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Abstract. This is the problem set for the authors’ 2024 PCMI minicourse on

Massey products in Galois cohomology.
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1. Quadratic forms

Reference: [3].
1. Let V be a vector space over a field F of characteristic not 2. A quadratic

form on V is a map q : V → F such that q(av) = a2q(v) for all a ∈ F and v ∈ V
and the associated map

bq : V × V → F (v, w) 7→ q(v + w)− q(v)− q(w)

is a bilinear form. A quadratic form q is called nondegenerate (or nonsingular) if
the bilinear form bq is nondegenerate; cf [3, Proposition 1.2].

Two quadratic forms are said to be isomorphic (or isometric) if there exists an
isomorphism of the underlying vector spaces which respects the bilinear forms; see
[3, p. 4]. The orthogonal sum g ⊥ h of two quadratic forms g and h is defined in a
natural way; see [3, p. 6].

For all a1, . . . , an ∈ F×, we write 〈a1, a2, . . . , an〉 for the quadratic form

a1x
2
1 + a2x

2
2 + . . .+ anx

2
n.

Prove that every nondegenerate quadratic form is isomorphic to 〈a1, a2, . . . , an〉 for
some ai ∈ F×.

2. The form H = 〈1,−1〉 is the hyperbolic plane. A form isomorphic to the
orthogonal sum H⊥n of n > 0 copies of the hyperbolic plane is called hyperbolic. A
nondegenerate quadratic form q : V → F is isotropic if q(v) = 0 for some nonzero
v ∈ V . Prove that a nondegenerate quadratic form q is isotropic if and only if
q ' H ⊥ q′ for some quadratic form q′.

3. Two nondegenerate quadratic forms g and h are called Witt equivalent if
g ⊥ H⊥n ' h ⊥ H⊥m for some n,m ≥ 0. The set of equivalence classes [q] ∈W (F )
of nondegenerate quadratic forms q over F is endowed with the two operations

Date: July 2024.

1



2 ALEXANDER MERKURJEV AND FEDERICO SCAVIA

[g] + [h] = [g ⊥ h] and [g] · [h] = [g ⊗ h]; see [3, I.§6, p. 17] for the definition of the
Kronecker product g ⊗ h. Prove that W (F ) is a commutative ring, called the Witt
ring of F .

For simplicity, we will write q for [q] in W (F ).

4. Show that the Cancellation Law f ⊥ g ' f ⊥ h⇒ g ' h (see [3, I.§4, Theorem
4.2]) implies that two nondegenerate quadratic forms g and h are isomorphic if and
only if g = h in W (F ) and dim(g) = dim(h).

5. Let a, b ∈ F×. The form

〈〈a, b〉〉 = 〈1,−a,−b, ab〉 = 〈1,−a〉 ⊗ 〈1,−b〉

is called a 2-fold Pfister form. Let Q = (a, b) be the quaternion algebra, i.e., Q is a
4-dimensional algebra with basis {1, i, j, k} and multiplication table k = ij = −ji,
i2 = a and j2 = b. Prove that if Q = (a, b) is a quaternion algebra then the reduced
norm quadratic form NrdQ on Q is isomorphic to 〈〈a, b〉〉. Show that if Q is split,
then NrdQ is hyperbolic, otherwise, NrdQ is anisotropic. (See [3, III.§1 and §2] or
[1, Chapter 1] for the definitions.)

6. Prove that the set D(q) of nonzero values of q = 〈〈a, b〉〉 is closed under
multiplication. Prove that dq ' q for every d ∈ D(q).

7. If q = 〈〈a, b〉〉, we write q◦ for the form 〈a, b,−ab〉, thus q = 〈1〉 ⊥ (−q◦). Let
Q be a quaternion algebra and let Q◦ ⊂ Q be the subspace of pure quaternions.
Consider the 3-dimensional quadratic form h on Q◦ given by h(x) = x2. Prove that
h ' (NrdQ)◦.

