?, (16)
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There is a great deal of confusion about quadratic divergences and their significance,
so it is worth parsing this result very carefully.

The first question is whether we need to treat the Standard Model as an EFT
in the first place. In general, this is a sensible thing to do — even if it were not
for the apparent cutoff imposed by strong gravity at the scale Mp;, if the Standard
Model were run up to arbitrarily high energies, it would hit a Landau pole in the
hypercharge gauge coupling around 10*' GeV. More precisely, given the measured
value of the hypercharge coupling at the Z pole, and the beta function

aOéy _4105%/+
Olnp 1027

(17)

the hypercharge coupling is fated to diverge around 10*' GeV. If this were to occur,
then Standard Model fermions would form non-zero vacuum condensates in the UV,
which is inconsistent with the long-range degrees of freedom in the IR. So the Stan-
dard Model is genuinely an effective field theory with cutoff A whether or not one is
concerned about the implications of quantum gravity.

The second question is what to think of the quadratic divergence itself. We learn
at an early age how to deal with divergent results in quantum field theory — we
introduce counterterms and fix their coefficients according to some renormalization
scheme, and then use this scheme to make finite predictions for observables at other
scales. So at first glance, one might not be too troubled by the quadratic divergence.
But even if one doesn’t ascribe physical significance to the quadratic divergence
alone, it signals the existence of sensitivity to UV physics.

From the Wilsonian perspective, the quadratic divergence is really all there is.
The underlying idea is that the fundamental theory is finite, and divergences in the
EFT are physical (e.g. cutoff = lattice spacing, or mass scale of particles rendering
the Higgs mass finite), and counterterms just manifest fine-tuning.

A less ambitious reading, but one that is much clearer to interpret than musings
about cutoffs, is that the quadratic divergence is just a placeholder for physical
thresholds. The detailed relationship between the cutoff and the mass of new physical
particles is a bit subtle, but as an order of magnitude relationship, it typically holds
true. And, indeed, when we know what those thresholds are, we can go ahead and
compute explicitly to see what’s going on. To see this, it helps to construct a toy
model.



2.1 A toy model

Concretely, consider as a toy model a real scalar coupled to a Dirac fermion,

r— %(%)Q _ %ngb? - %¢4 + Wi JU — MOV 4 yop U (18)

The yukawa coupling of this particular toy model breaks the continuous chiral
symmetry we discussed earlier, but retains a discrete chiral symmetry under which

U — W I 0 (19)

Under this symmetry YW — —UW, so the fermion mass M is rendered technically
natural. But there is no additional symmetry that is manifest when m — 0, so we
expect to see a hierarchy problem.

We would like to imagine that we keep the scalar much lighter than the fermion,
and to consider matching between the full theory and an effective theory in which the
fermion has been integrated out. To avoid any confusion about quadratic divergences,
we will work in terms of a mass-independent renormalization scheme, dimensional
regularization with minimal subtraction (MS). In this scheme, the mass parameters
of the theory can be thought of as Lagrangian parameters that evolve as a function
of scale. We deform the theory by non-integer dimension (e.g. d = 4 —¢) to tame di-
vergences, and the divergences are parameterized by 1/¢ poles. The renormalization
prescription is to choose our counterterms to cancel those poles plus some superflu-
ous factors of 47 and ~.

We would like to carry out a matching procedure between the full theory and
the effective field theory, matched at the scale M. To do so, we match the scalar
two-point function in the EFT to the scalar two-point function in the full theory, at
whatever order we care to compute. At one loop, the matching involves tree-level
diagrams plus a one-loop diagram



which evaluates to a contribution to the scalar self-energy of the form

Yo(p?) = Ay [<§+1+310g(u2/M2)) (M2—70—2)+p—2— P’ +...| (20)

1672 6 2 20M?2

where £ = 1 — 4 + log(4m). Note that there are no logarithms involving m? or p?,

as these diagrams match on to an EFT that contains only a free scalar field at tree
level, so there are no loop diagrams that could reproduce the logarithm.

Now we renormalize by adding counterterms to cancel the 1/€ pole and match at
the scale y = M. The matched Lagrangian in the scalar theory is thus

4 42 1 4y? 1
L=|1-= - =(0¢)* — 2oL M) =t 21
( 3167r2) 5(99) (m 1672 T (21)
where ... includes higher-derivative terms and interactions.

It’s clear that the mass in the effective ﬁelthheory contains a threshold correction
relative to the UV theory proportional to 1463;2 M?. We could have also calculated
the above loop diagram with a hard momentum cutoff, and found a quadratically

divergent contribution to the mass-squared

2
25 3N ) (22)

)
m 472

In this sense, the quadratic divergence is just a stand-in for the finite threshold cor-
rections. If we were infinitely powerful, we could compute everything explicitly and
see the finite effects. But if we are not, and are only working from the bottom up,
the quadratic divegences are a handy way to estimate the effects of new physics.

We can also see technical naturalness at play by reversing the setup, and con-
sidering a theory in which the fermion is light while the scalar is heavy. In this
version, the threshold correction to the fermion mass is proportional to the fermion
mass, rather than the scalar mass, a manifestation of the technical naturalness of
the discrete chiral symmetry. Note that we could repeat the calculation with a hard
cutoff, though here the result is subtle — we would naively see a quadratic divergence,
but only because our regularization broke the chiral symmetry. Restoring the chiral
symmetry with an appropriate choice of counterterms (as we should), the quadratic
divergence for the fermion is absent — again consistent with technical naturalness of
the fermion mass.



In any event, now we can extract the appropriate lesson from the naive quadratic
divergence in the Standard Model. If physics enters to render the Higgs mass finite
and calculable, then it will of course give contributions of this form. Indeed, this
occurs for every theory in which the Higgs mass is rendered calculable, where the
finite contributions are precisely from whatever new degrees of freedom render the
Higgs mass finite. We will see such contributions in explicit examples.

But even if the physics in the far UV is mysterious and behaves differently from
our expectations, it’s also clear that there are finite contributions from other degrees
of freedom entirely unrelated to the finiteness of the Higgs mass. For example,

Unification One of the first concrete settings in which the hierarchy problem
became apparent was that of grand unification. In grand unified theories there are
heavy gauge bosons associated with the scale of unification that interact with the
Higgs boson.

Details depend on the precise model of unification, and the representation into
which the Higgs is embedded. For example, in SU(5) unification the SM gauge bosons
are embedded into the 24 of SU(5), which decomposes into the SM gauge bosons plus
X gauge bosons transforming in the (3, 2)_5/6 + conjugate representation. Moreover,
the Higgs is embedded in a 5 of SU(5). In this case there are loops involving a triplet
scalar Higgs and X boson of the form

In general, these loops of heavy bosons give corrections of order
aquTr

The original apparent scale of unification in nonsupersymmetric theories was
O(10%) GeV, while bounds on proton decay now imply Mgyr = 10 GeV. So
grand unification implies a huge hierarchy problem.

10



Neutrino masses Now we can have a perfectly consistent universe without new
electroweak fermions, but there are scenarios that favor the existence of new fermions.
For example, the generation of neutrino masses may strictly be due to a dimension-
five operator,

(L'H)(LH))
M
without further ado. However, we expect that if the theory is genuinely renor-
malizable, this interaction arose from integrating out heavier states with mass ~ M.
In particular, the Type-I seesaw entails right-handed neutrinos N with couplings

L£> +he. (24)

MY -
LD —TRNiNj —yi; L'N7H + h.c. (25)

This provides a very concrete example of new fermions coupling to the Higgs.
The leading one-loop correction to the Higgs mass is

1
omiy = =5 > luu[*M; (26)
ij

If all the RH neutrinos have a common mass M, the bound will be dominated
by the combination of yukawas giving the heaviest SM neutrinos. In this case the
naturalness bound is M < 10* TeV. This has amusing implications because thermal
leptogenesis requires much higher values of M, on the order of M > 10° TeV. So in
this case naturalness would rule out thermal leptogenesis in a Type 1 see-saw.

