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Preface

Every time I commit to doing something like these lectures, in some sense I
use it as an opportunity(?) to justify my existence. What are the things which I
believe are of interest and why? How do we study these things?

The answers I’ll present are a bit indirect. For the first, consider the following
story1. Once upon a time, a young person in the village decides to find out
about the meaning of destiny and fate and becomes a wanderer. They travel
far and wide. Eventually they are told that if they really want to understand
the meaning of life, they should seek out a certain hermit, living in a cave
on the side of a mountain. Apparently for many years, the hermit secluded
themselves in the search for the meaning of life.

So the wanderer eventually tracks down the hermit, after long toil, and then
asks “Master, what is fate?” The master replies “It is that which we carry with
us, what we bring from place to place our lives. It is that which causes the toil
of beasts of burden. It is that which men in former times had to bear upon their
backs. It is that which has caused nations to build byways from City to City
upon which carts and coaches pass, and alongside which inns have come to be
built to stave off Hunger, Thirst and Weariness.” “And that is Fate?” said the
wanderer. “Fate? I thought you said freight,” responded the hermit. “That’s
all right,” said the wanderer. “I wanted to know what freight was too.”

I have found on the search for deep meaning in mathematics, one generally
has to carry a lot of freight along the way. And I therefore ask your patience in
the beginning of the lectures.

For the how, as to what methods I have found useful, I would say that my
main tool has been pure desperation. To me it feels like there has been no
method, but rather a frantic stringing together of tools.

Nonetheless, I will try to present things with a polite fiction of coherence,
as best I can.

1this story, which I attribute to my father, is actually shamelessly modified from “The Profit,”
by Kehlog Albran (actually written by Martin A. Cohen and Sheldon Shacket).
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Chapter 1

Philosophical meanderings
around field arithmetic

Let’s start with the basic question: for a field F, which systems of polynomial
equations have solutions?

As we learn from algebraic geometry, thinking of a variety as a specific
collection of equations can be somewhat problematic. Instead, we often learn
more from other descriptions and interpretations of such systems. Nonetheless,
let us start from this perspective.

As linear equations are not particularly interesting from our perspective –
we can very easily answer questions of which linear systems of equations have
nontrivial solutions by computing their dimension, we find that the first case
of interest is quadratic equations (in possibly many variables).

1.1 Quadratic forms

As many of us know, quadratic forms have an unreasonably rich structure
arithmetically, while geometrically, they don’t vary in moduli. That is, over an
algebraically closed field, any two nonsingular quadratic forms are equivalent
after a change of variables, and singular ones are classified entirely by their
“amount of singularity” as is encoded in their “radical.” On the other hand,
over a non-algebraically closed field, there is very rich classification of quadratic
forms with incredibly subtle information encoded within them.

We say that forms q, q′ are isometric if they differ by an invertible linear
change of variables.

We say that a quadratic form q over a field F is isotropic if there is a (projec-
tive) solution to the equation q = 0, and we say it is anisotropic otherwise.

1.1.1 Overview of some classical results to frame study

1. Hasse-Minkowski, Lagrange
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2. u-invariants, finite fields, function fields

3. Kaplansky’s conjecture about u-invariants, results of Merkurjev, Vishik,
Izbholdin

4. expected behavior of u-invariants over “reasonable” fields

5. Results of Parimala/Suresh, HHK, Leep for p-adics

6. Conjectures for function fields over number fields

1.1.2 The Witt ring of anisotropic forms, fundamental ideal
and the Milnor conjectures

1. Grothendieck-Witt ring, Witt decomposition/equivalence, Witt ring, fun-
damental ideals

2. Ring structure for bilinear forms

3. embedding of Z into W(F), torsion and nonreality

4. Pfister forms and the powers of the fundamental ideals

5. Galois cohomology – derived functor of Galois fixed points of groups
with continuous Galois actions

6. H0 and H1 (via crossed homomorphisms), classical invariants of quadratic
forms

Pfister number problem (with and without fixed dimension of form) due to
Brosnan, Reichstein and Vistoli, 2010.

1.2 Cubic forms

1.2.1 Homogenous 2-variable forms

One variable cubic forms / homogeneous two-variable cubic forms are cubic
field extensions. The study of these breaks up into two pieces: their dis-
criminant, which are quadratic extensions, and cubic extensions with fixed
discriminant, which are governed by (twisted) Kummer theory.

We see that, in particular, cubic extensions are not all “the same kinds of
things,” but rather there are certain special ones – cyclic extensions and Kummer
extensions – which exhibit special extra structure. We can interpret these via
Galois cohomology.

• Kummer sequence, Kummer extensions

• Cyclic extensions
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Here we find a common theme: for a certain class of variety – here actually a
finite scheme – we have a close relationship with a class of algebraic objects, by
which we mean a “linear algebraic object.” It is then natural to ask the extent
to which we can classify such varieties via those same algebraic structures.
Parametrizing Kummer extensions is straightforward, but there is already some
subtlety here already in describing cyclic extensions.

