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ABSTRACT. This is the problem set for the authors’ 2024 PCMI minicourse on
Massey products in Galois cohomology.
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1. QUADRATIC FORMS

Reference: [3].

1. Let V be a vector space over a field F' of characteristic not 2. A quadratic
form on V is amap ¢ : V — F such that q(av) = a?q(v) for alla € F and v € V
and the associated map

by : VXV =F (v,w)w—qv+w)—qv)—q(w)

is a bilinear form. A quadratic form ¢ is called nondegenerate (or nonsingular) if
the bilinear form b, is nondegenerate; cf [3, Proposition 1.2].

Two quadratic forms are said to be isomorphic (or isometric) if there exists an
isomorphism of the underlying vector spaces which respects the bilinear forms; see
[3, p. 4]. The orthogonal sum g L h of two quadratic forms g and h is defined in a
natural way; see [3, p. 6].

For all a4, ...,a, € F*, we write (a1, as,...,a,) for the quadratic form

ale + agxg +...+ ana:i.
Prove that every nondegenerate quadratic form is isomorphic to (a1, as, ..., a,) for
some a; € F'*.
2. The form H = (1,—1) is the hyperbolic plane. A form isomorphic to the
orthogonal sum H*" of n > 0 copies of the hyperbolic plane is called hyperbolic. A
nondegenerate quadratic form ¢ : V — F' is isotropic if g(v) = 0 for some nonzero

v € V. Prove that a nondegenerate quadratic form ¢ is isotropic if and only if
qg~H L ¢ for some quadratic form ¢’.

3. Two nondegenerate quadratic forms g and h are called Witt equivalent if
g L HL™ ~ h | HL™ for some n,m > 0. The set of equivalence classes [q] € W (F)
of nondegenerate quadratic forms g over F' is endowed with the two operations
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[g] + [h] = [g L h] and [g] - [h] = [g ® h]; see [3, 1.§6, p. 17] for the definition of the
Kronecker product g ® h. Prove that W (F') is a commutative ring, called the Wiit
ring of F.

For simplicity, we will write ¢ for [g] in W (F).

4. Show that the Cancellation Law f L g~ f | h = g~ h (see [3, 1.§4, Theorem
4.2]) implies that two nondegenerate quadratic forms g and h are isomorphic if and
only if g = h in W(F') and dim(g) = dim(h).

5. Let a,b € F*. The form
{a,b) = (1, —a,—b,ab) = (1, —a) ® (1, —b)

is called a 2-fold Pfister form. Let Q = (a,b) be the quaternion algebra, i.e., Q is a
4-dimensional algebra with basis {1, 4, j, k} and multiplication table k = ij = —ji,
i? = a and j2 = b. Prove that if Q = (a,b) is a quaternion algebra then the reduced
norm quadratic form Nrdg on @ is isomorphic to ((a,b)). Show that if Q is split,
then Nrdg is hyperbolic, otherwise, Nrdg is anisotropic. (See [3, IIL.§1 and §2] or
[1, Chapter 1] for the definitions.)

6. Prove that the set D(q) of nonzero values of ¢ = ({a,b)) is closed under
multiplication. Prove that dg ~ ¢ for every d € D(q).

7. If ¢ = ((a, b)), we write ¢° for the form (a, b, —ab), thus ¢ = (1) L (—¢°). Let
@ be a quaternion algebra and let Q° C @ be the subspace of pure quaternions.
Consider the 3-dimensional quadratic form h on Q° given by h(x) = x2. Prove that
h ~ (Nrdg)°.

8. Two form g and h are called similar (or similar in W(F)) if h ~ ag (respec-
tively, h = ag in W(F')) for some a € F*. Let ¢; and g2 be two 2-fold Pfister
forms. Suppose that for ai,as € F*, the forms a;q; and asqs have a common
nonzero value. Prove that a;q; — a2¢s is similar to ¢; — ¢2 = ¢5 — ¢} in W(F).

Let K/F be a quadratic field extension.

9. Prove that for every x,y € K \ F such that z/y ¢ F there exist nonzero
a,b € F such that axz + by = 1. Prove that (az,by)) = 0 and

{(a, ) + (=, y) = {a,y) + (b, z)
in W(K).