Gravity Even giving up on these things, some UV completion is forced upon us.
We have already encountered the physics of quantum gravity at a scale Mp ~ 101
GeV. Do not have a complete theory of quantum gravity, although it is likely that
the answer lies in string theory. We are not yet able to compute the mass of the
Higgs in a complete string theory, but the expectation is that string theory contains
heavy states whose masses are close to the Planck scale that would give corrections
to the Higgs mass.

It’s clear that this is a problem, but we can make it even more apparent. Even
new states coupling to the Higgs through loops of perturbative gravitons give a large
threshold correction. For example, imagine there is some massive Dirac fermion ¥
with mass my and it coupled to the Standard Model only gravitationally. Then

11



as long as we are at energies ¥ < Mp; we can compute loop diagrams including
gravitons. The correction to the Higgs mass in this case arises at two loops,

and gives a correction parametrically of order
mi  my
(1672)%2 M},
This correction is small because the graviton coupling to a massless, on-shell par-
ticle at zero momentum vanishes, and so the result is proportional to my.

om2 ~

However, we could also have a three-loop diagram where the graviton couples to
a loop of top quarks,

r N
The correction from this diagram is parametrically of the form

B (1672)3 M3,

and is much larger because now the gravitons are coupling to off-shell states.

12



2 2
If my ~ Mp, correction is ~ 166%(1247”232. Of course at this point we doubt the

validity of our gravity EFT, but this parametrically validates our naive expectation
from the cutoff argument, now with A ~ Mp;/1672. So even gravitational physics is
sufficient to feed through threshold corrections to the Higgs mass.

The conclusion is that if there are any other states out there, even ones that only
couple to the Higgs gravitationally, they give a threshold correction to the Higgs
mass that is proportional to the mass scale of the new states. We can see these
corrections in M S or any other scheme; they are physical threshold corrections and
have unambiguous value. The result using a hard cutoff was merely a placeholder
for threshold corrections, which we could only see in MS if we had actual physical
states in the theory.

2.2 The naturalness strategy

Now we can convert the UV sensitivity of the Higgs mass into a strategy for new
physics. We imagine that the Higgs mass is natural because the theory changes not
far from the weak scale. Even without specifying the details, we can first estimate
where the change must occur. Considering the “quadratic divergence”,

A2

1672

9 3
5m%1 = (—Gyf + 192 + 19/2 -+ 6)\) (27)
we imagine that the scale A is such that contributions from the cutoff are of the
natural size of the Higgs mass itself. If so, this implies A < 500 GeV. Higher cutoffs
imply contributions larger than the observed mass, and a correspondingly increased
tuning — for example, tuning at the percent level would correspond to a cutoff of 5

TeV.

This is a strategy for new physics, not a necessity. Nothing fails in the field theory
if the expectation is violated; it is simply difficult to understand from the perspective
of naturalness. Of course, one might wonder whether this strategy is justified — after
all, nature does not care much about our level of puzzlement.

It turns out that there are many instances of naturalness in nature, including
naturalness at the level of mass parameters. One of my favorite is the mass splitting
between the charged and neutral pions, which differ by about 5 MeV. These states
are all goldstones of the spontaneously broken chiral symmetries of QCD, and these

13



symmetry arguments lead one to expect the pions to be nearly degenerate. The
answer is that we have radiative corrections from the explicit breaking of chiral
symmetries by QED. The charge matrix for three flavors is

+2/3 0 0
0 -1/3 0
0 0 -1/3

This matrix breaks the chiral symmetry associated with the generators of the
charged pions and kaons (i.e., it only commutes with the generators associated with
the neutral pions — i.e., [Q, T ~ f(7*, K¥)). So the charged pions and kaons
can get a mass contribution from electromagnetic loops. If we compute the photon
loop that would give a mass correction, using a hard cutoff to estimate the threshold
correction we get

3e?

2 _ 5 2
167r2A =om (28)

_—— - - - - —_——————-

Given the size of the charged-neutral meson splittings, m?2. —mfro ~ (35.5MeV)?,
we expect the loop should be cut off around 850 MeV if electromagnetic loops ex-
plain the mass difference. In fact, the p meson enters at 770 MeV, which provides a
cutoff for the effective theory. Here the p meson is a proxy for compositeness, as it
is the first QCD bound state outside of the chiral lagrangian. Thus there is perfect
agreement between the size of the mass correction based on cutoff-based arguments
and the scale at which new physics enters.

Another beautiful example is the mass difference between the K9 and K2 states.
Computed in the effective theory at the scale of the kaons, the splitting is

Mg~ My _ Grlic o, p (29)
MK% 67T2 ¢

where fx = 114 MeV is the kaon decay constant and sin o = 0.22 is the Cabibbo
angle. Requiring this correction to be smaller than the measured value (M KO —

MK§)/MK2 = 7x 1071 gives A < 2 GeV. And lo, the charm quark enters with mass

14



m. ~ 1.2 GeV to modify the short-distance behavior of the theory by implementing
the GIM mechanism. Moreover, this is not merely rationalization; this was the ac-
tual argument used by Gaillard and Lee to compute the mass of the charm quark
before its discovery.

On the other hand, the cosmological constant is a tremendous failure of natu-
ralness. The observed value of the c.c. is on the order of (2.4 x 1072 eV)*. The
prediction obtained by simply computing vacuum loops up to a cutoff A is propor-
tional to A% itself. There is no apparent new physics at the eV scale related to cutting
off contributions to the vacuum, and even if these loops were cutoff not far above
the weak scale, there would be many orders of magnitude of unexplained hierarchy.

At this point, it’s helpful to summarize our understanding of the hierarchy prob-
lem diagrammatically:

THE HERARCHY PROBLEM

/ QUANTUM GRAVITY CUTOFF
HIGGS SECTOR CUTOFF ~—  amme

AN
UNINTERESTING
FLOWTOIR,

/ POSSIBLY W/ NEW

MASS THRESHOLDS

\|/

("UNIQUE VACUUM) ~_ STANDARD MODEL

ENERGY Mk IS NOT TECHNICALLY NATURAL = HIERARCHY PROBLEM

Figure 1: Cartoon of the hierarchy problem

Having this cartoon in hand will help us to evaluate possible solutions.

15



3 0Old Hierarchy Solutions

Inspecting the cartoon of the hierarchy problem, there are more or less three obvious
things to try, which we can illustrate with their own cartoons:

LOWERING THE ADDING A SCANNING
CUTOFF SYMMETRY VACUA

Ly

OO0 ©O 000

Figure 2: Ways to solve the hierarchy problem

3.1 Lowered cutoff

The first thing one is tempted to do when confronted by the hierarchy problem is to
erase the apparent hierarchy itself, bringing down the cutoff of the Higgs sector or the
entire Standard Model. Indeed, this was the nature of the first attempted solution to
the hierarchy problem, technicolor, which attempted to replicate the success of the
proton mass prediction by imagining that electroweak symmetry was broken by the
vacuum condensate of a strongly coupled group. The five-dimensional holographic
duals of technicolor are Randall-Sundrum models, specifically ones on a finite inter-
val with branes at either end. In these cases, the Higgs is not an elementary degree
of freedom, and the cutoff is provided by compositeness of the Higgs itself.

Alternately, we could imagine leaving the Higgs alone and lowering the scale of
quantum gravity, so that all field theoretic physics reaches an end at the cutoff. This

16



is the nature of solutions such as large extra dimensions.

The problem with pure lowered-cutoff solutions is that they generically do not
allow a small bare mass term for the Higgs. That is to say, the natural expectation
of the Higgs mass is of order

my = cA® 4+ dm3, (30)

As such, the cutoff of the theory must be close to the Higgs mass, rather than
parametrically separated. Such theories then predict a host of particles near in
mass to the Higgs, as well as a host of higher-dimensional operators suppressed by
a low cutoff. The nonobservation of new particles close in mass to the Higgs, as
well as strong bounds on dimension-6 operators, suggests that this mechanism is not
operative on its own. This brings us to...