In our case, we can indeed write them down and there are various formu-
lations, but they aren’t “obvious.” For example:

f (X) = X3
− tX2 + (t − 3)X + 1

for any value of t ∈ F has splitting field which is a cyclic degree 3 extensions
and conversely, every degree 3 cyclic extension has an element with a minimal
polynomial of this form.

Finding such expressions for cyclic extensions of higher degree is not so
simple. Indeed, one can show that no such straightforward parametrization
can work for the group C8.

But all this concerns homogeneous polynomials in 2 variables. What about
3 or more variables?

1.2.2 Homogeneous cubic forms in more variables

We can clearly see that the case of 3 variables in degree 3 is particularly special.
These are genus 1 plane curves which includes the case of elliptic curves. In
particular, there are both geometric as well as arithmetic aspects of these curves
– even over an algebraically closed field, these are not all isomorphic but are
classified by a 1-dimensional moduli (the j-line). Singular ones have highly
constrained behavior (cusp or node) the normalizations of which are rational
curves with a single singularity (node or cusp) and with the complement ratio-
nally parametrized. Consequently thier normalizations are just the projective
line, and these don’t vary in moduli.

There are also further famous advantages to studying these from an arith-
metic perspective, but we will mostly not consider such things.

For now, we will put these aside as a different kind of “nonlinear phenom-
ena.”

How about the case of 4 variables? Here we find a new kinds of phenomena.
Generically a cubic form in 4 variables determines a cubic surface, which

have rich arithmetic. Unlike the case of quadratic forms, cubic forms have
moduli – this is to say, even over an algebraically closed field

Given a cubic field extension E/F, we can consider the equation NE/F(x) = b
for some b ∈ F∗. The vector space E is 3 dimensional and this gives, after
homogenization, a degree 3 form in 4 variables. At the algebraic closure, this
looks like xyz = w3, a form which is singular when w and any other variable
equals 0. Such an equation has some very interesting behavior.

1. examination of the degree 2 case of this and quaternion algebras
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2. examination of the degree 3 case of this for cyclic extensions and cyclic/symbol
algebras

what is the “natural algebraic structure” if we don’t have a cyclic extension???
Not clear.

1.3 Generalizations via algebraic structures

1. Cyclic algebras, norms

2. Central simple algebras, Crossed products, Galois cohomology

3. Brauer group, division algebras

Analog of the u-invariant – period-index problem. How large can an
“anisotropic” central simple algebra be with a given period?

relationship with u-invariant via clifford invariant: via Merkurjev’s theo-
rem, u-invariant bound gives period-index bound for period 2 classes.

Period-index conjectures of Colliot-Thelene.
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Chapter 2

Measurements of field
arithmetic

2.1 Galois cohomology and field arithmetic

2.1.1 The many faces of Galois cohomology

We’ll give a quick summary of group cohomology, Milnor K-theory and mo-
tivic cohomology and describe thier interrelationships. In some sense, this is
pedagogically backwards – these are, in some sense, the tools we will use to
study fields and algebraic structures over them, and it would therefore be more
natural to start with these algebraic structures. Instead, we’ll discuss these in
Section 2.2.

2.1.1.1 Galois cohomology

The definition of Galois cohomology is straightforward. Let k be a field, Gk
its absolute (profinite) Galois group, and AbGk the category of Abelian groups
endowed with a (usually discrete) topology and a continuous action by Gk.
For M ∈ AbGk , the invariants MGk gives a left exact functor to Abelian groups,
and we define the Galois cohomology group Hn(Gk,M) to be the nth right
derived functor of this functor. The category AbGk has a natural monoidal
structure extending ⊗Z on Abelian groups, and the Galois cohomology groups
are endowed with a cup product Hn(Gk,M)⊗ZHm(Gk,N)→ Hn+m(Gk,M⊗ZN).
These groups have remarkable connections to various algebraic structures.

A particularly important role is played by the groups Hn(k, µ⊗n
ℓ ), which, as n

varies, form a ring. By convention, we set µ⊗0
ℓ = Z/n so that H0(k, µ⊗0

ℓ ) = Z/n.
Hilbert 90 tells us that H1(k,Gm) = H1(k, (ksep)∗) = 0, which tells us H1(k, µℓ) �
k∗/(k∗)ℓ. We conventionally write (a) of (a)ℓ to denote the element of H1(k, µℓ)
corresponding to the class of a in k∗/(k∗)ℓ. Cup products of these elements are
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written by concatenation, so that (a)∪(b) = (a, b) and (a1, . . . , am)∪(am+1, . . . , an) =
(a1, . . . , an). These elements are caled symbols.