8. Two form g and h are called similar (or similar in W (F )) if h ' ag (respec-
tively, h = ag in W (F )) for some a ∈ F×. Let q1 and q2 be two 2-fold Pfister
forms. Suppose that for a1, a2 ∈ F×, the forms a1q1 and a2q2 have a common
nonzero value. Prove that a1q1 − a2q2 is similar to q1 − q2 = q◦2 − q◦1 in W (F ).

Let K/F be a quadratic field extension.

9. Prove that for every x, y ∈ K \ F such that x/y /∈ F there exist nonzero
a, b ∈ F such that ax+ by = 1. Prove that 〈〈ax, by〉〉 = 0 and

〈〈a, b〉〉+ 〈〈x, y〉〉 = 〈〈a, y〉〉+ 〈〈b, x〉〉

in W (K).

10. Let s : K → F be a nonzero F -linear map such that s(1) = 0. Prove that s
is unique up to an F -multiple. Prove that if h is a (nondegenerate) quadratic form
over K, then s∗(h) := s◦h is a (nondegenerate) quadratic form over F of dimension
2 dim(h). Show that the map s∗ : W (K)→W (F ) is a group homomorphism (called
the transfer map). Prove that s∗(Im(W (F )→W (K)) = 0.

11. Prove that s∗(〈〈b, x〉〉) is similar to 〈〈b,NK/F (x)〉〉 and s∗(〈〈a, y〉〉) is similar to
〈〈a,NK/F (y)〉〉 in W (F ).

12. Prove that

s∗〈〈x, y〉〉 = s∗〈〈a, y〉〉+ s∗〈〈b, x〉〉
in W (F ). Show that the forms s∗〈〈a, y〉〉 and −s∗〈〈b, x〉〉 have a common nonzero
value in F .
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13. Deduce from Problem 8 that the 6-dimensional forms s∗(〈〈x, y〉〉◦) and

〈〈a,NK/F (y)〉〉◦) ⊥ (−〈〈b,NK/F (x)〉〉◦)

are similar. (Remark: A biquaternion algebra is the tensor product of two quater-
nion algebras, A = B⊗F C. The 6-dimensional form (NrdB)◦ ⊥ −(NrdC)◦ is called
an Albert form of A; see [2, §16]. It depends on the decomposition of A into tensor
product of two quaternion algebras, but every two Albert forms of A are similar.
One can restate the exercise as follows: Prove that for every quaternion algebra Q
over K, the form s∗(NrdQ)◦ is similar to an Albert form of the biquaternion algebra
NK/F (Q).)

14. Let Q be a quaternion algebra over K. Prove that the algebra NK/F (Q) is
split if and only if the 6-dimensional form s∗(NrdQ)◦ is hyperbolic.

2. Group cohomology

References: [5], [4, Chapter 1].
1. Let Γ be a profinite group and let M be a Γ-module considered as a discrete

topological space. For an integer n ≥ 0 write Cn(Γ,M) for the abelian group of all
continuous maps (n-cochains) Γn →M . Consider the homomorphisms

dn : Cn(Γ,M)→ Cn+1(Γ,M)

defined by the formula

dn(ϕ)(x1, . . . , xn+1) = x1ϕ(x2, . . . , xn+1)+
n∑
i=1

(−1)iϕ(x1, . . . , xi−1, xixi+1, . . . , xn+1)+

(−1)n+1ϕ(x1, . . . , xn).

Show that dn+1 ◦ dn = 0 for all n. Define the following groups:

Zn(Γ,M) = Ker(dn) the group of n-cocycles of Γ with values in M ,

Bn(Γ,M) = Im(dn−1) the group of n-coboundaries of Γ with values in M ,

Hn(Γ,M) = Zn(Γ,M)/Bn(Γ,M) the n-th cohomology group of Γ with values in
M .

2. Show that

H0(Γ,M) = MΓ := {m ∈M | xm = m for all x ∈ Γ}.

3. Prove that an exact sequence 0→ M → N → P → 0 of Γ-modules yields an
infinite exact sequence

. . .→ Hn(Γ,M)→ Hn(Γ, N)→ Hn(Γ, P )→ Hn+1(Γ,M)→ . . .