3.2 Symmetries

The idea behind symmetry solutions is to enlarge the Standard Model so that the
Higgs mass becomes a technically natural parameter. What possible symmetries can
we use? Coleman-Mandula theorem constrains options in four dimensions:

The Coleman-Mandula theorem (1967): in a theory with non-trivial inter-
actions (scattering) in more than 141 dimensions, the only possible conserved quan-
tities that transform as tensors under the Lorentz group are the energy-momentum
vector P,, the generators of Lorentz transformations M, , and possible scalar sym-
metry charges Z; corresponding to internal symmetries, which commute with both P,
and M,,,. For theories with only massless particles, this can be extended to include
generators of conformal transformations.

The Coleman-Mandula theorem can be generalized to include spinorial symmetry
charges, giving rise to supersymmetry. First identified by Golfand and Likhtman, the
full set of possible generalizations were identified by Haag, Sohnius, and Lopuszanski.

So possible options seem to be: Spinorial internal symmetry (supersymmetry);
scalar internal symmetry (global symmetry); and potentially conformal symmetry.

3.2.1 Supersymmetry

Here I will assume you have some familiarity with SUSY, and focus on the essential
aspects for the hierarchy problem. The idea is to extend Poincare algebra to include

17



conserved supercharges minimally four supercharges Qu, Q4 in four dimensions. As a
Weyl spinor, the transformation properties of (), with respect to the Poincare group
are known, namely

[Pquoc] = [P/qu] =0
(M, Qu] = i(0™)3Qs
M, Q%) = i(a")3Q°

We also need anticommutators {Q,Q} and {Q,Q} to close the algebra. The
only option is for {Q, @} to be proportional to P, ;, since this is the only conserved
operator with the appropriate index structure. The choice of normalization gives us

{Qa: Qp} = 2Pu(0") 05
Finally, the consistent choice for {Q,, @} is

{QOHQB} = {QO'MQB} =0
though of course nonzero values of the anti-commutator are possible given a larger
number of supercharges.

Fields will be arranged into supermultiplets, transforming as irreducible repre-
sentations of super-Poincare. For example, the chiral multiplet contains scalar and
fermion related by infinitesimal SUSY rotation,

O — o+ Y — P+ oY
where
0p = €%y, (31)
0y = —i(a”eT)a&,¢ (32)

where ¢, is a Grassmann variable that you can think of as an infinitestimal pa-
rameter multiplying a SUSY generator; it has mass dimension [¢] = —1/2.

We see clearly that supersymmetry relates a scalar to a fermion, and so relates a
scalar mass to a fermion mass protected by chiral symmetry. This already suggests
the sense in which supersymmetry will solve the hierarchy problem: by making the
mass of a scalar (the Higgs) proportional to that of a fermion (the appropriately
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defined superpartner thereof).
The salient properties of supermultiplets are straightforward to work out:

1. Computing the expectation value of the Witten index within a supermultiplet,
we have tr [(—l)Nf] =0 — npgp = npg, i.e., supermultiplets contain the same
number of bosonic and fermionic degrees of freedom.

2. From [P?,Q.] = [P?, Q4] = 0 we see that the components of a supermultiplet
all have the same mass.

3. There is at most one U(1) global symmetry that does not commute with the
supercharges, . )
[R7 Qa] = _Qa [Ra QO&} = Qd (33)
which implies that components of a supermultiplet have the same gauge and
global quantum numbers apart from their U(1)g charges.

The supersymmetric extension of the Standard Model is fairly straightforward,
entailing the incorporation of all Standard Model fields into corresponding supermul-
tiplets, with the addition of a second Higgs multiplet. This is necessary on account
of both anomalies and holomorphy.

’ Names ‘ spin 0 ‘ spin 1/2 ‘ SU@3)¢c, SU2), U()y ‘
squarks, quarks | @ | (ur dp) | (up dr) (3,2, %)
(x3 families) u U ul, (3,1, -2)
d dy, db, (3,1, 1)
sleptons, leptons | L (v er) (v er) (1,2, —3)
(x3 families) | & e el (1,1, 1)
Higgs, higgsinos | H, | (H} HY) | (H} HY) (1,2, +3)
He| () Hp) | (O )| (12, -D)
’ Names ‘ spin 1/2 ‘ spin 1 ‘ SU@3)c, SU2)L, U(l)y ‘
gluino, gluon g g (8,1,0)
winos, W bosons | W+ WO | W+ W?° (1,3,0)
bino, B boson B B (1,1,0)
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Of course, supersymmetry cannot be an exact symmetry of nature, otherwise we
would have seen selectrons degenerate with electrons. So in general we must include
soft terms, which can be worked out using the appropriate generalization of spurion
techniques to superfields; in the case of the MSSM these take the form

. .
Lo = =3 <Msgg + MyWW + M, BB + h.c.)

— <ﬁan @Hu — ;lad @Hd —gae ZHd + C.C.)

- -~ o~ ~ o~ ~ ~ ~t -
—Q'm3 Q- miL—um2% —dmid —em2e
—m3y HiH, —mZ HiHy — (bH,Hy + c.c.) . (34)

It is straightforward to check that when supersymmetry is broken by these di-
mensionful soft terms, corrections due to breaking are proportional to these terms.

Now the Higgs mass is calculable by the introduction of supersymmetry. There
are lots of ways to see it, but perhaps the simplest is constructive: we know parti-
cle content of MSSM, and can again work from an effective field theory perspective
where we allow unknown new physics at a cutoff scale A. We assume new physics at
the cutoff respects the symmetry, and then can compute loops up to cutoff as way
of parameterizing our ignorance.

Relative to SM, there are now cancellations between loops of opposite statistics,
e.g. top-stop loop

P .

4 N

I 6y7 o)
- — _ - A2
\ + 1672 4

Figure 3: Quadratic divergence cancellation in the top sector of the MSSM.

Carrying out the calculation, we find

6y 612 3y?
omy; = — 167;2 A? + 16;2 A — 47Tt2 mZIn (A/m;) + ... (35)
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The quadratic pieces cancel. There is no longer UV sensitivity! The key assump-
tion is that A is same for both loops, true for UV physics respecting supersymmetry.
Obviously if supersymmetry were broken by a large amount in another sector, this
would spoil the cancellation. In addition to the elimination of UV sensitivity, we are
left only with physical threshold corrections (which we can compute in any scheme)
from hew heavy states. At most there is logarithmic sensitivity to the cutoff A, and
even this can be fixed by writing down explicit theory to break SUSY.

Now that mass is finite, can use naturalness argument to determine where the
new particles should enter. Now we see the hierarchy problem very explicitly. We
have rendered the Higgs mass calculable; now depends on masses of new partner
particles, which cannot be too large without increasing fine-tuning.

There are two direct sources of concern, corresponding to tree-level contributions
and loop-level contributions. Both play a role primarily through the relation between
the weak scale and soft parameters, viz.

mpy = —2(mj, + |ul*) + ... (36)
Then corrections to Higgs mass come from three places:

e The first is the tree-level potential, which involves certain combinations of soft
masses that set the weak scale vev. At tree-level the naturalness of the weak
scale implies something about the soft parameters ml%[u and p, which itself
controls the higgsino masses. Higgsinos should be light! Naturalness suggests
i1 < 200 GeV and correspondingly light Higgsinos.

e The second is immediate loop-level corrections. The soft mass parameter m7;
accumulates one-loop corrections from other soft parameters. By far the largest
is due to the stops, since the top chiral superfields couple most strongly to H,,
with correction of order

32
om3; = —4—7:2mt2 In (A/my) (37)
Naturalness requires stops ~ 400 GeV with a cutoff A ~ 10 TeV. Other parti-
cles are also tied to naturalness, though less directly. After the SM top loop,
the gauge and Higgs loops drive the mass corrections, so unsurprisingly the
wino and higgsino corrections play a role, with

2

39
5m§{u = —@( 125, + m%)ln (A/my) (38)
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Having already bounded Higgsinos, for winos this translates to m;; < TeV.
Note that sbottoms need not be directly connected to naturalness, but since the
left-handed sbottom gauge eigenstate transforms in the same SU(2) multiplet
as the left-handed stop gauge eigenstate, at least one shottom is typically found
in the same mass range as the stops.

e The third is two-loop corrections, due to the naturalness of other sparticles.
The stop mass is corrected by the gluino mass due to the size of g3, so it is
hard to separate the gluino substantially from the stops, with

2

295
om? = 5 m?21n (A/mg) (39)

which ties my; < 2m;. Indeed, these corrections typically tie the masses of
the gluino and all squark flavors quite tightly given even a modest amount of
running.