As a wider context, the Galois cohomology groups coincide with étale co-
homology: if X is a scheme and F is a sheaf in the étale topology, we can define
Hn

ét(X,F ). In the case that X = Spec k, we have Hn
ét(k,F ) = Hn

ét(Spec k,F ) =
Hn(Gk,F (ksep)).

2.1.1.2 Milnor K-theory

The the definition of Galois cohomology was straightfowards, the definition of
Milnor K-theory is surprisingly more so. For a field k, we define the Milnor
K-theory ring KM

• (k) = ⊕nKM
n (k) by:

1. KM
0 (k) = Z,

2. KM
1 (k) � k∗ written additively. That is, the elements of KM

1 (k) are written
as {a} for a ∈ k∗ with the additive structure {a} + {b} = {ab},

3. products are written by concatenation. That is: {a}{b} = {a, b} and

{a1, . . . , am}{am+1, . . . , an} = {a1, . . . , an}

(these elements are called symbols),

4. the ring structure is the free associative one described above, but modulo
the relations {a, b} = 0 whenever a + b = 1.

The relationship with Galois cohomology can be seen from the fact that
(a, b)ℓ = 0 in H2(k, µ⊗2

ℓ ) whenever a + b = 1, which provides a natural map

KM
• (k)→ KM

• (k)/ℓ N
→ H•(k, µ⊗•ℓ )

where N is refered to as the norm residue map (due to Tate?). The key result of
Voevodsky and others (Weibel, Suslin, Rost, ...) is that this is an isomorphism.
This was known as the Bloch-Kato conjecture.

While these have an astonishingly elementary presentation, and have a
number of natrual maps and properties (restriction, corestriction, residues,
specializations, reciprocity, etc), they don’t obviously generalize beyond fields
to schemes.

2.1.1.3 The Witt ring

The Witt ring encodes information about quadratic forms over a field. Recall
that for a vector space V over a field k of characteristic not 2, the polarization
identities let us pass between quadratic forms and symmetric bilinear forms,
which give rise to homomorphisms V → V∗. We say that a form is nonsingular
if this is an isomorphism. The Witt ring W(k) is defined as
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• generated as an Abelian group by q = (V, q) = (V, b) consisting of a vector
space with a bilinear form,

• modulo the ideal generated by (V ⊥W) −V −W and by the form xy (the
hyperbolic plane),

• with ring structure given by the tensor product (and corresponding bilin-
ear form).

This group contains and enriched version of the Galois cohomology ring
with Z/2 coefficients, thanks to the Milnor conjecture, proved by Voevodsky.
The connection works like this. By Gram-Schmidt, we may, after change of
basis, write a nonsingular quadratic form in the form q(x1, . . . , xn) = a1x2

1 +

· · · ,+anx2
n, and we write this form as ⟨a1, . . . , an⟩. We write ⟨⟨a⟩⟩ = ⟨1,−a⟩ and

⟨⟨a1, . . . , an⟩⟩ = ⟨⟨a1⟩⟩ ⊗ · · · ⊗ ⟨⟨an⟩⟩. These are called n-fold Pfister forms.
We define I(k) to be the ideal of W(k) consisting of even dimensional forms,

and I j(k) it’s jth power. It turns out that I j is generated by j-fold Pfister forms,
and that one may obtain a homomorphism

KM
j (k)→ I j(k)/I j+1(k)

defined by taking the symbol {a1, . . . , a j} to the Pfister form ⟨⟨a1, . . . , an⟩⟩ induces
an isomorphism

KM
j (k)/2 � I j(k)/I j+1(k).

This was known as the Milnor conjecture and was proved by Voevodsky. This
gives rise to a series of (surjective) maps:

e j : I j(k)→ KM
j (k)/2→ H j(k, µ2)

These are particularly useful for understanding these cohomology groups, as
it says that every mod 2 cohomology class is determined by a quadratic form,
giving useful tools to approach them.

2.1.1.4 Motivic cohomology and motivic complexes

A key feature of Milnor K-theory, is that (due to the Bloch-Kato conjecture),
is that KM

n (k) provides an "integral version" of the étale cohomology groups
Hn(k, µ⊗n

ℓ ). On the other hand, this is specific to the coefficients µ⊗n
ℓ in degree

n cohomology. Among other things, motivic cohomology provides integral
versions of various cohomology groups, including powers of roots of unity.

The essential feature here was the construction of the so-called motivic com-
plexes, typically denoted Z(m). These are particular complexes of presheaves
on the category of smooth schemes over a field k, and are usefully considered
both with respect to the étale, Zariski (or Nisnevich) topologies. The Zariski
hypercohomology groups Hn(X,Z(m)) = Hn(X,Z(m)) = Hn,m(X,Z) and is the
(n,m)th motivic cohomology group of X. The étale hypercohomology groups,
denoted Hn

ét(X,Z(m)) are called the étale motivic cohomology groups. These
relate to the other groups in the following ways:
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1. there is a quasi-isomorphism µ⊗n
ℓ → Z/ℓ(n) in the étale topology (for

example, Theorem 10.3 in Mazza-Voevodsky-Weibel),

2. there is an isomorphism Hn
Zar(k,Z(n)) = KM

n (k) (Nestrenko-Suslin in 1990 /
Totaro in 1992 in the context of Bloch’s higher Chow groups, for example).

