PROBLEM SET

ALEXANDER MERKURJEV AND FEDERICO SCAVIA

Abstract. This is the problem set for the authors' 2024 PCMI minicourse on Massey products in Galois cohomology.

Contents

1. Quadratic forms 1
2. Group cohomology 3
3. Brauer group 5
References 7

1. Quadratic forms

Reference: [3].

1. Let V be a vector space over a field F of characteristic not 2. A quadratic form on V is a map $q: V \rightarrow F$ such that $q(a v)=a^{2} q(v)$ for all $a \in F$ and $v \in V$ and the associated map

$$
b_{q}: V \times V \rightarrow F \quad(v, w) \mapsto q(v+w)-q(v)-q(w)
$$

is a bilinear form. A quadratic form q is called nondegenerate (or nonsingular) if the bilinear form b_{q} is nondegenerate; cf [3, Proposition 1.2].

Two quadratic forms are said to be isomorphic (or isometric) if there exists an isomorphism of the underlying vector spaces which respects the bilinear forms; see [3, p. 4]. The orthogonal sum $g \perp h$ of two quadratic forms g and h is defined in a natural way; see [3, p. 6].

For all $a_{1}, \ldots, a_{n} \in F^{\times}$, we write $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ for the quadratic form

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2} .
$$

Prove that every nondegenerate quadratic form is isomorphic to $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ for some $a_{i} \in F^{\times}$.
2. The form $\mathbb{H}=\langle 1,-1\rangle$ is the hyperbolic plane. A form isomorphic to the orthogonal sum $\mathbb{H}^{\perp n}$ of $n>0$ copies of the hyperbolic plane is called hyperbolic. A nondegenerate quadratic form $q: V \rightarrow F$ is isotropic if $q(v)=0$ for some nonzero $v \in V$. Prove that a nondegenerate quadratic form q is isotropic if and only if $q \simeq \mathbb{H} \perp q^{\prime}$ for some quadratic form q^{\prime}.
3. Two nondegenerate quadratic forms g and h are called Witt equivalent if $g \perp \mathbb{H}^{\perp n} \simeq h \perp \mathbb{H}^{\perp m}$ for some $n, m \geq 0$. The set of equivalence classes $[q] \in W(F)$ of nondegenerate quadratic forms q over F is endowed with the two operations

[^0]$[g]+[h]=[g \perp h]$ and $[g] \cdot[h]=[g \otimes h]$; see $[3$, I. $\S 6$, p. 17] for the definition of the Kronecker product $g \otimes h$. Prove that $W(F)$ is a commutative ring, called the Witt ring of F.

For simplicity, we will write q for $[q]$ in $W(F)$.
4. Show that the Cancellation Law $f \perp g \simeq f \perp h \Rightarrow g \simeq h$ (see [3, I.§4, Theorem 4.2]) implies that two nondegenerate quadratic forms g and h are isomorphic if and only if $g=h$ in $W(F)$ and $\operatorname{dim}(g)=\operatorname{dim}(h)$.
5. Let $a, b \in F^{\times}$. The form

$$
\langle\langle a, b\rangle\rangle=\langle 1,-a,-b, a b\rangle=\langle 1,-a\rangle \otimes\langle 1,-b\rangle
$$