The problem, of course, is that we have yet to observe any evidence for super-
symmetry, with bounds exceeding the TeV scale. The implication is that tuning is
approaching the percent level in supersymmetric scenarios.

3.2.2 Global symmetry

Let’s now turn to the alternate symmetry possibility. The general idea is that the
Higgs will be a (pseudo-) goldstone boson of a spontaneously broken global symme-
try, which will render the Higgs mass technically natural.

While there are many possible global symmetry structures that lead to the Stan-
dard Model at low energies, for simplicity we will focus on some simple examples. To
begin with, consider an SU(N) global symmetry, spontaneously broken by the vac-
uum expectation value of a fundamental scalar ¢. This breaks SU(N) — SU(N —1),
and the usual counting of goldstones gives us

[N> 1] —[(N—-1?-1]=2N -1 (40)

goldstones. It’s convenient to organize these 2N — 1 real degrees of freedom into
N — 1 complex scalars mq, ..., 7ny_1 plus one real scalar my. To study the low energy
theory of the goldstones well below the scale of spontaneous symmetry breaking, we
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can expand ¢ in terms of the goldstones via
T 0
6= oxp |- : | =g, (41)
f TN-1 0
T T | To/V2 f

In this basis, the SU(N) generators corresponding to the unbroken SU(N — 1) take

the form
([ Uyx_y O

and it is relatively straightforward to check explicitly the transformation properties
of the goldstones under the unbroken SU(N — 1). In particular, a transformation
involving the unbroken generators acting on ¢ amounts to

¢ = Un_1¢ = (UN—lem/fU]TV_l)UN—l% = 6%(UN_1WU]TV‘1)¢0 (43)

from which we see the goldstones transform as

i T UN—lﬁ
- Uv_y | — Ul _, = 44
(WT 7r0/\/§> N 1(7TT 7To/\/§) N-1 (ﬁ’TU]TV_IWO/\/E) (44)

This is just the familiar result that the goldstones transform in the fundamental
representation of the unbroken symmetry.

The transformation of the goldstones under the broken generators is far more
complicated, but for infinitesimal transformations has the leading form

T—T—a+... (45)

which manifests the shift symmetry of the goldstones under the broken generators.

This is just the familiar shift symmetry of goldstone bosons, which forbids non-
derivatively-coupled interactions.

So much for generalities. If we would like to see how a spontaneously broken global
symmetry might protect the Higgs, it suffices to consider the simple toy model of
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SU(3) — SU(2). In this case the goldstones arrange themselves naturally into the
form

—n/2 0 |H
— 0  —n/2| H (46)
Hy  H; |7

where the H; arrange themselves naturally to form a doublet of the unbroken SU(2).

If H is indeed a goldstone, it naturally inherits a series of irrelevant interactions
as an expansion in f, namely

HYH|0,H|?
f2

Among other things, this immediately implies that this goldstone Higgs will
have coupling deviations relative to the Standard Model, encoded by the higher-
dimensional operators and unavoidable if the Higgs is a goldstone. These terms also
point to the cutoff of our goldstone EFT. The loop expansion parameter in this
theory is of the form %lé%, so that a well-defined loop expansion implies a cutoff
A < 4nf. Physics at A could be strongly coupled, as in Composite Higgs models, or
weakly coupled, as in SUSY UV completions of a linear sigma model.

210,00l = |9, H|* + (47)

Of course, our discussion thus far has been a little trivial, since it neglects inter-
actions. Consider the consequences of turning on the top yukawa coupling, which
takes the form

LD -MtLHQ; (48)

where H = (iooH)' and Q3 = (t,b.). This represents an explicit breaking of the
global symmetry, and correspondingly gives rise to the usual quadratic divergence in
the mass of the H. This is not surprising: the yukawas and gauge couplings of the
Standard Model all violate the SU(3) symmetry, and so the global symmetry offers
no protection to UV physics entering through SM couplings.

Of course, this does not mean that all is lost. The global symmetry does ex-
plain why the Higgs mass is not of order m? ~ A?. Assuming that Standard Model
couplings are the only things that explicitly violate the global symmetry, then our
notion of technical naturalness dictates that contributions to the Higgs mass coming
through other Standard Model fields arise at loop level, rather than tree level. And,
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to a certain extent, some radiative contributions are unavoidable. After all, if the
goldstone Higgs is to break electroweak symmetry, it must accumulate some quartic
and quadratic terms.

However, given the lightness of the Higgs mass this is somewhat unsatisfying, as
we have seen no evidence for the existence of new states beneath a TeV consistent
with the requisite low cutoff. As such, it’s compelling to extend the Standard Model
to make the SU(3) a good global symmetry, at least of the largest couplings. At the
level of the top yukawa, this can be accomplished by extending the SU(2) doublet
quark Qs into a triplet of a global SU(3) via Q3 — Qs = (02Qs, T1) (see, e.g. [3]).
In order to marry up all degrees of freedom appropriately, we can also extend the
SU(2)-singlet quark tg via ty — tp + Tr. Now the top Yukawa can originate from
an SU(3) symmetric coupling in the UV of the form

LD —(Mih + XTH e Qs + hc. (49)

After ¢ acquires a vacuum expectation value, this leads to goldstone couplings of the
form

~ A
L= —f(Mth + \THT, — Mt HQs + i(HTH)t}TL +hoe + ... (50)

where the first term represents an explicit soft breaking of the global symmetry con-
sistent with our choice of vacuum alignment. This means the Higgs can acquire
radiative corrections proportional to this soft breaking, much as in supersymmetric
theories.

The approximate mass eigenstates are 717, ¢y, and the linear combinations

~ otp — MTR

tr 51
VA2 + A3 (51
T, = Mtat AeTr (52)

VA2 4+ A3

In terms of the approximate mass eigenstates, we see the emergence of what we
recognize as the usual top yukawa coupling, as well as an additional yukawa involving
the new singlet fermions and irrelevant operators dictated by the vacuum manifold.
These take the form
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- - 22
L=-MLHQs — M TLHQs + m—l(HTH)T;TL +he +... (53)
T

where mr = /A + A\3f and the yukawa couplings are related to the original
interactions by

A
o= 22 (54)
VA4 A3
)\2
Ap = ——L— (55)

VA4 A3

which satisfy A3 = A\?+ \2.. Having promoted the top yukawa to an SU(3)-symmetric
form, we know that the goldstone Higgs will be protected from radiative corrections
through the top yukawa. But the explicit cancellation mechanism is a bit amusing: it
amounts to a cancellation between the normal corrections coming from the yukawas,
and the irrelevant interaction enforced by the goldstone nature of the Higgs:

- -
- -~
-

1672 1672 1672

Figure 4: Quadratic divergence cancellation in the global symmetry case with light
top partners.

Again the UV sensitivity is removed, and replaced with finite corrections propor-
tional to the masses of the new states that restore the SU(3) symmetry, exactly in
analogy with SUSY. Of course, the non-observation of new physics then puts these
models on the same footing as supersymmetry in terms of fine-tuning.