4. Show that if Γ acts trivially on M , the group H1(Γ,M) is equal to the group
of all continuous homomorphisms Γ→M .

5. Prove that if M is a Γ-module and Γ′ ⊂ Γ is a (closed) subgroup, then the
restriction map Cn(Γ,M)→ Cn(Γ′,M) yields the restriction homomorphism

resΓ/Γ′ : Hn(Γ,M)→ Hn(Γ′,M).
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If Γ′ is an open subgroup of Γ (and therefore, of finite index), there is the corestric-
tion homomorphism

corΓ/Γ′ : Hn(Γ′,M)→ Hn(Γ,M).

6. Prove that if Γ′ is a normal subgroup of Γ, then the group MΓ′
has the natural

structure of a Γ/Γ′-module and the natural map Cn(Γ/Γ′,MΓ′
)→ Cn(Γ,M) yields

the inflation homomorphism

infΓ/Γ′ : Hn(Γ/Γ′,MΓ′
)→ Hn(Γ,M).

Prove that the inflation homomorphisms yield an isomorphism

colimHn(Γ/Γ′,MΓ′
)
∼→ Hn(Γ,M),

where the colimit (direct limit) is taken over all open normal subgroups Γ′ ⊂ Γ.

7. Let ϕ ∈ Zn(Γ, N) and ψ ∈ Zm(Γ,M) be two cocycles. Prove that the function
ϕ ∪ ψ : Γn+m → N ⊗Z M defined by the formula

(ϕ ∪ ψ)(x1, . . . , xn, y1, . . . , ym) = ϕ(x1, . . . , xn)⊗ x1 · · ·xnψ(y1, . . . , ym)

is a (n+m)-cocycle. Prove that this construction yields a well-defined cup-product
bilinear map

∪ : Hn(Γ, N)×Hm(Γ,M)→ Hn+m(Γ, N ⊗Z M).

Prove the projection formula:

corΓ/Γ′(ϕ ∪ resΓ/Γ′(ψ)) = corΓ/Γ′(ϕ) ∪ ψ,

where Γ′ is an open subgroup of Γ, ϕ ∈ Hn(Γ′, N) and ψ ∈ Hm(Γ,M).

8. Let F be a field, let Fsep be a separable closure of F and Γ = ΓF =
Gal(Fsep/F ). The multiplicative group F×sep of Fsep is a Γ-module. We write

Hn(F, F×sep) := Hn(Γ, F×sep).

Prove that H0(F, F×sep) = F× and Hn(F, F×sep) ' colimHn(G,L×), where the
colimit is taken over all finite Galois field sub-extensions L/F of Fsep/F and
G = Gal(L/F ).

9. Let L/F be a finite field extension with Galois group G. Let l : G→ L be a
map such that

∑
τ∈G l(τ) · τ(x) = 0 for all x ∈ L. Prove that l(τ) = 0 for all τ ∈ G.

Let l : G→ L× be a 1-cocycle. Show that there is x ∈ L such that

y :=
∑
τ∈G

l(τ) · τ(x) 6= 0.

Prove that l(σ) = y/σ(y) for all σ ∈ G. Deduce that H1(G,L×) = 1 and
H1(F, F×sep) = 1. This is Hilbert’s Theorem 90.

10. Prove that the sequence of Γ-modules 0→ Z/2Z→ F×sep → F×sep → 1, where

the first map takes 1 + 2Z to −1 in F×sep and the second map takes x to x2. Deduce
that there is a canonical Kummer isomorphism

Homcont(Γ,Z/2Z) = H1(F,Z/2Z) ' F×/F×2.

11. For an element a ∈ F× write χa : Γ → Z/2Z for the character of Γ corre-
sponding to aF×2 under the Kummer isomorphism. If χa is a nontrivial character,
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show that the subfield of all Ker(χa)-invariant elements in Fsep is isomorphic to

Fa = F (a1/2).