is called a 2 -fold Pfister form. Let $Q=(a, b)$ be the quaternion algebra, i.e., Q is a 4-dimensional algebra with basis $\{1, i, j, k\}$ and multiplication table $k=i j=-j i$, $i^{2}=a$ and $j^{2}=b$. Prove that if $Q=(a, b)$ is a quaternion algebra then the reduced norm quadratic form Nrd_{Q} on Q is isomorphic to $\langle\langle a, b\rangle\rangle$. Show that if Q is split, then Nrd_{Q} is hyperbolic, otherwise, Nrd_{Q} is anisotropic. (See [3, III. $\S 1$ and $\S 2$] or [1, Chapter 1] for the definitions.)
6. Prove that the set $D(q)$ of nonzero values of $q=\langle\langle a, b\rangle\rangle$ is closed under multiplication. Prove that $d q \simeq q$ for every $d \in D(q)$.
7. If $q=\langle\langle a, b\rangle\rangle$, we write q° for the form $\langle a, b,-a b\rangle$, thus $q=\langle 1\rangle \perp\left(-q^{\circ}\right)$. Let Q be a quaternion algebra and let $Q^{\circ} \subset Q$ be the subspace of pure quaternions. Consider the 3-dimensional quadratic form h on Q° given by $h(x)=x^{2}$. Prove that $h \simeq\left(\operatorname{Nrd}_{Q}\right)^{\circ}$.
8. Two form g and h are called similar (or similar in $W(F)$) if $h \simeq a g$ (respectively, $h=a g$ in $W(F)$) for some $a \in F^{\times}$. Let q_{1} and q_{2} be two 2-fold Pfister forms. Suppose that for $a_{1}, a_{2} \in F^{\times}$, the forms $a_{1} q_{1}$ and $a_{2} q_{2}$ have a common nonzero value. Prove that $a_{1} q_{1}-a_{2} q_{2}$ is similar to $q_{1}-q_{2}=q_{2}^{\circ}-q_{1}^{\circ}$ in $W(F)$.

Let K / F be a quadratic field extension.
9. Prove that for every $x, y \in K \backslash F$ such that $x / y \notin F$ there exist nonzero $a, b \in F$ such that $a x+b y=1$. Prove that $\langle\langle a x, b y\rangle\rangle=0$ and

$$
\langle\langle a, b\rangle\rangle+\langle\langle x, y\rangle\rangle=\langle\langle a, y\rangle\rangle+\langle\langle b, x\rangle\rangle
$$

in $W(K)$.
10. Let $s: K \rightarrow F$ be a nonzero F-linear map such that $s(1)=0$. Prove that s is unique up to an F-multiple. Prove that if h is a (nondegenerate) quadratic form over K, then $s_{*}(h):=s \circ h$ is a (nondegenerate) quadratic form over F of dimension $2 \operatorname{dim}(h)$. Show that the map $s_{*}: W(K) \rightarrow W(F)$ is a group homomorphism (called the transfer map). Prove that $s_{*}(\operatorname{Im}(W(F) \rightarrow W(K))=0$.
11. Prove that $s_{*}(\langle\langle b, x\rangle\rangle)$ is similar to $\left\langle\left\langle b, N_{K / F}(x)\right\rangle\right\rangle$ and $s_{*}(\langle\langle a, y\rangle\rangle)$ is similar to $\left\langle\left\langle a, N_{K / F}(y)\right\rangle\right\rangle$ in $W(F)$.
12. Prove that

$$
s_{*}\langle\langle x, y\rangle\rangle=s_{*}\langle\langle a, y\rangle\rangle+s_{*}\langle\langle b, x\rangle\rangle
$$

in $W(F)$. Show that the forms $s_{*}\langle\langle a, y\rangle\rangle$ and $-s_{*}\langle\langle b, x\rangle\rangle$ have a common nonzero value in F.
13. Deduce from Problem 8 that the 6 -dimensional forms $s_{*}\left(\langle\langle x, y\rangle\rangle^{\circ}\right)$ and

$$
\left.\left\langle\left\langle a, N_{K / F}(y)\right\rangle\right\rangle^{\circ}\right) \perp\left(-\left\langle\left\langle b, N_{K / F}(x)\right\rangle\right\rangle^{\circ}\right)
$$

are similar. (Remark: A biquaternion algebra is the tensor product of two quaternion algebras, $A=B \otimes_{F} C$. The 6 -dimensional form $\left(\operatorname{Nrd}_{B}\right)^{\circ} \perp-\left(\operatorname{Nrd}_{C}\right)^{\circ}$ is called an Albert form of A; see $[2, \S 16]$. It depends on the decomposition of A into tensor product of two quaternion algebras, but every two Albert forms of A are similar. One can restate the exercise as follows: Prove that for every quaternion algebra Q over K, the form $s_{*}\left(\operatorname{Nrd}_{Q}\right)^{\circ}$ is similar to an Albert form of the biquaternion algebra $N_{K / F}(Q)$.)
14. Let Q be a quaternion algebra over K. Prove that the algebra $N_{K / F}(Q)$ is split if and only if the 6 -dimensional form $s_{*}\left(\operatorname{Nrd}_{Q}\right)^{\circ}$ is hyperbolic.