3.3 Vacuum selection

A final possibility is that nothing protects the Higgs mass, but rather there are many
vacua of the Standard Model over which the Higgs mass varies according to some
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statistical distribution. If there is then a mechanism for selecting from the tail of
the distribution with smaller Higgs masses, one has an explanation for the observed
Higgs mass that does not rely on symmetries or a low cutoff.

For example, you can imagine an anthropic pressure fixing the weak scale in a
universe where the dimensionful parameters of the Standard Model (i.e., the Higgs
mass, or equivalently the vacuum expectation value) vary, but the dimensionless
quantities are held fixed. In this case, v is bounded from above to be near its ob-
served value by an argument known as the Atomic Principle [4].

Recall that for v = wvg), the lightest baryons are the proton and neutron, of
which the proton is lighter because the splitting due to quark masses exceeds the
electromagnetic energy splitting:

my, —m, = (3v/vey — 1.7) MeV
So free neutrons decay into protons, with a reaction energy
Q =my, —my —me = (2.5v/vgyr — 1.7) MeV

But in nuclei there is a binding energy that stabilizes the nuclei. The details are a
bit complicated. The long-range part of the nucleon-nucleon potential is due to single
pion exchange, with a range of ~ 1/m,.. For small u, d masses m, o< ((m,+myg) fx)"/?,

so (neglecting the weak dependence of Agep on v) we have m, ~ v'/2,

We can mock up the binding energy in deuterons, the most weakly bound system,
as a square well with a hard core to mimick short-range repulsion, which accounting
for the dependence of the potential on v via m, gives

By ~ [2.2 —55 <w)] MeV
Vsm

for small v — vg),.

Now we see that as we increase v, we will eventually reach the point where By < @)
and the neutron is no longer stabilized by nuclear binding energy. This occurs for

v/vsy 2 1.2

which is a tight bound, indeed! The deuteron is fairly important, since all primordial
and stellar nucleosynthesis begins with deuterium. But this is not an airtight bound,
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as nuclei could form in violent astrophysical processes. The binding energies for
heavier nuclei are larger, but for

v/vsy 25

typical nuclei no longer stabilize the neutron against decay.

Assuming that stable protons and complex atoms are required for observers to
form, this provides an anthropic pressure that favors v < wvgy,. But it is clear that
a robust constraint only exists if dimensionless couplings are held fixed; variation of
the yukawas allows these constraints to be naturally evaded.

Indeed, it is possible to imagine a “weak-less” universe where the gauge group of
the Standard Model is SU(3).x U(1) g, and fermions appear in vector-like represen-
tations. It has been argued that such a universe undergoes big-bang nucleosynthesis,
matter domination, structure formation, and star formation — i.e., sufficient stages of
development to produce some form of observers. Of course, truly demonstrating that
such a theory is capable of reproducing the physics necessary for forming observers
is beyond the scope of a handful of theorists, but suffices to indicate that anthropic
reasoning applied to the weak scale is sufficiently permeable.

4 New Hierarchy Solutions

4.1 Twin Higgs / Neutral naturalness

One interesting direction is to retain the symmetry-based approach but expand the
scope of possible symmetries. The natural possibility is to work with discrete sym-
metries, rather than continuous ones. The idea is that the new particles required by
a discrete symmetry need not carry the same Standard Model quantum numbers,
and so are less strongly constrained by data from the LHC.

There are by now many different examples of neutral naturalness, but the sim-
plest is the original: the Twin Higgs [5]. The idea is to introduce a mirror copy of
the Standard Model along with a Z, symmetry exchanging each field with its mirror
counterpart. On top of this, one needs to assume an approximate global symmetry
in the Higgs sector, which may be U(4) or O(8) depending on one’s level of ambi-
tion. This global symmetry need not be exact, and is violated by all SM yukawa
and gauge couplings, but should be an approximate symmetry of the Higgs potential.
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For simplicity, we will consider the perturbative case where it suffices to work
in terms of a U(4) ~ SU(4) x U(1) approximate global symmetry, gauged by the
Standard Model and twin electroweak interactions (i.e., gauging the SU(2) x SU(2) x
U(1) subgroup of SU(4) and the additional U(1)). We can assemble the Higgs
doublets H4 and Hp into a fundamental of SU(4),

H= ( g;) (56)

and, under the assumption that the Higgs sector potential is approximately SU(4)
symmetric, write down a potential of the form

V(H) =m*H'H + \(H'H)? (57)
For m? < 0, H acquires a vev and the SU(4) x U(1) is spontaneously broken to
SU(3) x U(1), yielding seven goldstones. Depending on the vacuum alignment, all
goldstones will be eaten, but it’s also possible to align the vev entirely in the A
sector or B sector by judicious adjustment of the potential. This adjustment is ac-
complished by terms that softly break the U(4), and so ultimately will induce finite
corrections to the goldstone mass through radiative corrections.

This theory accumulates radiative corrections from the usual couplings, for ex-
ample top yukawas of the form

AaHAQats + ApHpQptp (58)
This gives the usual quadratic divergence,

6
om? = — o3 A (N4[Hal” + N5 |HB|?) (59)

but the Zs symmetry enforces Ay = Ag = A, so that

62
om? = —167T2A2 (|Hal* + |Hg|?) (60)

Now we can see the magic of the discrete symmetry. At the level of mass terms, the
quadratic divergences respect the U(4) symmetry. Thus the goldstones of the spon-
taneous breaking of the U(4) symmetry will be protected against UV contributions.
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We could continue to study the linear model (see, e.g., [6]), but it’s convenient to
focus on the low-energy theory of the goldstones [7]. In the limit where the vacuum
expectation value lies entirely in the B sector, in B-sector unitary gauge we have

hy 0
o HA o Z hQ 0 . z7r/f
H—(HB>—eXp 7 0 o | =¢ H, (61)
h; hy 0] 0 f

Expanding out the exponential, we then get (up to a phase on h)

h—4_ sin (—m>

Vhih f
H= 0 (62)
f cos (—}}Th>

where h = (hy, ho)” Then we can immediately expand out H4 and Hp in terms of
the goldstone modes, obtaining

Hy—h—t sin(\/W):h—i-... (63)

f

HB:(fcosE@>>:(f—%%+...) (64)

The goldstones inherit Yukawa couplings (which break the U(4))

T
)\AHAQAtA + )\BHBQBtB — )\AhQAtA + /\B (f — };—fh> QBtB + ... (65)
and now we can see in detail the cancellation of quadratic divergences, in exact
analogy with the case of a continuous global symmetry: As in our other symmetry
examples, the UV sensitivity is replaced by finite corrections coming from the mass
of the SM-enutral top partners, which violate the accidental U(4) through the soft
breaking terms in the potential.

But in contrast to older continuous symmetry approaches, now there are no direct
constraints on the partner particles. There is still v/f tuning and Higgs coupling
deviations, so the scenario is bounded, but limits are at the 10% level and unlikely
to improve significantly during the remainder of the LHC era.
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Figure 5: Quadratic divergence cancellation in the discrete global symmetry case.

There are various generalizations of this idea. Omne can trivially construct Zy
models, which generalize naturally to multiple sectors. Alternately, one can construct
“fraternal” models where the Z, symmetry is only a good symmetry for the states
most relevant to the Higgs potential [6]. One can also construct more elaborate
symmetry structures using orbifold projections [8]. The signatures are rich and
interesting and worth looking for enthusiastically in the remaining lifetime of the

LHC.

4.2 Relaxion

In some sense, neutral naturalness is the most conservative “new” idea, retaining an
old mechanism (symmetry protection) and pushing the specific realization in a new
direction. But an even more exciting thing about the modern era is that we are now
beginning to see radically new ideas that don’t fit into traditional paradigms. The
most exciting recent ideas involve dynamics to select the Higgs mass from a range of
values consistent with a cutoff well above the weak scale.