3. Brauer group

Reference: [1].
1. Let A and B be two F -algebras. Prove that

Mn(A)⊗F Mm(B) 'Mnm(A⊗F B).

2. Let Z(A) be the center of an F -algebra A. Prove that

Z(A⊗F B) = Z(A)⊗F Z(B)

for every two F -algebras A and B. In particular, if both A and B are central
F -algebras, then so is A⊗F B.

3. A finite dimensional F -algebra A is called simple if A has no proper two-
sided ideals. By Wedderburn’s Theorem [1, Theorem 2.1.3] and Problem 2, every
central simple F -algebra A is isomorphic to Mk(D), where D is a central division
F -algebra. The algebra D is uniquely determined by A (up to isomorphism) as the
endomorphism algebra of a (unique) simple right A-module; cf. [1, Lemma 2.1.6].
Let A and B be two simple F -algebras. Prove that if A is central, then A⊗F B is
simple. In particular, if A and B are central simple F -algebras, then so is A⊗F B.

4. Two finite-dimensional central simple F -algebrasA andB are called equivalent
if Mn(A) 'Mm(B) for some integers n,m > 0. The set Br(F ) of equivalence classes
[A] of central simple F -algebras form the Brauer group via the (additively written)
operation

[A] + [B] = [A⊗F B].

Prove that −[A] is the class of the opposite algebra Aop (see [1, p. 32] for the
definition of Aop).

If A is a central simple algebra, we will often write A instead of [A].

5. Prove that two central simple F -algebras A and B are isomorphic if and only
if A = B in Br(F ) and dim(A) = dim(B).

6. Let L/F be a finite field extension with Galois group G. Let l : G×G→ L×

be a 2-cocycle, i.e.,

l(σ, τ) · l(στ, ρ) = σ(l(τ, ρ)) · l(σ, τρ)

for all σ, τ, ρ ∈ G. Let A(l) be a vector space over L with basis eσ for σ ∈ G. We
make A(l) into an F -algebra via the following multiplication rules:

(i) eσx = σ(x)eσ for all σ ∈ G and x ∈ L,
(ii) eσeτ = l(σ, τ) · eστ .
Prove that A(l) is a central simple F -algebra. Show that A(l) does not change

up to isomorphism if the cocycle l is replaced by an equivalent one: A(l′) ' A(l) if
l′ · l−1 is a coboundary.

In fact, the assignment l 7→ A(l) yields a group isomorphism

H2(G,L×)
∼→Ker(Br(F )→ Br(L)),

and taking these over all L we get an isomorphism

H2(F, F×sep)
∼→Br(F );
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see [1, Theorem 4.4.7].

7. Let L/F be a field extension. Prove that if A is a central simple F -algebra,
then AL := A⊗F L is a central simple L-algebra, and the assignment A 7→ AL yields
a well defined restriction homomorphism Res : Br(F )→ Br(L). In fact, the restric-
tion homomorphism Res is compatible with the restriction in Galois cohomology:
the diagram

H2(F, F×sep)
res // H2(L,L×sep)

Br(F )
Res // Br(L)

is commutative.

8. Let V be a vector space over Fsep. Suppose Γ = Gal(Fsep/F ) acts on V so
that γ(xv) = γ(x)γ(v) for all γ ∈ Γ, x ∈ Fsep and v ∈ V . Let W be the F -subspace
of Γ-invariant elements in V . Prove that the map

Fsep ⊗F W → V x⊗ w 7→ xw

is an isomorphism of vector spaces over Fsep.