2. Group cohomology

References: [5], [4, Chapter 1].

1. Let Γ be a profinite group and let M be a Γ-module considered as a discrete topological space. For an integer $n \geq 0$ write $C^{n}(\Gamma, M)$ for the abelian group of all continuous maps (n-cochains) $\Gamma^{n} \rightarrow M$. Consider the homomorphisms

$$
d^{n}: C^{n}(\Gamma, M) \rightarrow C^{n+1}(\Gamma, M)
$$

defined by the formula

$$
\begin{aligned}
d^{n}(\varphi)\left(x_{1}, \ldots, x_{n+1}\right)= & x_{1} \varphi\left(x_{2}, \ldots, x_{n+1}\right)+ \\
& \sum_{i=1}^{n}(-1)^{i} \varphi\left(x_{1}, \ldots, x_{i-1}, x_{i} x_{i+1}, \ldots, x_{n+1}\right)+ \\
& (-1)^{n+1} \varphi\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Show that $d^{n+1} \circ d^{n}=0$ for all n. Define the following groups:
$Z^{n}(\Gamma, M)=\operatorname{Ker}\left(d^{n}\right)$ the group of n-cocycles of Γ with values in M,
$B^{n}(\Gamma, M)=\operatorname{Im}\left(d^{n-1}\right)$ the group of n-coboundaries of Γ with values in M,
$H^{n}(\Gamma, M)=Z^{n}(\Gamma, M) / B^{n}(\Gamma, M)$ the n-th cohomology group of Γ with values in M.
2. Show that

$$
H^{0}(\Gamma, M)=M^{\Gamma}:=\{m \in M \mid x m=m \text { for all } x \in \Gamma\} .
$$

3. Prove that an exact sequence $0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$ of Γ-modules yields an infinite exact sequence

$$
\ldots \rightarrow H^{n}(\Gamma, M) \rightarrow H^{n}(\Gamma, N) \rightarrow H^{n}(\Gamma, P) \rightarrow H^{n+1}(\Gamma, M) \rightarrow \ldots
$$

4. Show that if Γ acts trivially on M, the group $H^{1}(\Gamma, M)$ is equal to the group of all continuous homomorphisms $\Gamma \rightarrow M$.
5. Prove that if M is a Γ-module and $\Gamma^{\prime} \subset \Gamma$ is a (closed) subgroup, then the restriction map $C^{n}(\Gamma, M) \rightarrow C^{n}\left(\Gamma^{\prime}, M\right)$ yields the restriction homomorphism

$$
\operatorname{res}_{\Gamma / \Gamma^{\prime}}: H^{n}(\Gamma, M) \rightarrow H^{n}\left(\Gamma^{\prime}, M\right) .
$$

If Γ^{\prime} is an open subgroup of Γ (and therefore, of finite index), there is the corestriction homomorphism

$$
\operatorname{cor}_{\Gamma / \Gamma^{\prime}}: H^{n}\left(\Gamma^{\prime}, M\right) \rightarrow H^{n}(\Gamma, M)
$$

6. Prove that if Γ^{\prime} is a normal subgroup of Γ, then the group $M^{\Gamma^{\prime}}$ has the natural structure of a Γ / Γ^{\prime}-module and the natural map $C^{n}\left(\Gamma / \Gamma^{\prime}, M^{\Gamma^{\prime}}\right) \rightarrow C^{n}(\Gamma, M)$ yields the inflation homomorphism

$$
\inf _{\Gamma / \Gamma^{\prime}}: H^{n}\left(\Gamma / \Gamma^{\prime}, M^{\Gamma^{\prime}}\right) \rightarrow H^{n}(\Gamma, M)
$$