3. the Bloch-Kato conjecture can be seen as an identification of Hn
Zar(k,Z/ℓ(n))

and Hn
ét(k,Z/ℓ(n)), which follows from the Beilinson-Lichtenbaum con-

jecture, saying that the pushforward from étale to Zariski (or Nisnevich)
is acyclic forZ/ℓ(n) up to degree n (for any smooth variety over k) this is,
roughly, Hm

Zar(k,Z/ℓ(n)) � Hm
ét(k,Z/ℓ(n)) for m ≤ n.

2.1.1.5 Overview/Summary

1. Galois cohomology naturally arises in looking for invariants of algebraic
objects and varieties (cohomological invariants, birational invariants of
varieties, etc). Generalizes to étale cohomology of schemes.

2. Milnor K-theory has a remarkably simple presentation in terms of genera-
tors and relations. Also has various useful properties/ natural operations
(residues, restriction, corestriction, specialization, reciprocity). Doesn’t
generalize easily beyond fields (some results for certain rings, though).

3. Motivic cohomology glues together the two things above, and relates to
a number of other geometric theories/constructions (for example Chow
groups), and have cohomological operations, providing tools for relating
invariants in new ways.

2.1.2 Interactions with field arithmetic

If these various groups (motivic cohomology groups, étale cohomology groups,
etc) play a role similar to cohomology groups of a topological space, for exam-
ple, we should be able to use them to study arithmetic properties of fields.
In addition, as we will see in the next section, they can be used to measure
invariants of algebraic structures.

2.1.2.1 The dimensions of a field and splitting forms

There is no single notion of the “dimension” of a field. Instead, we have a series
of competing notions, which do not always agree with each other.

2.1.2.1.1 Naive/heuristic dimension

Definition 2.1.2.1. For k a finitely generated over a prime field or an algebraically
closed field k0, we say the (naive) dimension dim(k) is:

• trdegk0
(k) if k0 is algebraically closed,

10



• trdegk0
(k) + 1 if k0 is finite,

• trdegk0
(k) + 2 if k0 = Q.

A very rough rationalle for this (really quite ad hoc) is that we are trying
to model fields which have properties analogous to function fields of varieties
over algebraically closed fields, as in the first part of the definition. A finite
field, in terms of its Galois theory, is quite similar to C((x)), which both have
unique cyclic extensions of any given degree, with an absolute Galois group
of Ẑ. In this sense, it behaves like something which would be “geometrically
dimension 1.” Global fields (function fields of curves over finite fields) should
then have dimension two, and number fields, as they are analogous to global
fields, should also have dimension 2.

2.1.2.1.2 Cohomological dimension

Definition 2.1.2.2. We say that the cohomological dimension of a field k is at most n if
for every discrete, torsion Gk module M, we have Hm(Gk,M) = 0 whenever m > n. We
say cdim(k) = n if n is the infemum of the set of integers such that k has cohomological
dimension at most n.

Examples: finite fields have cdim(k) = 1. Global fields and imaginary
number fields have cdim(k) = 2. More generally, for finitely generated fields
which are not formally real (−1 is a sum of squares), we have cdim(k) = dim(k).
The presence of real orderings makes the cohomological dimension act quite
differently than the naive dimension. In fact, if a field has real orderings, the
cohomological dimension is always infinite! To take this into account, one can
alternatively consider the virtual cohomological dimension: this is defined to
be the cohomological dimension of k(

√
−1).

2.1.2.1.3 Diophantine dimension and Tsen rank

Definition 2.1.2.3. We say that a field k is Cn if for every d > 0 and m > dn, every
homogeneous polynomial f of degree d in m variables has a nontrivial zero. We say
the Diophantine dimension of k is n and write ddim(k) = n if n is the smallest integer
such that k is Cn.

Definition 2.1.2.4. We say that a field k is Tn if for every d1, . . . , dr > 0 and m >
∑

dn
i ,

every system of homogeneous polynomials fi with deg fi = di in m variables has a
nontrivial zero. We say the Tsen rank of k is n, and write trk(k) = n if n is the smallest
integer such that k is Tn.

Clearly Tn =⇒ Cn and so trk(k) ≥ ddim(k). The converse is open. For
finitely generated fields over Q, ddim(k) is not finite, but for finitely generated
fields over finite fields or algebraically closed fields, one has dim(k) = cdim(k) =
ddim(k).