4.2.1 QCD/QCD’ Relaxion

The simplest and original incarnation [9] is that of a QCD axion-like particle ¢ cou-
pled to the Standard Model, with an additional inflationary sector whose properties
will turn out to be somewhat special. Here we emphasize axion-like because the
axion-like field will not be manifestly compact, but rather possess only a shift sym-
metry. This shift symmetry will be broken by a small, dimensionful coupling to the
Higgs. We will circle back to these features, and their potential relation to technical
naturalness arguments, towards the end.

We envision enlarging the Standard Model with the following terms:

(b v
Som2 7O Cu (66)

0L = (—M?*+ gd)|H|* + V(g¢) +
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where M is of the order of the cutoff of the SM Higgs sector, H is the Higgs doublet,
g is the dimensionful coupling that breaks the shift symmetry, and

V(gop) ~ gM*¢p+ g°¢* + ...

parameterizes the non-derivative terms solely involving ¢. We will be interested in
field values of ¢ that greatly exceed f, so we should understand it as a non-compact
field. Now clearly when g/M — 0 the Lagrangian has a shift symmetry ¢ — ¢+ 27 f,
and g can be treated as a spurion for breaking of the shift symmetry.

Below the QCD confinement scale, the coupling between ¢ and the gluon field
strength gives rise to the familiar periodic axion potential
1 ¢

3275 70" G = N cos(6/) (67)

For values of the Higgs vev near the Standard Model value, the height of the cosine
potential is
At~ frmE ~ oy f? (68)

where m2 changes linearly with the quark masses, and so the barrier height is lin-
early proportional to the Higgs vev (at least roughly speaking; there are of course
logarithmic corrections from the contributions to QCD running).

Now the idea is clear: starting at values of ¢ such that the total Higgs mass is
large and positive, and assuming the slope of the ¢ potential causes it to evolve in
a direction that lowers the Higgs mass, the ¢ potential will initially be completely
dominated by the g¢ potential terms, until the point at which the total Higgs mass-
squared goes from positive to negative and the Higgs acquires a vacuum expectation
value. At this point the wiggles due to the quark masses grow linearly in the Higgs
vev, and generically ¢ will stop when the slope of the QCD-induced wiggles matches
the slope of V(¢). This classical stopping point occurs for

_yfy

MEf (69)

9

This allows for a light Higgs (i.e., a small total Higgs mass-squared and small elec-
troweak scale) relative to a cutoff M provided g/M < 1. For example, with a QCD
axion decay constant f = 10° GeV and M ~ 107 GeV we have g/M ~ 107%.
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So far we have only accounted for the parametrics of the potential, neglecting
the actual dynamical process. In the minimal realization of the relaxion mechanism,
¢ is made to roll slowly by imagining that its evolution occurs during a period of
inflation, such that Hubble friction provides efficient dissipation of kinetic energy in ¢.

Now there are various considerations that must be taken into account. They are:

1. In order to sensibly yield a Higgs mass much smaller than the cutoff, ¢ must
scan over a sufficiently large range such that m?% varies from O(M?) to O(0).
Thus the field range of interest is A¢ ~ M?/g. Inflation must endure for the
entirety of this scanning. During N e-folds of inflation, the field rolls by an
amount

A¢p ~ N$/H ~ NV, /H* ~ NgM*/H? (70)

where the first expression just relates the displacement to the velocity of the
slow-rolling field and the duration of inflation, the second uses slow-roll condi-
tions for ¢, and the third uses the leading form of V},. Requiring that this cover
a change of order M?/g implies the number of e-folds of inflation is at least

H2
2 — (71)
g
2. The scanning of ¢ results in a change in vacuum energy of order M*. We require
the vacuum energy during inflation to exceed this change so that the dynamics
is dominated by inflation throughout the evolution of ¢. This amounts to
requiring
M2

H>— 72
Mpy (72)

3. During the inflationary epoch, the evolution of ¢ involves both classical rolling
and quantum fluctuations. If this were not the case, different patches of the
universe could end up in different electroweak vacua. Classical rolling beats
quantum fluctuations.

!/

1%
H < #; = H < (gM?)'/? (73)
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4. Finally, it should be the case that the barriers from QCD are higher than
the Hubble scale during inflation, so that the barriers are sufficient to stop
scanning. This amounts to

H < AQCD (74)
which in general is superseded by the previous requirement.

Putting everything together, we can see that the cutoff of the theory is at most

A4 3 1/6 10° 1/6
M < (sz) ~ 107 GeV x <OTGGV> (75)

It is worth pausing to work out the numerical consequences. Maximizing the
cutoff, we have g ~ 10723 GeV, so H < 1 MeV, N = 10%°, and the field range is
A¢p = 10*" GeV. While the first two problems are aesthetic in nature, the third is
more severe. It requires the relaxion potential to be valid over field ranges vastly
in excess of the Planck scale. In general it is difficult to protect a potential over
trans-Planckian field ranges, and — as we will discuss more shortly — particularly so
in this case.

Unfortunately, even if all of these criteria are satisfied, there is an observational
problem with this simplest scenario. The field ¢ stops not at the minimum of the
QCD cosine potential (for which the effective § angle is zero), but is rather displaced
by an amount proportional to the slope of ¢. This amounts to # ~ 1, which is ex-
cluded by bounds on the neutron EDM that constrain # < 107!, So the mechanism
is ruled out by a natural prediction, though it is certainly no fault of the mechanism.

A simple solution is to repeat all of the same ingredients, but make the relaxion a
non-compact axion of another gauge group for which constraints on the 6 parameter
are weaker or nonexistent. This scenario should involve quarks of a new gauge group
that are also charged under the electroweak gauge group. For example, consider
adding vector-like lepton doublets L, L¢, N, N¢ with charges

Field | SU(3)xy SUB3)e SU(2), U(l)y
L O — O —1/2
Le O - O +1/2
N O — — +1
Ne [m] — — +1

This model is now subject to a variety of additional constraints, namely
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. The quarks of the new gauge group must get most of their mass from the Higgs:

LOmpLL +myNN¢+yHLNC 4+ o/ H L°N (76)

. The new gauge group must confine with light flavor,

A~ Am fimy (77)

. The natural size of the smallest mass from the see-saw (assuming a heavy L)
is

my > yy'v?/my (78)

. The see-saw mass is at least as large as the radiative Dirac mass

/

Y
my > 62 log(M/myp,) (79)

. The wiggles in the potential due to EWSB exceed the wiggles due to confine-
ment alone

my =gy fo/me (80)

Taken together, these bounds imply f» < v and

4o
" ) ™

That is to say, although the mechanism lives in a sector distinct from the Standard
Model, the scale of new physics still lies near the weak scale.

The details of the inflationary scenario are similar, though now the axion is not
a QCD axion so the constraints on the PQ scale are not as stringent. Taking it to
be of the same order a the cutoff, the cutoff in this case is pushed to

47 1/7
. o M
M <2 x 108GeV (30 Ge\/) (—f ) (82)
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Caveats At this point it is worth mentioning several caveats to these scenarios that
may compromise or spoil the mechanism. To be clear, the mechanism is brilliant,
and the problems are modest compared to the originality of the mechanism. In any
event, the first caveat relates to the cosmological constant. In symmetry solutions to
the hierarchy problem, one can effectively factorize the solution to the CC problem
from the solution to the hierarchy problem — because there is one value for the weak
scale, one tuning (or other mechanism) can then set the CC to the observed value.
In the relaxion scenario, the cosmological constant changes by large amounts from
minimum to minimum over which the changes to the Higgs mass are negligible. From
one minimum to another, we have A¢ ~ f and thus AV ~ gfM? ~ A%, while the
change in the Higgs mass-squared is infinitesimally small, Am?% ~ gf ~ A*/M?. So
while there are many vacua with Higgs masses-squared at the electroweak scale, the
changes in the cosmological constant from vacuum to vacuum are all vastly larger
than the observed cosmological constant.