Prove that the inflation homomorphisms yield an isomorphism

$$
\operatorname{colim} H^{n}\left(\Gamma / \Gamma^{\prime}, M^{\Gamma^{\prime}}\right) \xrightarrow{\sim} H^{n}(\Gamma, M),
$$

where the colimit (direct limit) is taken over all open normal subgroups $\Gamma^{\prime} \subset \Gamma$.
7. Let $\varphi \in Z^{n}(\Gamma, N)$ and $\psi \in Z^{m}(\Gamma, M)$ be two cocycles. Prove that the function $\varphi \cup \psi: \Gamma^{n+m} \rightarrow N \otimes_{\mathbb{Z}} M$ defined by the formula

$$
(\varphi \cup \psi)\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=\varphi\left(x_{1}, \ldots, x_{n}\right) \otimes x_{1} \cdots x_{n} \psi\left(y_{1}, \ldots, y_{m}\right)
$$

is a $(n+m)$-cocycle. Prove that this construction yields a well-defined cup-product bilinear map

$$
\cup: H^{n}(\Gamma, N) \times H^{m}(\Gamma, M) \rightarrow H^{n+m}\left(\Gamma, N \otimes_{\mathbb{Z}} M\right)
$$

Prove the projection formula:

$$
\operatorname{cor}_{\Gamma / \Gamma^{\prime}}\left(\varphi \cup \operatorname{res}_{\Gamma / \Gamma^{\prime}}(\psi)\right)=\operatorname{cor}_{\Gamma / \Gamma^{\prime}}(\varphi) \cup \psi
$$

where Γ^{\prime} is an open subgroup of $\Gamma, \varphi \in H^{n}\left(\Gamma^{\prime}, N\right)$ and $\psi \in H^{m}(\Gamma, M)$.
8. Let F be a field, let $F_{\text {sep }}$ be a separable closure of F and $\Gamma=\Gamma_{F}=$ $\operatorname{Gal}\left(F_{\text {sep }} / F\right)$. The multiplicative group $F_{\text {sep }}^{\times}$of $F_{\text {sep }}$ is a Γ-module. We write

$$
H^{n}\left(F, F_{\mathrm{sep}}^{\times}\right):=H^{n}\left(\Gamma, F_{\mathrm{sep}}^{\times}\right) .
$$

Prove that $H^{0}\left(F, F_{\text {sep }}^{\times}\right)=F^{\times}$and $H^{n}\left(F, F_{\text {sep }}^{\times}\right) \simeq \operatorname{colim} H^{n}\left(G, L^{\times}\right)$, where the colimit is taken over all finite Galois field sub-extensions L / F of $F_{\text {sep }} / F$ and $G=\operatorname{Gal}(L / F)$.
9. Let L / F be a finite field extension with Galois group G. Let $l: G \rightarrow L$ be a map such that $\sum_{\tau \in G} l(\tau) \cdot \tau(x)=0$ for all $x \in L$. Prove that $l(\tau)=0$ for all $\tau \in G$.

Let $l: G \rightarrow L^{\times}$be a 1-cocycle. Show that there is $x \in L$ such that

$$
y:=\sum_{\tau \in G} l(\tau) \cdot \tau(x) \neq 0
$$

Prove that $l(\sigma)=y / \sigma(y)$ for all $\sigma \in G$. Deduce that $H^{1}\left(G, L^{\times}\right)=1$ and $H^{1}\left(F, F_{\text {sep }}^{\times}\right)=1$. This is Hilbert's Theorem 90.
10. Prove that the sequence of Γ-modules $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow F_{\text {sep }}^{\times} \rightarrow F_{\text {sep }}^{\times} \rightarrow 1$, where the first map takes $1+2 \mathbb{Z}$ to -1 in $F_{\text {sep }}^{\times}$and the second map takes x to x^{2}. Deduce that there is a canonical Kummer isomorphism

$$
\operatorname{Hom}_{\text {cont }}(\Gamma, \mathbb{Z} / 2 \mathbb{Z})=H^{1}(F, \mathbb{Z} / 2 \mathbb{Z}) \simeq F^{\times} / F^{\times 2}
$$

11. For an element $a \in F^{\times}$write $\chi_{a}: \Gamma \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ for the character of Γ corresponding to $a F^{\times 2}$ under the Kummer isomorphism. If χ_{a} is a nontrivial character,
show that the subfield of all $\operatorname{Ker}\left(\chi_{a}\right)$-invariant elements in $F_{\text {sep }}$ is isomorphic to $F_{a}=F\left(a^{1 / 2}\right)$.

