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These lectures will study the classifying space BG of an algebraic group G, a
basic example in motivic homotopy theory. I will discuss how to compute the Chow
groups of algebraic cycles, a motivic analog of homology groups. The focus will be
on the Chow ring CH∗BG and more generally the equivariant Chow ring CH∗GX
for a smooth scheme X with an action of G. Two ways to look at this are:

(1) Sometimes the equivariant Chow ring CH∗GX and equivariant cohomology
H∗G(X,Z) can both be used for a geometric problem, and you can take your choice.
There may be technical advantages to CH∗GX.

(2) Sometimes the difference between CH∗GX and H∗G(X,Z) is interesting, as a
way to measure the difference between algebraic geometry and topology.

Some references on Chow groups are: W. Fulton, Intersection theory [4], the
main reference book; D. Eisenbud and J. Harris, 3264 and all that [2], a gentler
introduction; and the notes from Ravi Vakil’s course on Intersection Theory on the
web [10].

Some references on classifying spaces in algebraic geometry are Morel-Voevodsky’s
“A1-homotopy theory of schemes” [6], my paper “The Chow group of a classify-
ing space” [7], my book Group Cohomology and Algebraic Cycles [8], and Edidin-
Graham’s “Equivariant intersection theory” [1].



Chapter 1

Lecture 1

1.1 Quick introduction to classifying spaces in topology

Classifying spaces in topology go back to the birth of group cohomology in the
1940s (Eckmann, Eilenberg, MacLane, Steenrod). The classifying space (in the
sense we consider) was introduced into algebraic geometry by Morel-Voevodsky [6]
and Totaro [7].

In topology, for a topological group G (which could be a discrete group), the
classifying space BG means the quotient space EG/G, where EG is any contractible
space with a free G-action. Under weak point-set topological assumptions, there
always is such a space EG, and the homotopy type of BG is independent of the
choice of EG. By the fibration G → EG → BG, G is homotopy equivalent to the
loop space of BG:

ΩBG ' G.

The constructions X 7→ ΩX and G 7→ BG give equivalences between the homotopy
category of connected pointed topological spaces and the homotopy category of
topological groups (or, perhaps more naturally, topological monoids M with π0M
a group).

For example, when G is a discrete group, we can define group cohomology by
the confusing-looking definition:

H∗(G,Z) := H∗(BG,Z).

For a discrete group G, another name for BG is a K(G, 1) space.
A principal G-bundle over a topological space X is a space E with a free action

of G and an identification of E/G with X:

E −→
G
X.

One should also assume here that the map π : E → X is locally a product, in other
words that X is covered by open sets U for which π−1(U) ∼= G× U , with G acting
on G × U by left translation on the G factor. (Under weak point-set topological
assumptions, this local triviality is automatic.)

Example: For reasonable spaces X, there is an equivalence of categories (with all
morphisms taken to be isomorphisms) between the real vector bundles of rank n over
a space X and the principal GL(n,R)-bundles over X. (This helps to motivate the
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study of principal G-bundles.) In one direction: send a principal GL(n,R)-bundle
E → X to the rank-n vector bundle

(E ×Rn)/GL(n,R)→ E/GL(n,R) = X,

where GL(n,R) acts “diagonally” on E and on Rn.
Likewise, complex vector bundles of rank n are equivalent to principal GL(n,C)-

bundles. And principal G-bundles for a subgroup G of GL(n) correspond to vector
bundles with “extra structure”. For example, principal bundles for the unitary
group U(n) correspond to complex vector bundles of rank n with a hermitian metric.
In this example, the inclusion U(n)→ GL(n,C) is a homotopy equivalence, and so
complex vector bundles of rank n up to isomorphism can be identified with principal
U(n)-bundles up to isomorphism.

A strong motivation for studying classifying spaces in topology is that they
classify principal G-bundles. Namely, for any space X, let H1(X,G) be the set of
isomorphism classes of principal G-bundles over X. (This is not a group, unless G is
abelian, but only a pointed set. The base point of H1(X,G) is the trivial G-bundle
over X, G×X → X.) Then we have (for reasonable spaces X):

H1(X,G) ∼= [X,BG],

the set of (unbased) homotopy classes of continuous maps from X to BG. In one
direction: EG → BG is a principal G-bundle over BG, the “universal bundle”,
and any continuous map f : X → BG determines a principal G-bundle over X by
pulling back:

X ×BG EG //

G
��

EG

G
��

X // BG.

1.2 The classifying space in algebraic geometry

Let G be an affine group scheme of finite type over a field k. To explain some of
these words: an affine scheme of finite type over a field means a closed subscheme
of affine n-space An

k for some n ≥ 0. And the closed subschemes of An
k are in one-to-

one correspondence with the ideals in the polynomial ring k[x1, . . . , xn]. (The ring
of regular functions on An

k , O(An
k), means k[x1, . . . , xn].) Given some polynomials

f1, . . . , fr in k[x1, . . . , xn], our notation for a closed subscheme is

{f1 = 0, . . . , fr = 0} ⊂ An
k ,

meaning the scheme Spec k[x1, . . . , xn]/(f1, . . . , fr). We define a scheme X (such as
this one) as a topological space with a sheaf of commutative rings, called the sheaf
of regular functions OX . We use the Zariski topology, where the only open sets are
the complements of closed algebraic subsets.

A group scheme over a field k is a scheme G over k with morphisms G×kG→ G,
Spec k → G, and G → G (multiplication, identity, inverse) that satisfy the axioms
of a group.

Example 1.2.1. Every finite group G determines an affine group scheme of finite
type over k: just take the union of one copy of Spec k for each element of G. That is
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a group scheme of dimension zero. A basic example of a positive-dimensional group
is the group scheme GL(n) over k, the group of invertible n × n matrices. Some
other important examples of affine group schemes are SL(n) (the matrices with
determinant 1), O(n) (or more accurately O(q)), the subgroup of GL(n) preserving
a nondegenerate quadratic form q of dimension n over k, or Sp(2n), the subgroup
of GL(2n) preserving a nondegenerate alternating bilinear form. Some more exotic
examples are the exceptional groups: G2, F4, E6, E7, E8. Some simple examples are
the additive and multiplicative groups over k, Ga = A1

k and Gm = A1
k − 0.

In topology, BG is usually infinite-dimensional. For example, BS1 ' CP∞, and
so

H∗(BS1,Z) = Z[u]

with |u| = 2, which shows that there is no finite-dimensional model for BS1. (Equiv-
alently, S1 cannot act freely on a finite-dimensional contractible space; with more
care, you can show that every action of S1 on a finite-dimensional contractible space
has a fixed point.) Since algebraic varieties are finite-dimensional, it is not clear
how to construct classifying spaces in algebraic geomety.

The basic idea is that every affine group scheme G of finite type over a field k
has a finite-dimensional faithful representation V , G ↪→ GL(V ). Here G will act
freely on V outside some Zariski-closed subset S ⊂ V . Then we think of (V −S)/G
as a finite-dimensional approximation to BG. The key point is that we can find
representations V with the codimension of S in V as large as we like.

In Morel-Voevodsky’s motivic homotopy category over the field k, one can define

BG = colimcodim(S⊂V )→∞(V − S)/G.

This is independent of the choice of representations, up to A1-homotopy equivalence.
(One can arrange to have a sequence of morphisms between the quotient schemes
(V − S)/G.) Morel and Voevodsky call this the étale classifying space, BétG [6,
p. 130].

Example 1.2.2. Over any field k, let the multiplicative group Gm act on An+1
k by

t(x0, . . . , xn) = (tx0, . . . , txn).

Then
BGm = colimn(An+1 − 0)/Gm = colimn Pn.

Thus, informally speaking, BGm is P∞ over k.

When k is the complex numbers C, we have the complex realization functor from
the A1-homotopy category to the usual homotopy category, taking a scheme X over
C to its space X(C) of complex points with the classical topology. By construction,
the complex realization of BG is the topological classifying space B(G(C)). (The
assumption that codim(S ⊂ V ) → ∞ ensures that the open sets V − S get closer
and closer to being contractible.) In particular, the cohomology of the motivic
classifying space is the same as the cohomology of classifying spaces in topology.