Examples of Ax show that it is possible to have fields of cohomological
dimension 1, but infinite Diophantine dimension (and hence Tsen rank). The
converse is much less clear:
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Question 2.1.2.5 (Serre, Galois cohomology). Is ddim(k) ≥ cdim(k)?

This is perhaps motivated by the following idea:

Definition 2.1.2.6. Let α ∈ Hn(k,A). We say that a homogeneous polynomial f is a
splitting form for α if for every field extension L/k, αL = 0 whenever fL is isotropic.

One can show, for example, that a positive answer to Serre’s question would
follow from the existence of splitting forms of degree ℓ and in ℓn + 1 variables
for symbols α ∈ Hn(k, µ⊗n

ℓ ) (in fact, it suffices to consider the case that ℓ is a
prime, and that k is prime-to-ℓ closed). This holds for n = 2 (the Severi-Brauer
varieties), n = 3 (Merkurjev-Suslin varieties), n general and ℓ = 2 (Pfister
quadrics, thanks to the positive solution to the Milnor conjecture), n = 4, ℓ = 3
(Norm equations for Albert algebras), but these are not known to exist in
general.

In fact, for a given value of ddim(k), cdim(k) is not known to be bounded in
general. In work with Matzri, we have shown that if ddim(k) is finite, then for
every p, the p-torsion in Hi(k,M) only occurs for i roughly up to log2(p) ddim(k).
In the case p = 2, this gives the conjectural description, but we don’t get any
uniform result for different p...

There are a number of related properties and variations of the above. These
include the Ai properties of Leep, and the Ci, j property of Kato /Kato-Kazumaki.

2.1.3 Structural problems in Galois cohomology

In this section we will be considering different notions of complexity of algebraic
objects.

2.1.3.1 The period-index problem

Given a field k and a cohomology class α ∈ Hi(k, µ⊗ j
ℓ ), we say that a field

extension L/k splits α if αL = 0 in Hi(L, µ⊗ j
ℓ ).

Definition 2.1.3.1. For α as above, we set

ind(α) = gcd{[L : k] | L/k is a finite field extension splitting α}

per(α) = the order of α in Hi(k, µ⊗ j
ℓ )

Of course per(α) is bounded by ℓ. A restriction-corestriction argument
shows that per(α)| ind(α), and one may also show ind(α)|per(α)N for some
integer N (depending possibly on α).

Problem 2.1.3.2 (The period-index problem). For a given field k, and integers i, j, ℓ,
find an integer n (for example, in terms of ddim(k) or dim(k) in the finitely generated
case) such that ind(α)|per(α)n for all α ∈ Hi(k, µ⊗ j

ℓ ).
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Conjecture 2.1.3.3 (The period-index conjecture for degree 2, often attributed
to Colliot-Thélène). For a field k with ddim(k) = n or dim(k) = n and α ∈ H2(k, µℓ),
we have ind(α)|per(α)n−1.

In many cases of interest, no such bound is known to exist, for example for
finitely generated fields overQ of transcendence degree at least 1. On the other
hand, the well known result of Albert-Brauer-Hasse-Noether for the Brauer
group shows that per(α) = ind(α) for α ∈ H2(k, µℓ) for k a global field.

2.1.3.2 Essential and canonical dimensions

Having decided on a class of algebraic objects – be it central simple algebras,
quadratic forms, etc, it is natural to think of these as giving a functor which
associates to a field (or ring), the isomorphism classes of algebraic objects
over this field (or ring). We therefore recall some measures of complexity for
functors.

2.1.3.2.1 Essential dimension

Definition 2.1.3.4. For a functor F from field extensions of k to sets, we define the
essential dimension of an element α ∈ F (L) to be the minimal transcendence degree of
a field extension L0/k with L0 ⊂ L such that α is the image of some α0 ∈ F (L0). We
define ed(F ), the essential dimension of F to be the supremum of essential dimensions
of α ∈ F (L), taken over all field extensions L/k.

For example, if F (L) is the isomorphism classes of quadratic forms of a
fixed dimension n over L, then any such form, having a diagonal represen-
tation ⟨a1, . . . , an⟩ is defined over the field k(a1, . . . , an) and hence the essential
dimension of F is at most n (and in fact is equal to n). This captures, in a
sense, a notion of complexity of such structures, by giving a “minimal number
of parameters” needed to describe these objects.

Definition 2.1.3.5. For a functor F from k-algebras to sets, we say that an element
α0 ∈ F (R) is versal if for every field extension L/k and α ∈ F (L), there exists a
k-algebra homomorphism R→ L taking α0 to α.

For example, the form ⟨x1, . . . , xn⟩ defined over the ring k[x±1
1 , . . . , x

±1
n ] is

versal for quadratic forms of dimension n.