3. Brauer group

Reference: [1].

1. Let A and B be two F-algebras. Prove that

$$
M_{n}(A) \otimes_{F} M_{m}(B) \simeq M_{n m}\left(A \otimes_{F} B\right) .
$$

2. Let $Z(A)$ be the center of an F-algebra A. Prove that

$$
Z\left(A \otimes_{F} B\right)=Z(A) \otimes_{F} Z(B)
$$

for every two F-algebras A and B. In particular, if both A and B are central F-algebras, then so is $A \otimes_{F} B$.
3. A finite dimensional F-algebra A is called simple if A has no proper twosided ideals. By Wedderburn's Theorem [1, Theorem 2.1.3] and Problem 2, every central simple F-algebra A is isomorphic to $M_{k}(D)$, where D is a central division F-algebra. The algebra D is uniquely determined by A (up to isomorphism) as the endomorphism algebra of a (unique) simple right A-module; cf. [1, Lemma 2.1.6]. Let A and B be two simple F-algebras. Prove that if A is central, then $A \otimes_{F} B$ is simple. In particular, if A and B are central simple F-algebras, then so is $A \otimes_{F} B$.
4. Two finite-dimensional central simple F-algebras A and B are called equivalent if $M_{n}(A) \simeq M_{m}(B)$ for some integers $n, m>0$. The set $\operatorname{Br}(F)$ of equivalence classes $[A]$ of central simple F-algebras form the Brauer group via the (additively written) operation

$$
[A]+[B]=\left[A \otimes_{F} B\right] .
$$

Prove that $-[A]$ is the class of the opposite algebra $A^{o p}$ (see $[1, \mathrm{p} .32]$ for the definition of $A^{o p}$).

If A is a central simple algebra, we will often write A instead of $[A]$.
5. Prove that two central simple F-algebras A and B are isomorphic if and only if $A=B$ in $\operatorname{Br}(F)$ and $\operatorname{dim}(A)=\operatorname{dim}(B)$.
6. Let L / F be a finite field extension with Galois group G. Let $l: G \times G \rightarrow L^{\times}$ be a 2 -cocycle, i.e.,

$$
l(\sigma, \tau) \cdot l(\sigma \tau, \rho)=\sigma(l(\tau, \rho)) \cdot l(\sigma, \tau \rho)
$$

for all $\sigma, \tau, \rho \in G$. Let $A(l)$ be a vector space over L with basis e_{σ} for $\sigma \in G$. We make $A(l)$ into an F-algebra via the following multiplication rules:
(i) $e_{\sigma} x=\sigma(x) e_{\sigma}$ for all $\sigma \in G$ and $x \in L$,
(ii) $e_{\sigma} e_{\tau}=l(\sigma, \tau) \cdot e_{\sigma \tau}$.

Prove that $A(l)$ is a central simple F-algebra. Show that $A(l)$ does not change up to isomorphism if the cocycle l is replaced by an equivalent one: $A\left(l^{\prime}\right) \simeq A(l)$ if $l^{\prime} \cdot l^{-1}$ is a coboundary.