From this it is tempting to argue that one needs enough vacua to scan the full
range of the CC for each viable electroweak minimum. This would require an even
larger tuning than one would require to tune the CC in a theory with a unique
electroweak vacuum. On the other hand, these arguments are not necessarily well-
defined.

The second issue relates to the technical naturalness of the scenario, or the lack
thereof. As constructed, ¢ possesses a non-compact shift symmetry. While the pa-
rameter g breaks the shift symmetry, when ¢ — 0 no compact global symmetry is
restored. Thus the theory does not satisfy the typical considerations of technical
naturalness.

Let’s pull this apart a bit more. If we have a theory with an exact global symmetry
that is spontaneously broken, then the effective action of the theory has a continuous
symmetry under which

¢ = d+af (83)
for any real a. But a subgroup of this is gauged, in the sense that
¢ — ¢+ 2rkf (84)

is a gauge symmetry for k € Z because ¢ is really an angle, and no local operator can
break the angular periodicity. In practice, in QCD this means that quark masses and
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anomaly couplings break the continuous shift symmetry but preserve the discrete one.

Concretely, one can think of a U(1) global symmetry spontaneously broken by
the vev of a complex scalar ®, expressed via a non-linear mapping ® — pe’®/f. This
parameterization has a clear invariance under ¢ — ¢+ 27k f in the sense that it maps
® back to itself. Explicit breaking of the symmetry in terms of operators involving
® will still have this invariance purely from the mapping between ® and ¢.

As far as the relaxion goes, the coupling g breaks both the global symmetry
and the gauge symmetry. If the relaxion were to be a genuine goldstone (or, more
restrictively, expressly the QCD axion), then the potential — and the Higgs mass
— would need to be a periodic in 27 f if it’s to come from a local QFT. Since the
theory requires a non-periodic field excursion of order ¢ ~ M?/g, this would imply
f > M?/g. This ultimately forces the cutoff of the theory to live down at the weak
scale, giving no parametric improvement [10].

Thus we are forced to conclude that the relaxion is not an axion, and the shift
symmetry does not arise from a compact global symmetry. So what if the relaxion is
not an axion? In this case, there is no compact global symmetry, and no mechanism
to protect the shift symmetry over field excursions beyond the Planck scale. One
expects quantum gravity effects to alter the picture significantly, preventing the large
field excursions required for the mechanism to operate. There have been attempts to
model-build a relaxion from multiple compact fields arranged to give larger effective
periods, but it is not obvious that these attempts are successful.

4.2.2 Interactive Relaxion

Given the challenges facing the original relaxion mechanism, it is worth asking if
there are other mechanisms that might work along similar lines. Indeed, there are
several, of which one is worth briefly sketching here. Whereas the initial realization
of the relaxion has an omnipresent source of dissipation and a potential that turns
on near m? = 0, this alternative has an omnipresent potential and a source of dissi-
pation that turns on near m?, = 0 [11].

The basic idea is to start with a relaxion of the familiar form, for an Abelian
Higgs toy model

oL = (—M2+g¢)|H|2+V(g¢)+A4COS£+£FF (85)

froaf

37



where the cosine potential is an axion potential generated from the confinement of
some non-SM gauge group — so that A is not related to the Higgs vev — and FF is
some abelian gauge group (we’ll get to the SM version momentarily). The coupling
between the relaxion and the U(1) gauge field will be a source of particle production,
which will provide dissipation.

The essential idea is for ¢ to start at some large field value, ¢ ~ M?/g with some
nonzero velocity, and from the direction in which the Higgs mass-squared is large and
negative. In this case, the abelian gauge group is Higgsed, with correspondingly large
masses. For qb > A2, ¢ then rolls down its potential without slowing on the cosine
bumps, such that the Higgs mass-squared decreases in magnitude. Eventually, the
vev becomes small enough that ¢ can dissipate kinetic energy through production of
gauge bosons.

For simplicity, we will consider the process at zero temperature. The equations
of motion for the transverse modes of the gauge field A — call them A4 — in unitary
gauge (9,A" = 0) are

Ay + (k%@i%) AL =0 (86)

Neglecting backreaction on ¢, and treating ng as constant, the solutions are

Ax(k) oc e+t (87)
i
wi:k2+m?417¢ (88)
There is a tachyonic growing mode for imaginary frequencies, corresponding to
2 2 2 kqb ] >
wi =k +mAiT<0:>|¢]N2fmA (89)

The tachyonically growing mode drains the kinetic energy of ¢ exponentially quickly,
as the growing mode backreacts on ¢.

Of course, for a fully accurate picture the analysis must be repeated at finite
temperature. While the qualitative picture persists, some subtleties arise, including
the fact that exponential growth only occurs for abelian gauge fields at finite tem-
perature.
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To implement this mechanism in the Standard Model, ¢ must couple to a linear
combination of electroweak gauge bosons, but cannot couple to pairs of photons. If
it coupled to pairs of photons, it could dissipate energy into photon pair production
irrespective of the value of the Higgs vev. Rather, we require it to dissipate energy
only to gauge fields acquiring mass through the Higgs mechanism. The natural
candidate is thus

LD ? (ayBB - CYQWW) (90)
where this linear combination contains all appropriate pairs of electroweak gauge
bosons except vy Such a coupling might look like a fine-tuning, but can be protected
in a UV model for the axion where the SM electroweak group is embedded in an
SU(2) x SU(2)gr gauge theory. In such a theory there is a PQ symmetry under
which

O — O+« (91)
(9L —)(QL—CL’ (92)
QR—)HR—I—Oé (93)

where 6, r are the 6§ angles of SU(2)., p respectively. This forces ¢ to couple to
WLWL — WRWR. The combination 7 is invariant under the PQ symmetry, and so
can only appear in the combination o (61, + 0g)77, i.e., cannot couple to ¢. In this
way we can forbid the v¥ coupling with symmetries.

There are various other subtleties in this scenario, too many to enumerate here,
but hopefully we have articulated the sense in which there are multiple possible
realizations of the essential relaxion mechanism.

4.3 NNaturalness

An alternative that proceeds from similar inspiration is to put many copies of the
Standard Model in the same universe, but explain why one copy acquires the domi-
nant energy density [12].

The idea is to envision N sectors which are mutually decoupled. For simplic-
ity, we could take it to be N copies of the Standard Model, though this is not an
important restriction. From copy to copy, we imagine the Higgs mass parameters
are distributed in some range from —AZ% to A% according to some probability dis-
tribution. For a wide range of distributions, the generic expectation is that some
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sectors have accidentally small Higgs masses, m% ~ A% /N. For large enough N,
this implies that there is a sector whose electroweak scale is well below the cutoff,
which we might identify with “our” Standard Model.

Reversing the argument, this implies that the cutoff of the theory should be

E.g. a cutoff of 10 TeV corresponds to N = 10%, whereas a cutoff of 10!° GeV re-
quires N = 10'6.

There is another factor in play when NN is large. While the naive scale of quantum
gravity is Mp;, in the presence of a large number of species the scale at which gravity
becomes strongly coupled is lowered,

A2G ~ MIZDI/N

You can think of this as just coming from wavefunction renormalization of the gravi-
ton by N fields whose contributions are dominated by the scale N. This implies the
effective Planck scale should be at least M3, ~ NAG?. Solving the entire hierarchy
problem this way would entail N = 1032, However, this lowers the cutoff of quantum
gravity to the weak scale, and gives us the usual problems associated with a low
cutoft.

But we would naturally have one sector with the observed value of the weak
scale and a Higgs cutoff associated with the cutoff of quantum gravity for N = 106,
for which Ay = Ag = 10'° GeV. Alternately, we could preserve a notion of grand
unification for N = 10*, for which quantum gravity grows strong at 106 GeV, and
something like supersymmetry enters at Ay = 10 TeV to cut off the Higgs sector.