10. Let s : K — F' be a nonzero F-linear map such that s(1) = 0. Prove that s
is unique up to an F-multiple. Prove that if h is a (nondegenerate) quadratic form
over K, then s.(h) := soh is a (nondegenerate) quadratic form over F of dimension
2dim(h). Show that the map s, : W(K) — W (F) is a group homomorphism (called
the transfer map). Prove that s,(Im(W(F) — W(K)) = 0.

11. Prove that s.({(b,z))) is similar to (b, Ng,p(z))) and s.({a,y))) is similar to
{a, Ng/p(y))) in W(F).

12. Prove that

se{(@, ) = s.((a, y)) + 5.(0, )

in W(F). Show that the forms s.((a,y)) and —s. (b, z)) have a common nonzero
value in F.
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13. Deduce from Problem 8 that the 6-dimensional forms s.({x,y)°) and
{a; Niyp())°) L (={b, Ni/r(2))°)

are similar. (Remark: A biquaternion algebra is the tensor product of two quater-
nion algebras, A = B®p C. The 6-dimensional form (Nrdp)°® L —(Nrd¢)® is called
an Albert form of A; see [2, §16]. It depends on the decomposition of A into tensor
product of two quaternion algebras, but every two Albert forms of A are similar.
One can restate the exercise as follows: Prove that for every quaternion algebra )
over K, the form s, (Nrdg)® is similar to an Albert form of the biquaternion algebra

Nk, r(Q).)

14. Let @ be a quaternion algebra over K. Prove that the algebra Ny, p(Q) is
split if and only if the 6-dimensional form s,(Nrdg)® is hyperbolic.

2. GROUP COHOMOLOGY

References: [5], [4, Chapter 1].

1. Let T" be a profinite group and let M be a I'-module considered as a discrete
topological space. For an integer n > 0 write C™ (T, M) for the abelian group of all
continuous maps (n-cochains) I™ — M. Consider the homomorphisms

d": C™(T, M) — C"*Y(T, M)

defined by the formula

d*()(@1, .., Tng1) = 219(@2, - .-, Tns1)+
S (=D o(@1, . i1, Tiig 1, o)+
i=1
(=1)"Mo(zy,...,z,).
Show that d"*! o d® = 0 for all n. Define the following groups:
Z™(I'y M) = Ker(d™) the group of n-cocycles of I with values in M,
B™(T', M) = Im(d"~ 1) the group of n-coboundaries of I' with values in M,
H™(T,M)=Z"T,M)/B"(T, M) the n-th cohomology group of T with values in
M.
2. Show that

HYT,M)=M":={me M |zm=m foralzecl}.
3. Prove that an exact sequence 0 - M — N — P — 0 of I'-modules yields an
infinite exact sequence
.= HY(I,M) — H"(T,N) — H*(I',P) — H" ™ (', M) — ...
4. Show that if T' acts trivially on M, the group H'(T', M) is equal to the group
of all continuous homomorphisms I' — M.

5. Prove that if M is a T-module and IV C T is a (closed) subgroup, then the
restriction map C™(I', M) — C™(I", M) yields the restriction homomorphism

resp v« H"(I, M) — H" (T, M).
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If T” is an open subgroup of " (and therefore, of finite index), there is the corestric-
tion homomorphism

COI‘F/F/ : Hn(F/, M) — H”(I‘, M)
6. Prove that if I is a normal subgroup of T', then the group M I has the natural

structure of a T'/T’-module and the natural map C™(I'/I”, M) — C™(T", M) yields
the inflation homomorphism

infp/p : HM(T/T', M) — H™(T, M).
Prove that the inflation homomorphisms yield an isomorphism
colim H™(I'/T", M™") &% H™(T', M),
where the colimit (direct limit) is taken over all open normal subgroups I C T.

7. Let ¢ € Z™(I', N) and ¢p € Z™(T", M) be two cocycles. Prove that the function
YU : It 5 N ®z M defined by the formula

(@U¢)(I17---7xn,y1,---7ym) :90(1'1a-~-7$n)®I1"'In1/1(y1a---,ym)

is a (n+m)-cocycle. Prove that this construction yields a well-defined cup-product
bilinear map

U: H*(I,N) x H™(T, M) — H™ ™ (T, N @ M).
Prove the projection formula:
corp v (p Uresp (1)) = corp p (@) U,
where I" is an open subgroup of I', ¢ € H*(I", N) and ¢y € H™(T', M).