But we have gained something by realizing the classifying space in algebraic
geometry. For example, the Chow ring CH∗BG is a new invariant of G (even when
G is just a finite group), with a homomorphism (when k = C)

CH∗BG→ H∗(BG,Z)

that is not always an isomorphism.
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1.3 Chow groups

We give here a quick introduction to Chow groups. In short, these are an analog
of homology groups for algebraic varieties, generated only by algebraic subvarieties.
In a sense, the difference between Chow groups and ordinary homology measures
the difference between algebraic geometry and topology.

Chow groups were defined by Francesco Severi in the 1930s. The main im-
provements to the construction were made by Wei-Liang Chow in the 1950s and by
William Fulton and Robert MacPherson in the 1970s. I will give very few details;
see the references at the start of this lecture.

Throughout, we fix a field k, and a scheme will mean a separated scheme of
finite type over k. (It would be fine to restrict to quasi-projective schemes over k.)
A variety means an integral separated scheme of finite type over k. (In particular,
a variety is irreducible, by this definition.)

Definition 1.3.1. The group Z∗X of algebraic cycles on a scheme X over k (as
above) is the free abelian group on the set of closed subvarieties of X. This is graded
by dimension, Z∗X = ⊕iZiX.

Definition 1.3.2. For a variety X over k, a divisor on X means an algebraic cycle
of codimension 1. That is, for n = dimX, a divisor is a formal finite sum

∑
aiDi

with ai integers and Di ⊂ X subvarieties of dimension n − 1. (Sometimes we
write brackets around subvarieties:

∑
ai[Di].) An irreducible divisor on X means

a subvariety of codimension 1.

Definition 1.3.3. For a rational function f on a variety X, not identically zero,
and an irreducible divisor D on X,

ordD(f)

denotes the order of vanishing of f along D, which is an integer (negative if f has
a pole along D). See Fulton or Eisenbud-Harris for details.

We write k(X) for the field of rational functions on a variety X. For a rational
function f ∈ k(X)∗, the divisor of f is

(f) :=
∑

ordD(f)[D],

where the sum runs over all codimension-1 subvarieties D of X. Here (f) is a finite
sum, as our definition of divisor requires. (That is, f only has zeros and poles on
finitely many codimension-1 subvarieties.)

Definition 1.3.4. Two i-cycles on a scheme X over k are said to be rationally
equivalent if their difference lies in the subgroup generated by all divisors (f) of all
rational functions f ∈ k(W )∗ for all (i+1)-dimensional subvarieties W of X. (Notice
that we can view (f) as an i-cycle on X, in this case.) The (i-dimensional) Chow
group CHiX is the abelian group of i-cycles on X modulo rational equivalence.

Thus, to find generators of Chow groups from the definition, it seems that you
would have to know all subvarieties of X. The relations are even more complicated.
This might make it seem that there is no hope of computing Chow groups. And
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indeed, the Chow groups are unknown for many varieties; they are far more mys-
terious than homology groups, in general. Fortunately, there are many varieties
for which we can compute Chow groups, and whenever we can do that, it says a
lot. Moreover, the formal properties of Chow groups are very good, which makes it
possible to pass information from one variety to another.

Example 1.3.5. For a scheme X of dimension n, CHiX is zero unless 0 ≤ i ≤ n.
(That should be clear from the definition.)

For a variety X of dimension n, CHnX ∼= Z, generated by the class [X]. (Again,
I hope this is clear from thinking through the definition: X is the only n-dimensional
subvariety of X, and there are no (n+ 1)-dimensional subvarieties.) Also, CHn−1X
is the divisor class group ClX, the group of divisors on X modulo linear equivalence
(that is, modulo divisors of rational functions on X).

For any scheme X, the Chow groups of X are the same as the Chow groups
of the underlying reduced scheme Xred ⊂ X, since the subvarieties of Xred are the
same as the subvarieties of X.

Some basic calculations, proved in the references: the Chow groups of affine
space An

k are

CHiA
n
k
∼=

{
Z if i = n

0 otherwise.

The Chow groups of projective space Pn
k are

CHiP
n
k
∼=

{
Z if 0 ≤ i ≤ n
0 otherwise.

For 0 ≤ i ≤ n, the ith Chow group of Pn is generated by the class of any i-
dimensional linear subspace over k, Pi

k ⊂ Pn
k .

.
For k = C, we have a natural homomorphism, the cycle map:

CHiX → HBM
2i (X,Z).

The groups on the right are the Borel-Moore homology groups, which depend only
on the space X(C) with the classical topology (unlike Chow groups). In short, these
are the homology of a locally compact space “relative to infinity”. So HBM

j (X,Z)
is the usual homology group Hj(X,Z) for X compact. More generally, for a closed
subset Y of a compact space X, the Borel-Moore homology of X −Y is the relative
homology of the pair (X,Y ):

HBM
j (X − Y,Z) ∼= Hj(X,Y ; Z).

Borel-Moore homology comes up because we are not assuming that X is proper
over C, i.e., that X(C) is compact in the classical topology. So closed subvarieties of
X also need not be compact. A noncompact manifold does not have a fundamental
class in ordinary homology, but it does in Borel-Moore homology. As a result,
Poincaré duality for noncompact manifolds is expressed in terms of Borel-Moore
homology: for an oriented real n-manifold X,

H i(X,Z) ∼= HBM
n−i (X,Z).
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Every complex manifold has a natural orientation (as a real manifold), which
explains why a smooth i-dimensional subvariety Y of a complex scheme X has a
class in HBM

2i (X,Z). Even if Y is singular, it has a fundamental class in HBM
2i (Y,Z)

and hence in HBM
2i (X,Z). In short, this is because the singular set of Y has complex

codimension at least 1, hence real codimension at least 2, which does not affect the
homology in the top dimension. Fulton shows that two rationally equivalent cycles
are homologous, and so we have the cycle map

CHiX → HBM
2i (X,Z).

Definition 1.3.6. For a smooth scheme X of dimension n over a field, we can also
number Chow groups by codimension:

CH iX := CHn−iX.

Thus, for X smooth over C, we can rewrite the cycle map (using Poincaré
duality) as

CH iX → H2i(X,Z).

(To remember the numbering: a subvariety of complex codimension i in X has
real codimension 2i.) To avoid confusion, use the notation CH iX only when X is
smooth over k.

For a smooth scheme X over a field k, the Chow groups (numbered by codimen-
sion) form a commutative graded ring:

CH iX × CHjX → CH i+jX.

In short, the product describes the intersection of algebraic cycles, although it
takes some effort to get the details right. For X smooth over C, the cycle map is
a ring homomorphism from CH∗X to H∗(X,Z). (Indeed, for cohomology classes
represented by submanifolds of X, the cup product also corresponds to intersecting
the submanifolds, when the intersection is transverse.)

For example, using that the intersection of two linear subspaces in Pn is a linear
subspace, the Chow ring of Pn (over any field k) is given by

CH∗Pn = Z[u]/(un+1).

Here u is the class of a hyperplane Pn−1 ⊂ Pn over k, and ui is the class of a linear
subspace of codimension i, for 0 ≤ i ≤ n.



Chapter 2

Lecture 2

Today, I will present some general constructions with Chow groups, and then start
studying the Chow ring of a classifying space BG.

2.1 Constructions with Chow groups

2.1.1 The class of a closed subscheme

Let X be a scheme over a field k (X is separated and of finite type over k, by
our conventions). Let Y ⊂ X be a closed subscheme of dimension r. (So Y might
have irreducible components of different dimensions, but the largest dimension is
r.) Then Y determines a well-defined cycle

[Y ] ∈ ZrX,

and hence an element of CHrX. The construction is: look at the r-dimensional
irreducible components of Y , say S1, . . . , Sr (and ignore any lower-dimensional com-
ponents of Y ). We will have

[Y ] =
∑
i

ai[Si] ∈ ZrX

for some positive integers ai. The problem is to define the number ai, called the
multiplicity of Y along Si.