Exercise 2.1.3.6. If there exists α0 ∈ F (R) with R a finitely generated k-algebra which
is a domain, then ed(F ) is at most the Krull dimension of R.

Problem 2.1.3.7 (A fundamental (ideal) problem). Let I m
n (L) be isomorphism

classes of quadratic forms of a fixed dimension n which lie in Im(L). Is ed(I m
n ) finite?

Note that we may extend this functor to k-algebras by defining it to be those
forms which, for every homomorphism to a field (i.e. for each prime) specialize
to forms in the fundamental ideal. That is q ∈ I m

n (R) if for every prime p with
residue field κ(p), we have q ⊗R κ(p) ∈ In(κ(p)).
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That is, is there a way to present the basic form of a quadratic form in n
variables in Im? The answer is yes if m = 0, 1, 2, 3, but this is open for m > 4 and
n ≥ 2m+2m−1 (it follows from the work of Hoffmann/Vishik that we may obtain
a bound if n < 2m + 2m−1)).

2.1.3.3 Canonical dimension

A natural way to approach Problem 2.1.3.7, in light of the Milnor conjecture,
is as follows. There is a natural transformation of functors I m

n → H n which
associates to a quadratic form q over a k-algebra R (let’s say regular, or even
smooth, to not add too many potential issues), a cohmology class in Hn

ét(R, µ2) –
it is actually convenient to let H n be the Zariski sheafification of this presheaf
for this to make sense (we don’t need this for n ≤ 2, but see the work of Esnault,
Kahn, Levine, Veihweg for the issues which arise in the case n = 3, and in
principle, things continue to get more complicated thereafter). We may then
obtain an exact sequence of functors

0→ I m+1
n → I m

n →Hn

and we can hope to obtain a bound on the essential dimension inductively on
powers of the fundamental ideal, if we can bound the ways in which we can
split elements of Hn. This leads us to...

Definition 2.1.3.8 (Canonical dimension). Suppose F is a functor from field ex-
tensions of k to pointed sets. For α ∈ F (L), we can associate to this a new functor
F̌α from field extensions of L to sets, defined by F̌α(E) = ∗ if α maps to the point in
F (E), and F̌α = ∅ otherwise. We define cd(α), the canonical dimension of α to be the
essential dimension of F̌α.

Definition 2.1.3.9 (Generic splitting schemes). For a functor F from field exten-
sions of k to pointed sets, andα ∈ F (L), we say that an L-scheme X is a generic splitting
scheme for α if for a field extension E/L, we have αE = ∗ if and only if X(E) , ∅.

Exercise 2.1.3.10 (?). If X is a generic splitting scheme for α of finite type over L, then
the canonical dimension of α is at most the Krull dimension of X.

Problem 2.1.3.11 (Generic splitting schemes). Do (finite type) generic splitting
schemes exist for classes in cohomology groups Hi(k, µ⊗ j

ℓ )?

For ℓ = 2 and α a symbol, the Pfister quadrics are generic splitting schemes,
but in general for non symbols, we have no such generic splitting schemes
of finite type (except for forms of small Pfister length...). These also exist for
symbols in H3 and H4 for ℓ = 3 and j = i − 1 (using Albert algebras). In [?],
these are shown to exist for i ≤ 2, but this is open in general for i ≥ 3.

For α a symbol (in the case i = j), these exist up to issues of prime to ℓ
extensions for ℓ a prime. These are the norm varieties.

For non-symbols in general, things are pretty wide open.
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2.1.3.3.1 Representation and Effective indices It is not clear that this notion
of index is always the correct one for higher cohomology classes. We may also
define the representation index of α ∈ Hi(Gk, µ

⊗ j
ℓ ) to be the smallest m such that

α is the inflation of a class in Hi(Gal(E/k), µ⊗ j
ℓ (E)) with [E : k] = m. In some ways

this may be better behaved.
The effective index is the min over splitting fields.

2.1.3.4 The symbol length problem

Given a cohomology class α ∈ Hi(k, µ⊗i
ℓ ) � KM

i (k)/ℓ, due to the explicit pre-
sentation of the Milnor K-theory group, we may write α = α1 + · · · + αm for
α j = (a1, j, . . . , ai, j). The minimal such m is called the symbol length of α.

Problem 2.1.3.12 (The symbol length problem). For a given field k, and integers
i, ℓ, find an m (in terms of some kind of dimension of the field, for example) such that
the symbol length of every class in Hi(k, µ⊗i

ℓ ) is at most m.

It is not hard to show that a bound on the symbol length gives a bound on
the index. More subtle is a partial converse (K): if we have index bounds in
degrees up to n, for finite field extensions of k, we obtain symbol length bounds
for degree n.