8. Let F be a field, let Fy, be a separable closure of F' and I' = I'r =
Gal(Feep/F). The multiplicative group F,5 of Fyep is a I-module. We write

sep
H"(F, Fg,) = H"(T', Fg,).
Prove that H°(F,F},) = F* and H"(F,F},) ~ colim H"(G,L*), where the

colimit is taken over all finite Galois field sub-extensions L/F of Fy.,/F and
G = Gal(L/F).

9. Let L/F be a finite field extension with Galois group G. Let [ : G — L be a
map such that > _ . I(7)-7(x) = 0 for all 2 € L. Prove that [(7) = 0 for all 7 € G.
Let [ : G — L* be a 1-cocycle. Show that there is € L such that
y:= > Ur)-7(x) #0.
TeG
Prove that I(o) = y/o(y) for all ¢ € G. Deduce that HY(G,L*) = 1 and
HY(F,F} ) =1. This is Hilbert’s Theorem 90.

sep

10. Prove that the sequence of I'-modules 0 — Z/2Z — F5 — FJ — 1, where

sep sep

the first map takes 1+2Z to —1 in FX_ and the second map takes = to 22. Deduce

sep
that there is a canonical Kummer isomorphism

Homeon (T, Z/27) = H'(F,7Z/2Z) ~ F* | F*2.

11. For an element a € F* write x, : I' — Z/2Z for the character of " corre-
sponding to aF*? under the Kummer isomorphism. If x, is a nontrivial character,
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show that the subfield of all Ker(y,)-invariant elements in Fie, is isomorphic to
F, = F(a'/?).

3. BRAUER GROUP

Reference: [1].
1. Let A and B be two F-algebras. Prove that

Mo (A) @F My (B) = My (A @5 B).

2. Let Z(A) be the center of an F-algebra A. Prove that
Z(A Rp B) = Z(A) Rp Z(B)

for every two F-algebras A and B. In particular, if both A and B are central
F-algebras, then so is A @p B.

3. A finite dimensional F-algebra A is called simple if A has no proper two-
sided ideals. By Wedderburn’s Theorem [1, Theorem 2.1.3] and Problem 2, every
central simple F-algebra A is isomorphic to My (D), where D is a central division
F-algebra. The algebra D is uniquely determined by A (up to isomorphism) as the
endomorphism algebra of a (unique) simple right A-module; cf. [1, Lemma 2.1.6].
Let A and B be two simple F-algebras. Prove that if A is central, then A ® p B is
simple. In particular, if A and B are central simple F-algebras, then so is A®p B.

4. Two finite-dimensional central simple F-algebras A and B are called equivalent
if M,,(A) ~ M,,(B) for some integers n, m > 0. The set Br(F) of equivalence classes
[A] of central simple F-algebras form the Brauer group via the (additively written)
operation

[A] + [B] = [A®F B].
Prove that —[A] is the class of the opposite algebra A°P (see [1, p. 32| for the
definition of A°P).

If A is a central simple algebra, we will often write A instead of [A].

5. Prove that two central simple F-algebras A and B are isomorphic if and only
if A= B in Br(F) and dim(A4) = dim(B).

6. Let L/F be a finite field extension with Galois group G. Let [ : G x G — L*
be a 2-cocycle, i.e.,

o, 7)o, p) = o (U7, p)) - Lo, Tp)
for all o,7,p € G. Let A(l) be a vector space over L with basis e, for 0 € G. We
make A(l) into an F-algebra via the following multiplication rules:

(1) esx = o(x)e, for all o € G and = € L,

(i1) eger =1(0,7) - €5r.

Prove that A(l) is a central simple F-algebra. Show that A(l) does not change
up to isomorphism if the cocycle [ is replaced by an equivalent one: A(l’) ~ A(l) if
I'-171 is a coboundary.

In fact, the assignment ! — A(l) yields a group isomorphism

H*(G, L*)5 Ker(Br(F) — Br(L)),
and taking these over all L we get an isomorphism

H?*(F,FX )5 Br(F);

sep



6 ALEXANDER MERKURJEV AND FEDERICO SCAVIA

see [1, Theorem 4.4.7].

7. Let L/F be a field extension. Prove that if A is a central simple F-algebra,
then Aj, := A®p L is a central simple L-algebra, and the assignment A — Ay, yields
a well defined restriction homomorphism Res : Br(F') — Br(L). In fact, the restric-
tion homomorphism Res is compatible with the restriction in Galois cohomology:
the diagram

H2(F, FX) "~ H2(L, LX)

sep sep
es

Br(F) —2 - Br(L)

is commutative.