The idea is to look at the local ring OX,Si . By definition, an element of OX,Si

is a regular function on some open subset of X that has nonempty intersection
with Si. (By the properties of the Zariski topology, an element of OX,Si restricts
to a regular function on most of Si, in fact on all of Si outside a lower-dimensional
subset.) Working with this ring is a way of ignoring anything that happens on
lower-dimensional subsets of Si (or anything away from Si).

The prime ideals in OX,Si are in one-to-one correspondence with the subvarieties
of X that contain Si. As a result, the dimension of the ring OX,Si (the maximum
length of chains of prime ideals) is

dimOX,Si = codim(Si ⊂ X).

Let IY be the ideal of the closed subscheme Y in OX,Si , that is, the ideal of functions
that vanish on Y near Si. Then

dimOX,Si/IY = 0,

9
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because Si and Y have the same dimension.

It follows that, as an OX,Si-module, OX,Si/IY is an extension of finitely many
copies of the residue field OX,Si/m = k(Si). We define the multiplicity ai of Si in Y
as the number of copies of OX,Si/m that occur in a composition series for OX,Si/IY .
(This is well-defined, by the Jordan-Hölder theorem.)

Example 2.1.1. For the closed subscheme Y = {x2y = 0} ⊂ A2
k, the associated

1-cycle on A2
k is

[Y ] = 2 · {x = 0}+ 1 · {y = 0}.

2.1.2 Chern classes

For an (algebraic) vector bundle E on a variety X of dimension n, we have its Chern
classes ciE in CHn−iX. I will concentrate on the case where X is smooth over k,
in which case ciE is in CH iX. These have the same geometric interpretations as
in topology: roughly speaking, ciE is the first obstruction for E to have n − i + 1
linearly independent sections. (See section 2.1.9 for an explicit definition of Chern
classes.) As in topology, we have c0E = 1 ∈ CH0X and ciE = 0 for i > rank(E).

Chern classes in the Chow ring have the same formal properties as in topology.
In particular, for an exact sequence

0→ A→ B → C → 0

of vector bundles on a smooth k-scheme X, the total Chern class c(B) = 1+c1(B)+
c2(B) + · · · in CH∗X satisfies

c(B) = c(A)c(C).

In topology, an exact sequence of vector bundles on a reasonable space always splits.
In algebraic geometry, that is not true, but we still have the formula above for Chern
classes.

Example 2.1.2. For a vector bundle E of rank r, the top Chern class crE in CHrX
is the class of the zero scheme of a global section s ∈ H0(X,E), if there is a section
whose zero set has codimension r. (That would always be true in topology, but not
always in algebraic geometry. The basic obstacle is that this construction always
gives a cycle with nonnegative coefficients, whereas in general, one may need a cycle
with negative coefficients to represent cr(E).)

For a line bundle L on a variety X, a variant of this definition always works.
Namely, let s be a rational section of L, not identically zero. (That is, s is a regular
section on some nonempty open subset of X; this clearly exists, because L is trivial
on some nonempty open subset of X.) Then we can define the first Chern class
of L as the class of the divisor (s) in CHn−1X. Here (s) measures the zeros and
poles of s, as in the definition of the divisor of a rational function. Note that (s)
is not necessarily linearly equivalent to zero, because L is locally trivial but not
necessarily globally trivial.

We can view the first Chern class on an n-dimensional variety X as a group
homomorphism

c1 : PicX → CHn−1X = ClX.
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Here the Picard group PicX is the abelian group of isomorphism classes of line
bundles on X, with the group operation being tensor product. If X is smooth over
k, then the first Chern class is in fact an isomorphism:

c1 : PicX
∼=−→ CH1X.

To go backwards from a divisor D on X to a line bundle, define a sheaf of OX -
modules O(D) by:

O(D)(U) = {f ∈ k(X) : (f) +D ≥ 0 on U}

for nonempty open subsets U ⊂ X. When X is smooth, the sheaf O(D) is a line
bundle, using that the local rings of X are unique factorization domains.

2.1.3 Proper pushforward

For a proper morphism f : X → Y of k-schemes, Fulton defines a homomorphism
called proper pushforward:

f∗ : CHiX → CHiY.

In short, for an i-dimensional subvariety S ⊂ X, let T be its image in Y . We define
f∗[S] = 0 if T has dimension less than i. Otherwise,

f∗[S] = deg(S → T )[T ].

Here the degree of a dominant morphism S → T of varieties of the same dimension
can be defined as the degree of the function field k(S) as an extension of k(T ). (This
agrees with the topological notion of degree when the base field is C.) A morphism
is dominant if the image is dense.

To see that we cannot expect a pushforward homomorphism on Chow groups
for a non-proper morphism, consider the inclusion of the affine line as an open
subscheme of the projective line, f : A1

k → P1
k. The only reasonable way to define

the pushforward of the point 0 ∈ A1 would be to set f∗[0] = [0]. But [0] is rationally
equivalent to zero on A1 (because it is the divisor of the rational function x ∈
O(A1) = k[x]), but [0] is not rationally equivalent to zero on P1

k. (In fact, [0] is a
generator of the group CH0(P1

k) ∼= Z.) So the pushforward homomorphism at the
level of cycles, f∗ : Z0A

1 → Z0P
1, does not pass to a well-defined homomorphism

CH0A
1 → CH0P

1. (We can view the function x as a rational function on P1, but it
vanishes at 0 and also has a pole at ∞; so it only shows that [0] = [∞] in CH0P

1
k.)

This is also to be expected from the properties of Borel-Moore homology groups.
The usual homology groups are functorial for all continuous maps, but Borel-Moore
homology groups only have a pushforward for proper morphisms (of locally compact
spaces).

2.1.4 Degree of a zero-cycle

Let X be a proper scheme over a field k. That is, we are given a proper morphism
X → Spec k. Applying proper pushforward gives a homomorphism called the degree:

deg : CH0X → CH0(Spec k) = Z.



12 CHAPTER 2. LECTURE 2

We can describe this homomorphism explicitly, from the definition from proper
pushforward. Namely, CH0X is generated by the zero-dimensional subvarieties of
X, or equivalently, the closed points in the scheme X. (A scheme is, in particular,
a topological space, and in general, not every point is closed.) Each closed point of
X is isomorphic to SpecE for some finite extension field E of k, and we have

deg(SpecE) = [E : k],

the degree of E over k (that is, the dimension of E as a k-vector space).
For example, let X be the projective line P1 over the real numbers R. Let x

be the coordinate function on the affine line A1
R ⊂ P1

R. Then, for example, x = 0
defines a closed point P of degree 1 in P1

R, while x2 +1 = 0 defines a closed point Q
of degree 2 (isomorphic to Spec R[x]/(x2+1) ∼= Spec C). For P1 over any field k, the
degree homomorphism deg : CH0(P1

k) → Z is an isomorphism, and so [Q] should
be linearly equivalent to 2[P ]. Sure enough, the divisor of the rational function
x2/(x2 + 1) is 2[P ]− [Q]. (Note that this function has neither a zero nor a pole at
the point ∞ = P1 −A1.)

2.1.5 Chow groups of a smooth projective curve

Let X be a smooth projective curve over a field k. For convenience, assume that X
has a k-rational point. Then CH0X ∼= Z, and so the only interesting Chow group
is CH1X ∼= PicX, the Chow group of zero-cycles. A central result of algebraic
geometry is the calculation:

0→ Jac(X)(k)→ CH1X → Z→ 0,

where CH1(X)→ Z is the degree of a zero-cycle. Here Jac(X) is the Jacobian of X,
an abelian variety of dimension equal to the genus g of X. (This is a commutative
group scheme over k, and we write Jac(X)(k) for its group of k-rational points.)

For k = C, we can identify the group of complex points of the Jacobian with the
torus (S1)2g. In particular, the sequence above shows that CH1X is an uncountable
abelian group for a curve of genus at least 1 over C. As a result, it is not clear what
it would even mean to compute the Chow groups of a complex variety in general.