The question, then, is to explain why this sector with “our” Standard Model
is populated, while all of the other sectors are not. As with the relaxion, this is
accomplished through cosmology. In a universe with many sectors, the universe is
populated by whatever sectors are abundant. If all sectors had a thermal abundance,
there would be an enormous contribution to the energy density of the universe, and
we would not have any ability to understand why we are the sector with the smallest
scales. Thus we can imagine a cosmological mechanism that preferentially reheats
sectors with smaller scales.
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The simplest way to accomplish this is to imagine an inflationary epoch, followed
by reheating due to the decay of some reheaton. To avoid tuning, this reheaton
should couple universally to all sectors. The Standard Model can be preferentially
reheated (i.e., absorb most of the energy from the reheaton decays) if the branching
ratio of the reheaton to each sector scales like an inverse power of the (absolute value
of the) Higgs mass-squared in each sector.

The simplest example is of a scalar ¢ with couplings
1
LD —ap) |H* = Sm*e’ (94)

The branching ratios of ¢ to each sector depend on its mass and whether or not
electroweak symmetry is broken in each sector (in general, it will be broken in half
and unbroken in the other half). If we imagine that mg < |mg| in all the sectors,
then we can work out the branching ratios by integrating out the Higgses and gauge
bosons (when massive) in each sector.
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Figure 6: Dominant decays when (H) # 0 (left) and (H) = 0 (right)

For sectors where electroweak symmetry is broken, the dominant decay is into
fermions, via

v
L D ay—5oqq° (95)
my,

whereas when electroweak symmetry is unbroken the dominant decay is into gauge
bosons, via
Lo ag—Qiqu i (96)
16m2m2, "~ "
Thus the decay rate into broken-phase sectors scales as 1/m?, while the decay into
unbroken-phase sectors scales as 1/m?;. Reheaton decays prefer a sector with broken

electroweak symmetry and the smallest possible value of my,.

The resulting energy density of each sector is proportional to the decay width,
Pi I
p’lLS N F’LLS

(97)
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This leads to some energy density in the sectors nearest to ours in mass, with
attendant predictions for dark radiation within the reach of future CMB experiments.

5 Rampant Speculation

5.1 UV/IR mixing

Let’s end with an excursion into radically different territory, which marks a sharp
departure from the types of solutions considered thus far. One way to frame the
hierarchy problem is as a separation of UV physics from IR physics in effective field
theory: the theory in the far UV knows nothing about the theory in the far IR.

From this perspective, one might hope to work around the hierarchy problem
by linking the far UV and the far IR. This would represent a sharp departure from
effective field theory, and the challenge is to make the departure well posed.

Thankfully, we have examples of UV /IR mixing. Perhaps the most famous is in
quantum gravity. We can imagine accelerating two protons to Planckian energies and
smashing them together to create Planck-length-sized black holes. You might then
hope to probe distances shorter than the Planck length by increasing the energy of
the two protons above the Planck energy. But when you do so, you create larger and
larger black holes. More energetic protons mean more massive black holes, which
have larger radii. Instead of probing shorter distances, you produce large black holes
which resolve only longer distances — exciting the theory in the UV really probes the
physics of the IR.

A more precise version of the same thing happens with T duality, which relates
string theories propagating on some circle of radius R and 1/R.

Of course, absent a complete theory of quantum gravity, it is difficult to under-
stand what bearing this might have on the hierarchy problem. So it is fruitful to look
into quantum field theories in which similar UV /IR mixing arises. Thankfully, we
have a well-posed example in the guise of quantum field theory on noncommutative
backgrounds [13].

The starting point is to imagine a nonvanishing commutator between coordinates
on R*,

[zh, 2] = 1"

42



where © is a constant, real, antisymmetric noncommutativity matrix. The algebra
of functions on this noncommutative space can be viewed as an algebra of ordi-
nary functions on the usual R* with the product deformed to the noncommutative,
associative star product,

i

(¢1 % ¢2) () = e2

So we are studying theories whose fields are functions on ordinary R* with ordinary
actions, except that products of fields are replaced by the star product.

OO By (y)ga(2) (98)

Yy=z=x

To see evidence for UV/IR mixing, it suffices to consider the appropriate gener-
alization of ¢* theory. This is a theory with a mass gap and quadratic divergences
in the commutative version. The non-commutative version is simply

5= [a (§<a¢>2 +imigt %wwww) (99)

where the star product in the quadratic pieces of the action reduces to the normal
commutative products up to total derivatives; only the interactions are modified.
This amounts to modifying the Feynman rules so that the interaction vertex has an
additional phase factor of the form

6_% Zi<j kixk;

where k; is the momentum flowing into the vertex through the ¢th field and the “cross
product” is

ki x k; = k;,©"k;,
This phase factor is invariant under cyclic permutations, but not arbitrary permu-
tations. In a Feynman diagram with fixed external legs, there are then “planar”
graphs, where propagators don’t cross on their way to external states, and “non-
planar” graphs where propagators cross.

At one loop, the two-point function receives corrections from one planar graph
and one non-planar graph:
The two diagrams give

A d*k 1
Planar ~ 3 / O me (100)
by d4/{2 eikxp
NOI] — planar ~ g / Wm (101)

(102)
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where the planar one is just the usual quadratically divergent graph, and the
non-planar one picks up a phase factor from the crossing of an internal line. To see
the effect of the phase factor, we can re-write the propagators in terms of Schwinger
parameters

]_ &0 2 2

_ —a(k*+m?)
Rirm? /0 dae (103)

to get gaussian integrals
A da —am?2
Planar ~ 152 | 22¢ (104)
A do 2

Non — planar ~ — oM PP/ 105
on — planar ~ o / ¢ (105)
(106)
where po g = —pu@qu,, has dimensions of 1/mass®. These integrals are divergent,

which we regulate by multiplying the integrand by a smooth cutoff e~/ (A%a)  Then
we find the graphs give the following contributions

Planar ~ = (A* — m?log(A%/m?) +...) (107)
T
A
Non — planar ~ 962 (A2 —mPlog(AZ;;/m®) +...) (108)
(109)
where
1

A= ——————
T 1/A2 £ pop
In this latter case, taking A — oo gives A.;; = . Taking p — 0 then gives

pop
Acsp — 00. That is to say, the non-planar diagram generates an IR divergence from

what we normally think of as a UV divergence.

Needless to say, this represents a striking breakdown of Wilsonian EFT, and
Wilsonian renormalization fails. But it provides a suggestive hint. A Wilsonian
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effective field theorist would see the existence of an IR divergence and interpret it as
a new light particle. In particular, the above IR divergence could be mimicked by
adding to the theory a new light field coupled to ¢,

_ (g (1 Ly 2 VA
55'_/dx (28X08X+2A (00 0x) —|—WX¢ (110)

The existence and lightness of the field x is inexplicable from the perspective of
Wilsonian EFT, but can be understood merely as an interpretation of the IR diver-
gences resulting from UV/IR mixing in the non-commutative theory.

Of course, this is a long way from solving the hierarchy problem. The field y
doesn’t look anything like a standard propagating degree of freedom in Lorentzian
signature. But it points to a qualitatively interest direction in which to probe the
hierarchy problem, one which is unlike any we have encountered before. If the hier-
archy problem is solved by radically new ideas in quantum field theory, I am willing
to bet that it will proceed somewhere along these lines of UV /IR mixing.

6 Conclusion

Thus we come to an end. Hopefully I have illustrated to you what the hierarchy
problem is, and what it is not. There are old solutions which are compelling but
in tension with data, and new solutions which are born of necessity and take us in
wildly new directions. Time considerations have prevented us from exploring the full
set of new directions, and some of my favorites which you may wish to investigate
further include approaches using conformal symmetry [14] and ones using disorder
[15].

If nothing else, hopefully is far from clear to you that we have systematically
studied all such solutions. Many new directions remain, some of which proceed
along avenues sketched here, and some which have yet to be imagined. Null results
in conventional channels free us to break new ground. This is where you come in!
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