8. Let V be a vector space over Fgep,. Suppose I' = Gal(Fyep/F') acts on V' so
that y(2v) = y(x)y(v) for ally € T, & € Fyep and v € V. Let W be the F-subspace
of I'-invariant elements in V. Prove that the map

Foep QF W =V TR wWw— xw
is an isomorphism of vector spaces over Fiqp.

9. Let L/F be a finite separable field extension and let A be an L-algebra.
Let X be the set of all F-algebra homomorphisms 7 : L — Fyp. The Galois
group I' = Gal(Fiep/F) acts on X by (1) = yor7. For any 7 € X let A; be
the tensor product A ®;, Fsep where Fiqp, is made into an L-algebra via 7, so that
ay@z=a@7(y)rforac A y€ L and x € Fyp,. For any v € I' and 7 € X the
map

Vi Ar 2 Ay, a®@z = a® ()
is a ring isomorphism such that ¥, (zu) = v(z) - - (u) for € Fyep, u € A-.

Consider the tensor product B = ®,ecx A, over Fg,. The group I' acts contin-

uously on B by

/

v(®a,) = ®a, where a, =73:(a,).
Show that B is an Fyep-algebra such that v(zz) = v(z) - v(2) for every x € Fyep
and z € B. Write Ny ,p(A) for the F-subalgebra of I-invariant elements in B. It
is called the norm algebra of A for the field extension L/F. Show that the natural
homomorphism Fyp, @ Ni/p(A) — B is an isomorphism of Fy.p-algebras and

dimp(Np/r(A)) = dimg (4)FF
Prove that if A is a central simple L-algebra, then Ny, p(A) is a central simple
F-algebra. Prove that the assignment [A] — [Ny, p(A)] is a well defined group
homomorphism Ny /g : Br(L) — Br(F). In fact, the norm homomorphism Ny, is
compatible with corestriction in Galois cohomology: the diagram
H?*(L,LYX) —= H?*(F,F})

sep sep

is commutative.

All fields below are of characteristic different from 2.
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10. Using Hilbert’s Theorem 90 prove that there a canonical isomorphism

hp : H*(F,Z/27) = Br(F)[2].

11. Let @ = (a,b) be the quaternion algebra over F’; see [1, Chapter 1]. Prove
that @ is a central simple algebra over F. Prove that the following are equivalent:

(i) Q ~ My(F);

(ii) The quadratic form (a, b, —ab) is isotropic;

(iii) The 2-fold Pfister form ({a, b)) is hyperbolic.

12. Let a,b € F*. Prove that

(Xa U Xb)(aa T) = Xa(J)Xb(T)
in Z/2Z and hp(xe U xs) in Br(F)[2] coincides with the class of the quaternion
algebra (a,b).

13. Prove that (a,b) + (a,c) = (a,bc) in Br(F).

14. Prove that the endomorphism o of the quaternion algebra @ over a field F’
of characteristic different from 2 given by o(x 4 yi+ zj +tk) = o(x — yi — zj — tk) is
an involution of @, i.e., o(uv) = o(v)o(u) for all u,v € Q and 0 0 0 = idg. Deduce
that Q°P ~ @ and 2[Q] = 0 in Br(F).

15. Under the assumptions of Problem 14, set

Trd(q) := g+ o(q), Nrd(q) := q-o(q)

for all ¢ € Q. Prove that Trd(gq) is a linear map @ — F (the reduced trace) and
Nrd(q) is a quadratic form @ — F' (the reduced norm).

16. Prove that every element g of a quaternion algebra @ is a root of the quadratic
polynomial 22 — Trd(q)z + Nrd(q) over F.

17. Let K/F be a quadratic field extension and let Q = (z,y) a quaternion
algebra over K.

() If both 2 and y belong to F', then Nk, p(Q) = 0 in Br(F) and Ng/p(Q) ~
My(F).

(i) If x € F, show that Ng,r(Q) = (¥, Ng,p(y)) in Br(F) and Ng/p(Q) ~
Ms((x, N/ r(y)))-

(tii) f e € L\F and y € L\ F, let a,b € F* be so that az+by = 1 (see Problem
9 in the Quadratic Forms section). Prove that

Ni/r(Q) = (a, Nk/r(y)) + (b; Niyp(x))  in Br(F)
and that
Ng/r(Q) =~ (a, Ng/r(y)) @F (b, Ng/r(x))
is a biquaternion algebra.
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