2.1.6 Flat pullback and the localization sequence

A morphism of schemes, f : X → Y , is called flat if, on affine charts in X and Y ,
it corresponds to a flat ring homomorphism A → B, meaning that B is flat as an
A-module. Informally, the fibers of a flat morphism form a well-behaved “family”
of schemes; in particular, all the nonempty fibers have the same dimension (if Y is
connected).

For a flat morphism f : X → Y of relative dimension r, we have a pullback
homomorphism (flat pullback):

f∗ : CHiY → CHi+rX.

Like proper pushforward, this comes from an operation at the level of cycles.
Namely, for a subvariety S ⊂ Y , we define

f∗[S] = [f−1(S)],
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meaning the class of the closed subscheme f−1(S) ⊂ X. (This was one reason for
presenting the construction of the cycle associated to a closed subscheme.)

Example 2.1.3. For an open subscheme U ⊂ X, the inclusion f : U ↪→ X is flat
of relative dimension 0, and so we have a restriction homomorphism

f∗ : CH iX → CH iU.

Proper pushforward and flat pullback both appear in the localization sequence
for Chow groups, a key computational tool. Namely, for a closed subscheme Z of a
scheme X over k, we have an exact sequence:

CHiZ → CHiX → CHi(X − Z)→ 0.

The exactness on the right is a distinctive feature of Chow groups. Geometrically,
this happens because for any closed subvariety of X−Z, its closure in X is a closed
subvariety of X.

For k = C, the localization sequence for Chow groups maps to the localization
sequence for Borel-Moore homology, but note the differences:

· · · → HBM
2i+1(X − Z)→ HBM

2i Z → HBM
2i X → HBM

2i (X − Z)→ HBM
2i−1Z → · · · .

For example, the localization sequence for Chow groups implies that for any Zariski
open subset U of affine space An, we have CH iU = 0 for all i 6= 0, whereas (for
k = C) the cohomology of U can be big and complicated (depending on what you
remove from An).

A big difficulty with the localization sequence for Chow groups is that it says
nothing about the kernel of CHiZ → CHiX. That was a central motivation for the
extension of Chow groups to motivic cohomology (or “Borel-Moore motivic homol-
ogy”), by Bloch and Voevodsky. Namely, one can extend the localization sequence
to the left, but it involves these more general invariants, not just Chow groups.
Namely, motivic cohomology is a bigraded abelian group, H i(X,Z(j)), and Chow
groups (for a smooth k-scheme X) are the special case

CH iX = H2i(X,Z(i)).

For convenience, let us write out the localization sequence with cycles indexed
by codimension, when Z is a smooth codimension-r subscheme of a smooth scheme
X over k:

CH i−rZ → CH iX → CH i(X − Z)→ 0.

2.1.7 Homotopy invariance for Chow groups

Let f : X → Y be an Ar-bundle. By this, I mean that Y is covered by open
subsets U such that f−1(U) is isomorphic to U × Ar over U . (I am not assuming
anything about the structure group of this fibration; so this is more general than
the case of a vector bundle.) Then the pullback homomorphism on Chow groups is
an isomorphism:

f∗ : CHiY
∼=−→ CHi+rX.
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If Y is smooth over k, then we can write this more neatly as:

f∗ : CH iY
∼=−→ CH iX.

This is known as homotopy invariance for Chow groups.
Let L be a line bundle over a smooth scheme X over k. Algebraic geometers

traditionally view L as a sheaf of OX -modules, but we can also view it as a scheme
with a morphism L→ X (and fibers isomorphic to A1). Using homotopy invariance
for Chow groups plus the localization sequence, we can compute the Chow ring of
L minus the zero section (isomorphic to X):

CH∗(L−X) ∼= CH∗X/(c1L).

2.1.8 Pullback for smooth schemes

Let f : X → Y be any morphism of smooth schemes over k. Then there is a pullback
homomorphism

f∗ : CH iY → CH iX.

In fact, this is a homomorphism of graded rings from CH∗Y to CH∗X. It agrees
with flat pullback if f happens to be flat. In general, this is nontrivial to define, much
like the intersection product on Chow groups. In the special case of a subvariety
Z ⊂ Y whose inverse image f−1(Z) ⊂ X has the same codimension, we can say
that

f∗[Z] = [f−1(Z)],

the class of the subscheme f−1(Z) in CH∗X.
As you might expect, for smooth schemes over C, the pullback on Chow rings

is compatible with the pullback on cohomology:

CH iY //

��

CH iX

��

H2i(Y,Z) // H2i(X,Z).

2.1.9 Projective bundle theorem

Generalizing the calculation of the Chow groups of projective space, we describe
here the Chow groups of a projective bundle. To simplify the statement, we assume
that the base space is smooth, although that is not necessary.

Namely, let E be a vector bundle of rank r on a smooth k-scheme X. Following
Fulton’s notation (not Grothendieck’s), let π : P (E)→ X be the associated projec-
tive bundle, the space of lines in the fibers of E. (Thus π is a Pr−1-bundle.) There
is a natural line bundle O(−1) on P (E) whose fiber at a point is the corresponding
line in E. Thus we have an exact sequence of vector bundles on P (E),

0→ O(−1)→ π∗E → Q→ 0,

where Q has rank r − 1. Let v = c1O(−1).

Theorem 2.1.4. The Chow ring CH∗P (E) is a free module over CH∗X with basis
1, v, . . . , vr−1.
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It follows that vr ∈ CHrP (E) must be some linear combination of 1, v, . . . , vr−1

with coefficients in CH∗X. In fact, the coefficients are exactly the Chern classes of
X, up to sign. This is Grothendieck’s way of defining the Chern classes of E. It
works in topology as well. Namely, we have:

cr(E)− vcr−1(E) + · · ·+ (−v)r−1c1(E) + (−v)r = 0

in CH∗P (E).

2.2 The Chow ring of a classifying space

Definition 2.2.1. Let G be an affine group scheme of finite type over a field k. For
i ≥ 0, we can define CH iBG as follows. Let V be a finite-dimensional representation
of G over k, and view V as a scheme (namely, affine space of some dimension over
k). Let S be a closed G-invariant subset of V . If S has codimension greater than i
in V , then we define

CH iBG = CH i((V − S)/G).

We will show that this is independent of the choice of V and S. First note that
we can find pairs (V, S) as above with the codimension of S in V as large as we
like. Namely, use the fact that G has a faithful representation W over k. Then you
can check that G acts freely on the direct sum W⊕N outside a closed subset whose
codimension goes to infinity as N goes to infinity.

To prove that CH iBG is well-defined, consider two pairs (V1, S1) and (V2, S2) as
above. That is, V1 and V2 are finite-dimensional representations of G, and S1 ⊂ V1

and S2 ⊂ V2 are closed subsets of codimension > i such that G acts freely on V1−S1

and on V2 − S2. We want to construct an isomorphism

CH i((V1 − S1)/G) ∼= CH i((V2 − S2)/G).

(To be precise, we should also check that this isomorphism is independent of choices;
we will not bother with that point here.)

The idea is to compare both V1 and V2 to the direct sum V1 ⊕ V2. Indeed, we
have morphisms

((V1 − S1)× V2)/G→ (V1 − S1)/G

and

(V1 × (V2 − S2))/G→ (V2 − S2)/G.

Moreover, these are both vector bundles (with fiber V2 or V1, respectively). To be
precise, these are manifestly vector bundles for the flat topology; but, by Hilbert’s
Theorem 90 or Grothendieck’s theory of faithfully flat descent, vector bundles in
the flat topology are the same as the usual notion of vector bundles in the Zariski
topology.

As a result, homotopy invariance of Chow rings gives that both morphisms above
induce isomorphisms of Chow rings. It remains to show that ((V1 − S1) × V2)/G
and (V1 × (V2 − S2))/G have isomorphic Chow rings. To do that, compare both
varieties to

((V1 − S1)× (V2 − S2))/G,
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which is an open subset of both of them. The point is that, by our assumption on
S1 and S2, we are removing subsets of codimension greater than i, in both cases.
Therefore, the localization sequence gives that

CH i(((V1 − S1)× V2)/G) ∼= CH i(((V1 − S1)× (V2 − S2))/G)

∼= CH i((V1 × (V2 − S2))/G).