In fact, the assignment $l \mapsto A(l)$ yields a group isomorphism

$$
H^{2}\left(G, L^{\times}\right) \xrightarrow[\rightarrow]{\sim} \operatorname{Ker}(\operatorname{Br}(F) \rightarrow \operatorname{Br}(L)),
$$

and taking these over all L we get an isomorphism

$$
H^{2}\left(F, F_{\text {sep }}^{\times}\right) \xrightarrow[\rightarrow]{\sim} \operatorname{Br}(F) ;
$$

see [1, Theorem 4.4.7].
7. Let L / F be a field extension. Prove that if A is a central simple F-algebra, then $A_{L}:=A \otimes_{F} L$ is a central simple L-algebra, and the assignment $A \mapsto A_{L}$ yields a well defined restriction homomorphism Res : $\operatorname{Br}(F) \rightarrow \operatorname{Br}(L)$. In fact, the restriction homomorphism Res is compatible with the restriction in Galois cohomology: the diagram

is commutative.
8. Let V be a vector space over $F_{\text {sep }}$. Suppose $\Gamma=\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ acts on V so that $\gamma(x v)=\gamma(x) \gamma(v)$ for all $\gamma \in \Gamma, x \in F_{\text {sep }}$ and $v \in V$. Let W be the F-subspace of Γ-invariant elements in V. Prove that the map

$$
F_{\text {sep }} \otimes_{F} W \rightarrow V \quad x \otimes w \mapsto x w
$$

is an isomorphism of vector spaces over $F_{\text {sep }}$.
9. Let L / F be a finite separable field extension and let A be an L-algebra. Let X be the set of all F-algebra homomorphisms $\tau: L \rightarrow F_{\text {sep }}$. The Galois $\operatorname{group} \Gamma=\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ acts on X by $\gamma(\tau)=\gamma \circ \tau$. For any $\tau \in X$ let A_{τ} be the tensor product $A \otimes_{L} F_{\text {sep }}$ where $F_{\text {sep }}$ is made into an L-algebra via τ, so that $a y \otimes x=a \otimes \tau(y) x$ for $a \in A, y \in L$ and $x \in F_{\text {sep }}$. For any $\gamma \in \Gamma$ and $\tau \in X$ the map

$$
\tilde{\gamma}_{\tau}: A_{\tau} \rightarrow A_{\gamma \tau}, \quad a \otimes x \mapsto a \otimes \gamma(x)
$$

is a ring isomorphism such that $\widetilde{\gamma}_{\tau}(x u)=\gamma(x) \cdot \widetilde{\gamma}_{\tau}(u)$ for $x \in F_{\text {sep }}, u \in A_{\tau}$.
Consider the tensor product $B=\otimes_{\tau \in X} A_{\tau}$ over $F_{\text {sep }}$. The group Γ acts continuously on B by

$$
\gamma\left(\otimes a_{\tau}\right)=\otimes a_{\tau}^{\prime} \quad \text { where } \quad a_{\gamma \tau}^{\prime}=\widetilde{\gamma}_{\tau}\left(a_{\tau}\right)
$$

Show that B is an $F_{\text {sep }}$-algebra such that $\gamma(x z)=\gamma(x) \cdot \gamma(z)$ for every $x \in F_{\text {sep }}$ and $z \in B$. Write $N_{L / F}(A)$ for the F-subalgebra of Γ-invariant elements in B. It is called the norm algebra of A for the field extension L / F. Show that the natural homomorphism $F_{\text {sep }} \otimes_{F} N_{L / F}(A) \rightarrow B$ is an isomorphism of $F_{\text {sep }}$-algebras and

$$
\operatorname{dim}_{F}\left(N_{L / F}(A)\right)=\operatorname{dim}_{L}(A)^{[L: F]}
$$

Prove that if A is a central simple L-algebra, then $N_{L / F}(A)$ is a central simple F-algebra. Prove that the assignment $[A] \mapsto\left[N_{L / F}(A)\right]$ is a well defined group homomorphism $N_{L / F}: \operatorname{Br}(L) \rightarrow \operatorname{Br}(F)$. In fact, the norm homomorphism $N_{L / F}$ is compatible with corestriction in Galois cohomology: the diagram

is commutative.
All fields below are of characteristic different from 2.
10. Using Hilbert's Theorem 90 prove that there a canonical isomorphism

$$
h_{F}: H^{2}(F, \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\sim} \operatorname{Br}(F)[2] .
$$