In general though, this problem is pretty wide open. For example, there is
no known bound on symbol length for cohomology classes of degree at least
2 over complex function fields in at least 3 variables (with the exception of ℓ a
power of 2 from the theory of quadratic forms!!). The problem of function fields
over number fields and finite fields is similarly opaque. Some notable results
for degree 2 classes on surfaces were obtained by deJong (complex), Lieblich
(finite field), p-adic (AAIKL). For degree 3 and higher, very very little is known.

A huge step forward was obtained by Matzri, who showed that the symbol
length of a class in H2(k, µ⊗2

ℓ ) is bounded in terms of ddim(k), i and ℓ whenever
k contains a primitive ℓth root of unity. Conjecturally, however, we expect that
there is a bound which doesn’t depend on ℓ. In the case that ddim k = d, ℓ = pt,
Matzri gives an upper bound of t(pd−1

− 1) for the symbol length.

Problem 2.1.3.13 (The symbol length problem (index version)). For a field k0,
and integers i, ℓ,n, find an m such that the symbol length of every class in Hi(k, µ⊗i

ℓ )
which has index dividing n has index at most m, for every field k containing k0.

Combined with other results, if ℓ = pt, and k0 has finite characteristic or is
algebraically closed, one can use Matzri’s results to obtain bounds in the case
i = 2. Namely, if ind(α) = ps, we get a symbol length of at most

t
(
p(p2s−2+1+ϵ) − 1

)
and a lower bound of ⌈ s

t ⌉ + 1.
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2.1.3.5 The decomposability problem

In the symbol length problem, it was essential that we were able to write a
general cohomology class as a sum of symbols in order for the problem to
make sense. For more general cohomology classes α ∈ Hi(k, µ⊗ j

ℓ ), it is natural to
ask whether or not αmay be written as a sum of “simpler” classes. One natural
formulation is the following:

Problem 2.1.3.14 (The decomposability problem). Given a cohomology class α ∈
Hi(k, µ⊗ j

ℓ ), can we find classes α1, . . . , αm with ind(αi) = ℓ and
∑
αi = α?

Again, this is wide open, however in the case ℓ is prime, a result of Merkurjev
[?] shows that H2(k, µℓ) is generated by elements of index ℓ. I don’t know of
any results for other degrees and other twists, though.

I personally expect that classes should decompose in this way, but I have
very little evidence to back it up.

On the extreme side of this, one asks if we can write classes in such a way that
the index is “accounted for” simply by “independent parts” which compose it:

Problem 2.1.3.15 (The indecomposability existence problem). Given α of period
ℓ and index ℓn, can we write α = α1 + α2 with

• ind(α1) ind(α2) = ind(α) (strong decomposability) or

• ind(α1), ind(α2) < ind(α) (weak decomposability)

Once more, very little is known here outside some results in degree 2. The
existence of strong indecomposables in degree 2 has a long history, with various
classical examples and more recent constructions given by Karpenko as well as
by McKinnie. In particular, Karpenko gave methods for detecting decompos-
ability via Chow groups of homogeneous varieties. In work in progress I have
some results on weak decomposability, following Karpenko’s methods. The
higher degree cases are wide open.

The expectation, however, is that decomposable classes should arise as the
dimension increases.

2.1.3.6 Index vs effective index

Problem 2.1.3.16. For α ∈ Hi(k, µ j
ℓ) is min{[E : k]|αE = 0} = gcd{[E : k]|αE = 0}?

This is answered in the affirmative for i = 1 and for i = 2, j = 1. It is open is
essentially all other cases.

2.1.3.7 The cyclicity problem

Problem 2.1.3.17. Are classes of prime index split by cyclic field extensions of that
index?

This is known in the affirmative for i = 2, j = 1, ℓ ∈ {2, 3} and open in
essentially all other cases.
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2.1.3.8 The admissibility problem

Problem 2.1.3.18. For a cohomology class α ∈ Hi(k, µ j
ℓ), what are the possible groups

G which appear as Galois groups of field extensions E/k such that αE = 0?

This was originallly posed by Schacher in the case k = Q, i = 2, j = 1. Various
partial results are known, but it is quite open in general.

2.1.3.9 The genus problem

Problem 2.1.3.19 (one of many variations). For a cohomology class α ∈ Hi(k, µ j
ℓ),

determine all classes β such that βE = 0 if and only if αE = 0 for E/k finite.

The collection of such β could be called the genus (or species) of α, and is
conjecturally finite for finitely generated fields.

2.2 Complexity of algebraic objects

We have earlier introduced field arithmetic to be the study of solutions to poly-
nomial equations. In practice, these equations often arise from understanding
properties of algebraic structures, which we think of as (a collection of) vec-
tor space(s) equipped with tensors and maps between them (satisfying some
axioms etc).

Often these algebraic objects are described by descent – all twisted forms of
some fixed “model” or “split” object, and hence are in bijection with torsors for
a linear algebraic group G.