This completes the proof that CH iBG is well-defined.
Moreover, the varieties (V −S)/G that we use to approximate BG are all smooth,

and so we can talk about their Chow rings. By inspection of the proof above, the
Chow rings of (V1 − S1)/G and (V2 − S2)/G agree in degrees at most i. Therefore,
we have a well-defined commutative graded ring CH∗BG which agrees with the
Chow ring of (V −S)/G in degrees at most i, for any i and any pair (V, S) as above
with codim(S ⊂ V ) > i.

Example 2.2.2. Consider the multiplicative group Gm over a field k. Then Gm

has an obvious faithful representation W of dimension 1, Gm
∼=−→ GL(1). Taking

the direct sum of N + 1 copies of W gives a representation on which Gm acts freely
outside the origin:

t(x0, . . . , xn) = (tx0, . . . , txn).

Therefore, for 0 ≤ i ≤ N , the definition of CH iBGm gives that

CH iBGm
∼= CH i((AN+1 − 0)/Gm)

∼= CH iPN

∼= Z.

Moreover, the Chow ring of BGm is defined to agree with the Chow ring of PN in
degrees at most N , and so we have

CH∗BGm
∼= Z[u]

with |u| = 1 (meaning that u is in CH1BGm). (Here we define CH∗BG as the direct
sum of the groups CH iBG, but you might prefer to consider the direct product,
which would be the power series ring Z[[u]].)

Example 2.2.3. Let G be the cyclic group Z/m = 〈σ : σm = 1〉, for a positive
integer m. Consider G as an affine group scheme over C. Then G has an obvious
faithful representation W of dimension 1 over C, sending the generator σ to a
primitive mth root of unity in C∗. Then G acts freely outside the origin on W⊕N+1,
for any natural number N . Therefore, the definition of CH iBG gives that, for
0 ≤ i ≤ N ,

CH iBG = CH i((AN+1 − 0)/G).

Here Y := (AN+1− 0)/G has an obvious morphism to (AN+1− 0)/Gm = PN , with
fibers Gm/G ∼= A1

k − 0. Explicitly, one can check that Y is the total space of the
line bundle O(m) over PN minus the zero section. Therefore, the Chow ring of
Y is the Chow ring of PN (namely, Z[u]/(uN+1)) modulo the ideal generated by
c1O(m) = mu. Letting N go to infinity, it follows that

CH∗BZ/m = Z[u]/(mu).
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Example 2.2.4. The Chow ring of BGL(n) over any field k is the polynomial ring

CH∗BGL(n) = Z[c1, . . . , cn]

with |ci| = i. These generators are called Chern classes.
To explain the name: for any affine group scheme G of finite type over a field k,

the Chow ring of BG is isomorphic to the ring of characteristic classes for principal
G-bundles over smooth k-schemes with values in the Chow ring [7, Theorem 1.3].
Here a principal G-bundle is defined in the most general sense: locally trivial in
the flat topology. If G is smooth over k, then these are the same as principal G-
bundles for the étale topology. For some “special” groups G (such as Gm, GL(n),
and SL(n)), these are also the same as principal G-bundles for the Zariski topology.
A characteristic class means an assignment α to every principal G-bundle E over a
smooth k-scheme X of an element α(E) in CH∗X, such that α of the pullback of a
G-bundle E by any morphism Y → X is the pullback of α(E) to CH∗Y .

Thus, given the equivalence between principalGL(n)-bundles and vector bundles
of rank n, the calculation of CH∗BGL(n) describes all characteristic classes of vec-
tor bundles with values in the Chow ring. The generators c1, . . . , cn ∈ CH∗BGL(n)
are the usual Chern classes for vector bundles.

In each of these examples (Gm, a finite cyclic group, or GL(n)), when the base
field is the complex numbers, the Chow ring of BG maps isomorphically to the
integral cohomology of BG. That fails for many other groups, as we will see.
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Chapter 3

Lecture 3

Today, I will discuss Euler classes in cohomology and in Chow groups. Then I
will introduce equivariant Chow groups, following Edidin and Graham. Finally, I
will discuss the difference between the Chow ring and integral cohomology for BG,
which occurs already for abelian groups G.

3.1 Euler classes

3.1.1 The Gysin homomorphism in topology

Let Y be a real manifold, X ⊂ Y a closed submanifold (not necessarily compact),
f : X ↪→ Y the inclusion. Suppose that we are given an orientation on the normal
bundle of X in Y , NX/Y . Then we can define the “Gysin homomorphism”

f∗ : H i(X,Z)→ H i+r(Y,Z),

where r = codim(X ⊂ Y ). To define this, use the map of pairs

(Y, ∅)→ (Y, Y −X) ' ThX NX/Y ,

the Thom space of the normal bundle. So we have a pullback homomorphism

H i(X) ∼= H i+r(ThX NX/Y )→ H i+rY,

where the first isomorphism is the Thom isomorphism theorem. (This is where the
orientation of NX/Y is used.) Geometrically, the map f∗ should be easy to visualize:
for an element of H i(X,Z) represented by a codimension-i submanifold S of X, just
view S as a submanifold of Y , where it has codimension i+ r.

There are various other ways to define the Gysin homomorphism. For example,
assume that X and Y are both oriented (which gives an orientation of NX/Y ). Then
we can define the Gysin homomorphism as the composition

H iX ∼= HBM
dim(X)−iX −→

f∗
HBM

dim(X)−iY
∼= H i+rY,

using Poincaré duality on X and Y , where Y has dimension dim(X) + r. Here f∗
denotes proper pushforward on Borel-Moore homology.

19
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It is natural to ask: what happens if we push forward and then pull back? There
is a simple answer, sometime called the self-intersection formula. In the situation
above,

f∗f∗(u) = uχ(NX/Y )

for any u ∈ H∗(X,Z). Here χ(E) is the Euler class in Hr(X,Z) of an oriented
rank-r real vector bundle E. (A standard reference for the Euler class in topology
is Milnor-Stasheff’s Characteristic Classes.)

3.1.2 The self-intersection formula for Chow groups

Let f : X ↪→ Y be a closed embedding of smooth k-schemes. Then, for any u ∈
CH∗X, we have

f∗f∗(u) = u cr(NX/Y ),

where r = codim(X ⊂ Y ). Thus the top Chern class plays the role of the Euler class
here. (That makes sense: for a complex vector bundle E on a topological space, E
has a canonical orientation as a real vector bundle, and the Euler class of E as an
oriented real bundle is the top Chern class of E in cohomology.)

3.1.3 The Chow ring of an (Ar − 0)-bundle

Let E be a vector bundle of rank r on a smooth scheme X over a field k. Using the
self-intersection formula plus the localization sequence, we can compute the Chow
ring of the total space of E minus the zero-section (isomorphic to X):

CH∗(E −X) ∼= CH∗(X)/(cr(E)).

We saw this formula for E a line bundle in lecture 2.
Note the difference from what happens in cohomology, for k = C. Namely,

in the classical topology, E − X is homotopy equivalent to an S2r−1-bundle over
X. By the spectral sequence of the fibration, the cohomology of E − X contains
H∗(X,Z)/(cr(E)), but it may be bigger.

3.2 Equivariant Chow groups

3.2.1 Equivariant cohomology

We begin with the definition of equivariant cohomology. (The version here may be
called “Borel equivariant cohomology.”) Let G be a topological group acting on a
topological space X. Let EG be a contractible free G-space. Then the G-equivariant
cohomology of X is defined by

H i
G(X,Z) := H i((X × EG)/G,Z).

This is independent of the choice of EG. (In short: we replace X by a homotopy
equivalent space on which G acts freely, and then take the quotient space.) The
space (X ×EG)/G may be called the Borel construction or the homotopy quotient
X//G.

Example 3.2.1. H i
G(point) = H iBG, by definition of BG.
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Example 3.2.2. If G acts freely on X, then H i
G(X) = H i(X/G).