9. Let L/F be a finite separable field extension and let A be an L-algebra.
Let X be the set of all F -algebra homomorphisms τ : L → Fsep. The Galois
group Γ = Gal(Fsep/F ) acts on X by γ(τ) = γ ◦ τ . For any τ ∈ X let Aτ be
the tensor product A ⊗L Fsep where Fsep is made into an L-algebra via τ , so that
ay ⊗ x = a ⊗ τ(y)x for a ∈ A, y ∈ L and x ∈ Fsep. For any γ ∈ Γ and τ ∈ X the
map

γ̃τ : Aτ → Aγτ , a⊗ x 7→ a⊗ γ(x)

is a ring isomorphism such that γ̃τ (xu) = γ(x) · γ̃τ (u) for x ∈ Fsep, u ∈ Aτ .
Consider the tensor product B = ⊗τ∈XAτ over Fsep. The group Γ acts contin-

uously on B by

γ(⊗aτ ) = ⊗a′τ where a′γτ = γ̃τ (aτ ).

Show that B is an Fsep-algebra such that γ(xz) = γ(x) · γ(z) for every x ∈ Fsep

and z ∈ B. Write NL/F (A) for the F -subalgebra of Γ-invariant elements in B. It
is called the norm algebra of A for the field extension L/F . Show that the natural
homomorphism Fsep ⊗F NL/F (A)→ B is an isomorphism of Fsep-algebras and

dimF (NL/F (A)) = dimL(A)[L:F ].

Prove that if A is a central simple L-algebra, then NL/F (A) is a central simple
F -algebra. Prove that the assignment [A] 7→ [NL/F (A)] is a well defined group
homomorphism NL/F : Br(L)→ Br(F ). In fact, the norm homomorphism NL/F is
compatible with corestriction in Galois cohomology: the diagram

H2(L,L×sep)
cor // H2(F, F×sep)

Br(L)
NL/F // Br(F )

is commutative.

All fields below are of characteristic different from 2.



PROBLEM SET 7

10. Using Hilbert’s Theorem 90 prove that there a canonical isomorphism

hF : H2(F,Z/2Z)
∼−→ Br(F )[2].

11. Let Q = (a, b) be the quaternion algebra over F ; see [1, Chapter 1]. Prove
that Q is a central simple algebra over F . Prove that the following are equivalent:

(i) Q 'M2(F );
(ii) The quadratic form 〈a, b,−ab〉 is isotropic;
(iii) The 2-fold Pfister form 〈〈a, b〉〉 is hyperbolic.

12. Let a, b ∈ F×. Prove that

(χa ∪ χb)(σ, τ) = χa(σ)χb(τ)

in Z/2Z and hF (χa ∪ χb) in Br(F )[2] coincides with the class of the quaternion
algebra (a, b).

13. Prove that (a, b) + (a, c) = (a, bc) in Br(F ).

14. Prove that the endomorphism σ of the quaternion algebra Q over a field F
of characteristic different from 2 given by σ(x+yi+zj+ tk) = σ(x−yi−zj− tk) is
an involution of Q, i.e., σ(uv) = σ(v)σ(u) for all u, v ∈ Q and σ ◦ σ = idQ. Deduce
that Qop ' Q and 2[Q] = 0 in Br(F ).

15. Under the assumptions of Problem 14, set

Trd(q) := q + σ(q), Nrd(q) := q · σ(q)

for all q ∈ Q. Prove that Trd(q) is a linear map Q → F (the reduced trace) and
Nrd(q) is a quadratic form Q→ F (the reduced norm).

16. Prove that every element q of a quaternion algebraQ is a root of the quadratic
polynomial x2 − Trd(q)x+ Nrd(q) over F .

17. Let K/F be a quadratic field extension and let Q = (x, y) a quaternion
algebra over K.

(i) If both x and y belong to F , then NK/F (Q) = 0 in Br(F ) and NK/F (Q) '
M4(F ).

(ii) If x ∈ F , show that NK/F (Q) = (x,NK/F (y)) in Br(F ) and NK/F (Q) '
M2((x,NK/F (y))).

(iii) If x ∈ L\F and y ∈ L\F , let a, b ∈ F× be so that ax+by = 1 (see Problem
9 in the Quadratic Forms section). Prove that

NK/F (Q) = (a,NK/F (y)) + (b,NK/F (x)) in Br(F )

and that

NK/F (Q) ' (a,NK/F (y))⊗F (b,NK/F (x))

is a biquaternion algebra.
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