So now, given some type of algebraic structure, we naturally want to ask:

• Parametrization: how can we parametrize all such structures, or give
some kind of “bounded presentation” for them?

• Classification: how can we tell if two of these are the same?

Both of these questions can be interpreted in different ways, and may also
interact with each other.

A usual approach to the classification problem is to come up with a collection
of invariants, often with values in Galois cohomology. We think of this as like
“characteristic classes.” Typically these tend to have values in Hn(k, µ⊗(n−1)

ℓ )
for various n (“one off” from Milnor K-theory). Given a suitable parameter
space, one can consider these invariants as classes on these parameter spaces,
as the invariants of a “universal class.” A basic example of this would be the
following:

• structure: quadratic forms of a fixed dimension d over a field k

• parametrization: as we have seen, we can always diagonalize a quadratic
form using the Gram-Schmidt process, and hence a quadratic form is
given by parameters t1, . . . , td ∈ k∗, corresponding to the form ⟨t1, . . . , td⟩ =∑

tix2
i .
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• classification: one can construct invariants into Galois cohomology, such
as the Steifel-Whitney classes, with values in H•(k, µ2). These typically
don’t characterize the form. We can also interpret these classes as giving
cohomology classes in H•(k[t1, . . . , td], µ2) corresponding to the “generic
form” ⟨t1, . . . td⟩ over the ring k[t±1

1 , . . . , t
±1
d ].

18



Chapter 3

Some problems

3.1 Quadratic forms

Definition 3.1.0.1. Let F be a field. We define the fundamental ideal I(F) ⊂ W(F) to
the classes of quadratic forms of even dimension. We let In(F) = (I(F))n.

Definition 3.1.0.2. For a ∈ F∗, let ⟨⟨a⟩⟩ denote the quadratic form ⟨1,−a⟩. For
a1, . . . , an ∈ F∗, let ⟨⟨a1, . . . , pn⟩⟩ = ⟨⟨a1⟩⟩⊗ · · · ⊗ ⟨⟨an⟩⟩. We call such forms n-fold Pfister
forms.

Exercise 3.1.0.3. Show that In(F) is generated by the classes of n-fold Pfister forms.

Exercise 3.1.0.4. By Graham-Schmidt, if q is a quadratic form on a vector space V and
v ∈ V, we can write V = Fv ⊥ W for some complementary subspace W. Show that
if V is 2 dimensional with q = ⟨a, b⟩ and if v ∈ V with q(v) = c, then we may write
q = ⟨c, abc⟩.

As a hint for the above exercise, consider the determinant of the Graham
matrix of the bilinear form associated to q.

Exercise 3.1.0.5. Show that ⟨⟨a, 1 − a⟩⟩ is hyperbolic.

Exercise 3.1.0.6. Show that the map f̃ : F∗ × · · ·F∗ → W(F) sending (a1, . . . , an) to
⟨⟨a1, . . . , an⟩⟩ satisfies f̃ (a1, . . . , an) = 0 whenever ai + a j = 1 for some i, j.

Exercise 3.1.0.7. Show that f̃ induces a homomorphism f : KM
• (F) → grI

•W(F) of
graded rings.

Exercise 3.1.0.8. Show that f (2 KM
• (F)) = 0.

Definition 3.1.0.9. For a field F, the n’th Pfister number of F, denoted Pfn(F), is the
minimum number m such that every element of In(F) can be written as a sum (or
difference/integral linear combination) of at most m n-fold Pfister forms.

Exercise 3.1.0.10. Show that the Pfister form ⟨⟨1, a2, . . . , an⟩⟩ is always isotropic.
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We will use the following helpful fact: if ϕ = ⟨⟨a1, . . . , an⟩⟩ and if ϕ(x) = b has
a solution, then we may write ϕ � ⟨⟨−b, b2, . . . , bn⟩⟩.

Exercise 3.1.0.11. Show that if ϕ is a Pfister form and ϕ(x) = −1 has a solution then
ϕ is isotropic.

Exercise 3.1.0.12. Use the previous exercises to show that if a pfister form is isotropic,
then it is hyperbolic.

Exercise 3.1.0.13. Show that if ϕ is a Pfister form and ψ is a subform of dimension
greater than half the dimension of ϕ, then ϕ is isotropic if and only if ψ is isotropic.

3.2 Central simple algebras and Brauer groups

Definition 3.2.0.1 (quaternion algebras). For a field F of characteristic not 2, and
elements a, b ∈ F∗, define the associative algebra (a, b)−1 to be the algebra generated by
elements u, v with the relations u2 = a, v2 = b,uv = −vu.

Exercise 3.2.0.2. Show that (a, b)−1 is a division algebra if and only if the form ⟨⟨a, b⟩⟩
is anisotropic.

Exercise 3.2.0.3 (not so easy without ingenuity). Show that if (a, b)−1 is not division
then it is isomorphic to M2(F).
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