Thus equivariant cohomology puts the problem of computing the cohomology
of quotients by free G-actions in a broader context, since we also get invariants of
G-actions that are not free. This flexibility is useful for computations.

It is immediate that H∗G(X,Z) is a graded-commutative ring (since it is the
cohomology of a space), and that every G-equivariant continuous map f : X → Y
determines a pullback ring homomorphism f∗ : H∗G(Y,Z) → H∗G(X,Z). (A map
f : X → Y of G-spaces is G-equivariant if f(gx) = gf(x) for all g ∈ G, x ∈ X.)

To compute equivariant cohomology, note that we have a fibration

X → (X × EG)/G→ EG/G = BG.

So we have a spectral sequence

Eij
2 = H i(BG,HjX)⇒ H i+j

G X.

3.2.2 Equivariant Chow groups

Equivariant Chow groups were defined by Edidin and Graham [1], using my algebro-
geometric construction of BG. Namely, let X be a scheme with an action of an affine
group scheme G over a field k. Let i be an integer. Let V be any representation of G
such that G acts freely on a closed subset S ⊂ V with codim(S ⊂ V ) > dim(X)− i.
Then we define the ith equivariant Chow group by

CHG
i X = CHi+dim(V )−dim(G)((X × (V − S))/G).

By the same proof as for CH∗BG, this group is independent of the choice of (V, S).
In these notes, I will only consider equivariant Chow groups for X smooth over

k. In that case, we define CH i
GX = CHG

dim(X)−iX, and CH∗GX is a commutative
graded ring. The definition looks simpler with this numbering:

CH i
GX = CH i((X × (V − S))/G)

for codim(S ⊂ V ) > i. For an equivariant morphism f : X → Y of smooth G-
schemes over k, we have a pullback ring homomorphism

f∗ : CH∗GY → CH∗GX.

Example 3.2.3. CH i
G(Spec k) = CH∗BG, by definition of BG.

Example 3.2.4. If G acts freely on X, then CH i
GX
∼= CH i(X/G). (To check this,

use homotopy invariance for Chow groups.)

We have a “fibration” in algebraic geometry (as in topology),

X → X//G→ BG.

(More concretely, one can consider the analogous fibration of finite-dimensional
approximations, X → (X × (V − S))/G → (V − S)/G.) Unfortunately, we do
not have a spectral sequence for such a fibration in terms of Chow groups (or even
motivic cohomology). One difficulty is that this fibration will typically be étale-
locally trivial but not Zariski-locally trivial, and “étale descent” does not hold for
Chow groups, unless we tensor with Q. Nonetheless, it is useful to think about this
fibration when you want to compute equivariant Chow groups. For example, this
makes it clear that CH∗GX is a module over CH∗BG.
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3.2.3 Solution to problem 1 from problem sheet 2

Problem: Let G be the multiplicative group Gm over a field k. Let G act on the
affine plane A2 over k by

t(x, y) = (tx, t−1y).

Compute the G-equivariant Chow ring CH∗G(A2 − 0).
(Side question: What is the geometric quotient (A2 − 0)/G? This is not a

separated scheme, so it’s outside the usual setting where I defined Chow groups.)
Solution: Use the localization sequence for equivariant Chow groups:

CH i
G({0})→ CH i+2

G (A2)→ CH i+2
G (A2 − 0)→ 0.

(This is immediate from the non-equivariant localization sequence, since equivariant
Chow groups (in a given degree) are defined as the Chow groups of an associated
scheme.) Here CH i

G({0}) = CH iBG, and likewise CH i+2
G A2 ∼= CH i+2BG. (In-

deed, by the fibration above, the G-equivariant Chow ring of A2 is the Chow ring
of the total space of a rank-2 vector bundle over BG, and this is isomorphic to
CH∗BG by homotopy invariance of Chow groups.)

So what is the homomorphism CH iBG → CH i+2BG? From the fibration
above, this is the pushforward associated to the inclusion of BG into the vector
bundle over BG associated to the representation E = A2 of G we started with. By
the self-intersection formula, this homomorphism is multiplication by the top Chern
class of E, c2(E) ∈ CH2BG.

By our definition of E, E is the direct sum of two 1-dimensional representations
of G = Gm, t 7→ t and t 7→ t−1. If we call the first representation L, the second
one is the dual representation L∗. These 1-dimensional representations determine
line bundles on the approximating spaces PN to BGm; explicitly, we can say that
L = O(1) and L∗ = O(−1) on PN . Let u = c1O(1), which is a generator of
CH1BGm = Z. Then

c2(E) = c2(L⊕ L∗)
= c1(L)c1(L∗)

= u(−u)

= −u2.

Therefore, the localization sequence above gives that

CH∗G(A2 − 0) ∼= CH∗BG/(c2(E))

∼= Z[u]/(−u2)

∼= Z[u]/(u2).

This happens to be isomorphic to the Chow ring of P1, which is a different quotient
scheme (A2 − 0)/Gm (namely, with Gm acting by t(x, y) = (tx, ty)).

To answer the second part of the problem: the quotient (A2− 0)/Gm (with Gm

acting by t(x, y) = (tx, t−1y)) is outside the usual setting where I defined Chow
groups, since it is non-separated. Namely, xy is a Gm-invariant function on A2,
which gives a morphism (A2 − 0)/Gm → A1. But this is not an isomorphism,
because the fiber over 0 consists of two orbits, the x-axis minus the origin and the
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y-axis minus the origin. As a result, (A2 − 0)/Gm is the line with two origins, the
union of two copies of A1, with the two open subsets A1−0 identified by the identity
map. You can convince yourself that, over C, the line with two origins should be
viewed as having the homotopy type of the 2-sphere, just like CP1.

Edidin and Graham show that the usual definition of Chow groups actually
works, with the usual properties, for all algebraic spaces of finite type over a field
[1, section 6.1]. This includes all schemes of finite type over a field, separated or
not.

3.3 The Chow ring of an elementary abelian group

We describe here the Chow ring of B(Z/p)n over the complex numbers. This is a
simple case where the Chow ring differs from integral cohomology (for n ≥ 2).

Let p be a prime number. We have seen that the Chow ring of BZ/p over C is
Z[y]/(py), where y ∈ CH1BZ/p is the first Chern class of a faithful 1-dimensional
representation, Z/p ↪→ C∗. The calculation used that we can take the approxima-
tions to BZ/p to be an (A1−0)-bundle over PN for N large, namely the complement
of the zero section in the line bundle O(p) over PN .

As a result, for a positive integer n, we can approximate B(Z/p)n by the product
of n copies of the spaces above. That is, we have an (A1 − 0)n-bundle over (PN )n.
We know the Chow ring of (PN )n by the projective bundle theorem, and we can
apply our description of the Chow ring of an (A1 − 0)-bundle n times. The result
is:

CH∗B(Z/p)n = Z[y1, . . . , yn]/(py1, . . . , pyn).

This maps isomorphically to H∗(B(Z/p)n,Z) for n = 1, but not for larger n.
You could say that this happens because of the Tor term in the Künneth formula
for integral cohomology. In particular, for n ≥ 2, B(Z/p)n has some cohomology in
odd degrees, which certainly cannot come from the Chow ring (since CH iBG maps
to H2i(BG,Z)). For n ≥ 3, the Chow ring does not even map onto the even-degree
integral cohomology.

It is easier to describe the difference between the Chow ring and cohomology
with mod p coefficients. (The Chow ring of a smooth k-scheme X with coefficients
in a commutative ring R just means CH∗(X)⊗Z R.) For example, let p be an odd
prime number. Then the Chow ring of B(Z/p)n modulo p is the polynomial ring

CH∗(B(Z/p)n)/p = Fp[y1, . . . , yn],

whereas the mod p cohomology ring is a free graded-commutative algebra:

H∗B(Z/p)n,Fp) = Fp〈x1, . . . , xn, y1, . . . , yn〉

with |xi| = 1 and |yi| = 2. (The elements xi generate an exterior algebra, by
graded-commutativity.) The elements yi in the Chow ring map to the polynomial
generators yi in cohomology. Of course the Chow ring cannot map to odd-degree
elements such as the xi’s, but also even-degree elements such as x1x2 are not in the
image of the Chow ring.