11. Let $Q=(a, b)$ be the quaternion algebra over F; see [1, Chapter 1]. Prove that Q is a central simple algebra over F. Prove that the following are equivalent:
(i) $Q \simeq M_{2}(F)$;
(ii) The quadratic form $\langle a, b,-a b\rangle$ is isotropic;
(iii) The 2-fold Pfister form $\langle\langle a, b\rangle\rangle$ is hyperbolic.
12. Let $a, b \in F^{\times}$. Prove that

$$
\left(\chi_{a} \cup \chi_{b}\right)(\sigma, \tau)=\chi_{a}(\sigma) \chi_{b}(\tau)
$$

in $\mathbb{Z} / 2 \mathbb{Z}$ and $h_{F}\left(\chi_{a} \cup \chi_{b}\right)$ in $\operatorname{Br}(F)[2]$ coincides with the class of the quaternion algebra (a, b).
13. Prove that $(a, b)+(a, c)=(a, b c)$ in $\operatorname{Br}(F)$.
14. Prove that the endomorphism σ of the quaternion algebra Q over a field F of characteristic different from 2 given by $\sigma(x+y i+z j+t k)=\sigma(x-y i-z j-t k)$ is an involution of Q, i.e., $\sigma(u v)=\sigma(v) \sigma(u)$ for all $u, v \in Q$ and $\sigma \circ \sigma=\mathrm{id}_{Q}$. Deduce that $Q^{o p} \simeq Q$ and $2[Q]=0$ in $\operatorname{Br}(F)$.
15. Under the assumptions of Problem 14, set

$$
\operatorname{Trd}(q):=q+\sigma(q), \quad \operatorname{Nrd}(q):=q \cdot \sigma(q)
$$

for all $q \in Q$. Prove that $\operatorname{Trd}(q)$ is a linear map $Q \rightarrow F$ (the reduced trace) and $\operatorname{Nrd}(q)$ is a quadratic form $Q \rightarrow F$ (the reduced norm).
16. Prove that every element q of a quaternion algebra Q is a root of the quadratic polynomial $x^{2}-\operatorname{Trd}(q) x+\operatorname{Nrd}(q)$ over F.
17. Let K / F be a quadratic field extension and let $Q=(x, y)$ a quaternion algebra over K.
(i) If both x and y belong to F, then $N_{K / F}(Q)=0$ in $\operatorname{Br}(F)$ and $N_{K / F}(Q) \simeq$ $M_{4}(F)$.
(ii) If $x \in F$, show that $N_{K / F}(Q)=\left(x, N_{K / F}(y)\right)$ in $\operatorname{Br}(F)$ and $N_{K / F}(Q) \simeq$ $M_{2}\left(\left(x, N_{K / F}(y)\right)\right)$.
(iii) If $x \in L \backslash F$ and $y \in L \backslash F$, let $a, b \in F^{\times}$be so that $a x+b y=1$ (see Problem 9 in the Quadratic Forms section). Prove that

$$
N_{K / F}(Q)=\left(a, N_{K / F}(y)\right)+\left(b, N_{K / F}(x)\right) \quad \text { in } \operatorname{Br}(F)
$$

and that

$$
N_{K / F}(Q) \simeq\left(a, N_{K / F}(y)\right) \otimes_{F}\left(b, N_{K / F}(x)\right)
$$

is a biquaternion algebra.

References

[1] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology, volume 165 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. Second edition. 2, 5, 6, 7
[2] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol. The book of involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. 3
[3] T. Y. Lam. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. 1, 2
[4] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008. 3
[5] Jean-Pierre Serre. Galois cohomology. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. 3

Department of Mathematics, University of California, Los Angeles, CA 90095, United States of America

Email address: merkurev@math.ucla.edu
Institut Galilée, Université Sorbonne Paris Nord, 99 avenue Jean-Baptiste Clément, 93430, Villetaneuse, France

Email address: scavia@math.univ-paris13.fr

[^0]: Date: July 2024.