For p = 2, there are some differences in the story: H∗(B(Z/2)n,F2) is the
polynomial ring on generators x1, . . . , xn of degree 1, and CH∗(B(Z/2)n)/2 =
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F2[y1, . . . , yn] maps by yi 7→ x2
i . Again, the Chow ring misses a lot of the co-

homology.
One way to describe what happens for these groups G is that the image of

CH∗BG in H∗(BG,Z) is exactly the subring generated by Chern classes of complex
representations of G. That happens for some other groups G, which makes sense
because Chern classes of representations live in the Chow ring. But it’s not true for
all finite groups. In some examples such as the symmetric groups G = Sn, CH∗BG
is generated at least by transfers of Euler classes of representations of subgroups of
G [8, Theorem 2.22]. But even that fails in general.

The next lecture will show a striking failure of this kind of statement: at least
over some extension fields k of C, there are finite groups G for which the abelian
group CH iBGk is not even finitely generated.
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Lecture 4

In this final lecture, I will explain some negative results about finite generation for
the Chow groups of classifying spaces. We use the technique of “decomposition of
the diagonal” for studying algebraic cycles, used most famously by Bloch, Srinivas,
and Voisin.

4.1 Positive results on finite generation

Theorem 4.1.1. For an affine group scheme G over a field k with a faithful rep-
resentation V of dimension n, the ring CH∗BG is generated by elements of degree
at most n(n− 1)/2 if n ≥ 3, or of degree at most n if n ≤ 2.

The proof uses the fibration GL(n)/G→ BG→ BGL(n) [8, Theorems 5.1 and
5.2]. See problem sheet 3 for a related result.

Therefore, CH∗BG is a finitely generated Z-algebra if and only if CH iBG is
a finitely generated abelian group for each i. Does the latter statement hold? In
many examples, it does hold. Moreover, in examples one often finds that the Chow
ring CH∗BGk is the same for all sufficiently large fields k.

Example 4.1.2. (R. E. Field [3]) For every field k of characteristic not 2, and any
positive integer m, let q be the “split” quadratic form x1x2 +x3x4 + · · ·+x2m−1x2m

over k. Then the group scheme SO(2m) := SO(q) over k has

CH∗BSO(2m) = Z[c2, c3, . . . , c2m, ym]/(2codd, ymcodd, y
2
m − (−1)m22m−2c2m).

For k = C, ym maps to 2m−1 times the Euler class in H2m(BSO(2m),Z).

It turns out that the abelian groups CH iBGk are not finitely generated in
general, even for finite groups G. However, our counterexamples have base field k a
big, “artificial” field. It is completely open whether the groups CH iBGk are finitely
generated for k algebraically closed.

The main tool for our counterexamples is the following theorem, which relates
several good properties for an algebraic variety. The theorem is from my paper [9,
Theorem 2.1], extending earlier work by Bloch, Merkurjev, Jannsen, and others.

Theorem 4.1.3. Let X be a smooth proper variety over a field k. The following
are equivalent.

25
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1. For every field F containing k, the pullback homomorphism CH0(X)→ CH0(XF )
is surjective.

2. For every field F containing k, the degree homomorphism deg : CH0(XF )→ Z
is an isomorphism.

3. The birational motive of X (in the sense of Kahn-Sujatha) is isomorphic to
the birational motive of a point.

4. For every cycle module M (in the sense of Rost), the homomorphism M(k)→
M(k(X))nr is an isomorphism. (That is, X has trivial unramified cohomology
in the most general sense.)

5. There is a nonempty open subset U ⊂ X such that CHi(UF ) = 0 for every
field F containing k and every i < dim(X).

6. There is a nonempty open subset U ⊂ X such that CHiU → CHi(UF ) is
surjective for every field F containing k and every i.

Let me discuss these properties. Start with property (1), that the Chow group
of zero-cycles of X does not increase when you increase the base field. (It is not
enough to consider finite extensions of the base field here. Property (1) is nontrivial
even when k is algebraically closed.) For example, property (1) is true for projective
space Pn over k, since CH0(Pn

F ) = Z for every extension field F of k. On the other
hand, for an elliptic curve E over a field k, we have

CH0(E) ∼= Z⊕ E(k),

using the group structure on the set E(k) of k-rational points. When you increase
the base field, you will typically increase the set of rational points of E; so property
(1) fails for an elliptic curve. (More generally, it fails for a smooth projective curve
of any genus at least 1.) So property (1) picks out a class of varieties that are “like”
projective space and not like a curve of higher genus, in terms of the Chow group
of zero-cycles.

The equivalence of (1) and (2) is already surprising. This says that if the Chow
group of zero-cycles does not increase under field extensions, then it is isomorphic
to Z, and it remains Z over every field extension. You could say that Z is the only
“natural” value for the Chow group of zero-cycles on a smooth proper variety.

Two varieties are said to be birational if they have nonempty open subsets that
are isomorphic. (Remember that we are using the Zariski topology; so a nonempty
open subset of a variety is pretty big, the complement of a lower-dimensional subset.)
Equivalently, two varieties over k are birational if their function fields are isomorphic
(as fields containing k). The Chow group of zero-cycles is known to be birationally
invariant (by Colliot-Thélène, Sansuc, and Fulton), and so properties (1) and (2)
are birational invariants of X.

Kahn and Sujatha’s category of birational motives is easy to define. The objects
are the smooth proper k-varieties, and the set of morphisms from the motive of X
to the motive of Y is the abelian group CH0(Yk(X)). (Composition of morphisms is
given by composing correspondences.) It is straightforward to relate (1) and (2) to
(3).
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Property (4) relates properties (1)-(3) to a quite different class of birational
invariants, unramified cohomology. Rather than discussing the most general notion
of unramified cohomology as in (4), let me describe a special case which is all we
will need for the application to BG. Let k be a field, n a positive integer invertible
in k, and i ≥ 0. Then one type of unramified cohomology (for a smooth proper
variety X over k) is the group H0

Zar(X,Hi
ét,Z/n(i)). (In particular, this group is a

birational invariant of X.) By definition, this is the group of global sections of the
sheaf associated to the presheaf U 7→ H i

ét(U,Z/n(i)), where Z/n(i) means the étale
sheaf µ⊗in . By the Bloch-Kato conjecture (proved by Voevodsky and Rost), we can
also describe this group as the global sections of the Milnor K-theory sheaf modulo
n, H0(X,KM

i /n).

Another description of this group is that it is the subgroup of elements u
in the Galois cohomology group H i(k(X),Z/n(i)) such that the residue of u in
H i−1(k(D),Z/n(i−1)) is zero for every codimension-1 subvariety D in X. (That is,
u is “unramified” along every codimension-1 subvariety.) Note thatH i(k(X),Z/n(i))
is trivially a birational invariant of X, since it only depends on the field k(X); but
it is too big to be useful. Unramified cohomology is a subgroup which is still bira-
tionally invariant, but small enough to be useful.

Example 4.1.4.

H0(X,H1
Z/n(1))

∼= H1(X,Z/n(1)).

Thus H1(X) is birationally invariant for smooth proper varieties X; this would not
be true for higher-degree cohomology. For example, this implies that two smooth
projective curves of different genera cannot be birational. There are easier ways to
prove that, though, and this invariant is not very powerful.

Example 4.1.5.

H0(X,H2
Z/n(1))

∼= Br(X)[n],

the n-torsion subgroup of the Brauer group. Thus the Brauer group is birationally
invariant for smooth proper varieties. This is a much more subtle invariant, as
we will see. In particular, the Brauer group can be nontrivial for a unirational
variety over an algebraically closed field (thereby showing that such a variety is
not rational). By definition, a variety X is unirational over a field k if there is a
dominant rational map from some projective space to X.

Proof. (Theorem 4.1.3) I will only prove the equivalence of (1) and (2). This is
a classic application of the technique of “decomposition of the diagonal”, which is
also used for the other equivalences. The equivalence of (1)-(3) and (4) was shown
by Merkurjev [5], and the new aspect of my paper was the equivalence of (1)-(4)
with (5) and (6).

So let us prove that (1) implies (2). (It is clear that (2) implies (1).) Let X be
a smooth proper variety over a field k such that CH0(X)→ CH0(XF ) is surjective
for every field F over k. Let n be the dimension of X. The first key idea is to apply
the assumption to the field F = k(X), the function field of X.

How can we describe CH0(Xk(X)), or more generally CH0(Yk(X)) for another
variety Y over k? We know that CH0(Yk(X)) is generated by the 0-dimensional
subvarieties (i.e, the closed points) in the scheme Yk(X), but what are they? The
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point is to think of Yk(X) as the generic fiber of the projection X ×k Y → X, via
the pullback diagram:

Yk(X)
//

��

X ×k Y

��

Spec k(X) // X.

Each 0-dimensional subvariety of Yk(X) is the generic fiber (over X) of an n-
dimensional subvariety of X × Y that dominates X (i.e., whose image is dense
in X). (And this gives a one-to-one correspondence between these two classes of
subvarieties.)

Returning to the case Y = X: the diagonal ∆X ⊂ X ×X is an n-dimensional
subvariety that dominates X by the first projection π1 : X × X → X. Therefore,
the generic fiber of ∆X over the first copy of X is a closed point in Xk(X), call
it [∆X ]. In fact, it is a closed point of degree 1 (a k(X)-rational point), because
∆X ⊂ X ×X has degree 1 over the first copy of X.

We are given that CH0(X)→ CH0(Xk(X)) is surjective. So there is a 0-cycle α
on X (over the base field k) such that

[∆X ] = α

in CH0(Xk(X)). (Since the 0-cycle [∆X ] has degree 1, so does α.) Equivalently, the
n-dimensional cycles ∆X and X×α in X×X become rationally equivalent over the
generic fiber of the first projection π1. In fact, we can reformulate this statement in
terms of the Chow groups of X ×X: CH0(Xk(X)) is the quotient of CHn(X ×X)
by the subgroup generated by all n-dimensional subvarieties whose image under π1

is not dense in X. (That is, we kill all subvarieties whose generic fiber in Xk(X) is
empty.)

Therefore, the equality above implies that

∆X = X × α+B

in CHn(X×X), for some n-dimensional cycle B on X×X whose image in the first
copy of X is contained in some closed subset S ( X. This is called a decomposition
of the diagonal for X.

We now use the idea of correspondences. Namely, for smooth proper varieties
X and Y over a field k, an element u of CH∗(X×Y ) (called a correspondence from
X to Y ) determines a homomorphism from CH∗(X) to CH∗(Y ). (Namely: given
a cycle β on X, pull it back to X × Y , intersect with u, and then push forward to
Y . Call this u∗β ∈ CH∗Y .) The idea is extremely flexible: a correspondence also
induces a homomorphism from CH∗(Y ) to CH∗(X), from H∗(X,Z) to H∗(Y,Z)
(if k = C), and so on. These various ways of using correspondences give various
ways to apply the decomposition of the diagonal above, and this idea is used to
prove the equivalences of (1) to (6) in Theorem 4.1.3. For example, we constructed
a decomposition of the diagonal using assumption (1) on the Chow group of zero
cycles, but we can then apply that decomposition to get information about Chow
groups in other dimensions, as in (5) and (6).

For now, we focus on proving that (1) implies (2). We have shown that (1)
implies a decomposition of the diagonal as above. As a correspondence, the diagonal
∆X ⊂ X×X induces the identity from CHi(X) to CHi(X) for all i. (Think of this
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operation as going from cycles on the first copy of X to the second.) Therefore, for
every zero-cycle β in CH0(X),

β = ∆∗β

= (X × α)∗β +B∗β

= (X × α)∗β.

Here we use a version of Chow’s moving lemma to get that every 0-cycle β ∈ CH0(X)
is rationally equivalent to a cycle disjoint from the closed subset S ( X, above. Since
the cycle B is supported in S×X, it is then clear (by definition of correspondences,
above) that B∗β = 0. Furthermore, the 0-cycle (X × α)∗β is clearly supported on
the support of α (draw a picture), and with more care you can see that it is exactly
deg(β)α.

Thus we have shown that CH0X is generated by α. Since α has degree 1, it
follows that the degree homomorphism deg : CH0(X)→ Z is an isomorphism. For
statement (2), we want to prove the same statement over every extension field F of
k. But this is easy: just observe that our decomposition of the diagonal

∆X = X × α+B

in CHn(X ×k X) implies the same type of decomposition in CHn(XF ×F XF ) for
every field F over k. Then the same argument implies that deg : CH0(XF )→ Z is
an isomorphism for every field F over k. We have shown that (1) implies (2). The
other parts of Theorem 4.1.3 use the same kind of arguments. QED

4.2 Failure of finite generation for CH iBG

In my book, I computed the Chow rings of all p-groups G of order at most p4 with
p = 2 or 3, and for 13 of the 15 groups of order p4 with p a prime at least 5 [8,
Chapter 13]. It turns out that these are finitely generated Z-algebras, and (in each
case) the Chow ring is the same over all fields of characteristic zero that contain the
|G| roots of unity.

However, by Saltman, Bogomolov, Hoshi, Kang, and Kunyavskii, there are
groups G of order p5 for every odd prime number p, and groups of order 26 = 64,
with nontrivial Brauer group. That is, for any faithful representation V over a field
k of characteristic zero, with G acting freely on an open set U ⊂ V , if we choose
a smooth compactification U/G ⊂ X, then Br(k)→ Br(X) is not an isomorphism.
(So X is not stably rational, although it is obviously unirational.) The following
Corollary says that the Chow rings of these groups need not be finitely generated,
over some fields k.

Corollary 4.2.1. ([9, Corollaries 3.1 and 3.2].) Let G be a finite group, k a field of
characteristic zero, p a prime number. Suppose that V has a faithful representation
V , with G acting freely on an open set U ⊂ V , such that a smooth compactification
of U/G has nontrivial unramified cohomology (with coefficients in some Fp-cycle
module). Then there is an i ≥ 0 and a field F over k such that

CH i(BGk)/p→ CH i(BGF )/p
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is not surjective.
Moreover, there are fields F over k for which the cardinality of CH i(BGF )/p

is as big as we like. In particular, CH i(BGF )/p can be infinite, and so the abelian
group CH i(BGF ) need not be finitely generated.

Proof. Let V be a faithful representation of G over k, and let S ( V be a G-
invariant closed subset such that G acts freely on V − S. We are given that some
smooth compactification X of (V −S)/G has nontrivial unramified cohomology. By
Theorem 4.1.3, that implies something about the Chow groups of the open subset
(V − S)/G of X. Namely, there is some i ≥ 0 and some field F over k such that

CH i((V − S)/G)→ CH i((VF − SF )/G)

is not surjective. More precisely, there is a version of Theorem 4.1.3 with Fp co-
efficients. Since X has nontrivial unramified cohomology with coefficients in some
Fp-cycle module, it follows that

CH i((V − S)/G)/p→ CH i((VF − SF )/G)/p

is not surjective.
We want to deduce the corresponding statement about BG; this is not immedi-

ate, because we do not know whether i is greater than codim(S ⊂ V ). Fortunately,
we can use the localization sequence for equivariant Chow groups to see that

CH iBG = CH i
GV → CH i

G(V − S) = CH i((V − S)/G)

is surjective, and likewise CH i(BGF )→ CH i((VF − SF )/G) is surjective.
Consider the commutative square

CH i(BG)/p //

��

CH i((V − S)/G)/p

��

CH i(BGF )/p // CH i((VF − SF )/G)/p.

Since the horizontal maps are surjective and the right vertical map is not surjec-
tive, the left vertical map must also not be surjective. That is, CH i(BG)/p →
CH i(BGF )/p is not surjective, as we want. We omit the details of showing that
CH i(BGF )/p can have arbitrarily large cardinality. QED
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