
LECTURES ON THE MASSEY VANISHING CONJECTURE

ALEXANDER MERKURJEV AND FEDERICO SCAVIA

Abstract. These are lecture notes for the 2024 PCMI Graduate Summer

School. We present our joint work on Massey products in Galois cohomology.

The highlights are a proof of the Massey Vanishing Conjecture for mod 2
fourfold Massey products over arbitrary fields, and the construction, for every

prime p, of a field containing all primitive p-power roots of unity whose mod

p Galois cohomology DGA is not formal.
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1. Lecture 1. The Massey Vanishing Conjecture

1.1. Massey products. Massey products are a higher cohomological operation
on the cohomology H∗(A) of a differential graded ring A which generalizes the cup
product. They were introduced in algebraic topology by Massey [Mas58]: here
A is the differential graded ring of singular cochains of a topological space, with
coefficients in a ring.

Let Γ be a profinite group, and let p be a prime number. In this lecture series,
we are interested in Massey products in the group cohomology of profinite groups:
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here A = C∗(Γ,Z/pZ) is the differential graded ring of continuous cochains of a
profinite group with Z/pZ coefficients, so that H∗(A) = H∗(Γ,Z/pZ) is the mod
p group cohomology ring of Γ. The Massey product of elements of H1(Γ,Z/pZ)
admits a simple group-theoretic description, due to Dwyer [Dwy75], which we now
recall.

Let n ≥ 2 be an integer, and let Un+1 be the subgroup of upper unitriangu-
lar matrices in GLn+1(Z/pZ), that is, upper triangular matrices with all diagonal
entries equal to 1. This is a p-Sylow subgroup of GLn+1(Z/pZ). Its center Zn+1

consists of those matrices in Un+1 which are zero on every non-diagonal entry ex-
cept possibly for entry (1, n+1) (the top-right corner). We let Un+1 := Un+1/Zn+1

denote the factor group: we can think of elements of Un+1 as upper unitriangular
matrices with the top-right corner removed.

For all i and j such that 1 ≤ i < j ≤ n + 1, we let ui,j : Un+1 → Z/pZ be the
coordinate function corresponding to entry (i, j). For all (i, j) ̸= (1, n + 1), the
ui,j also define coordinate functions on Un+1 → Z/pZ. The ui,j are not necessarily
group homomorphisms.

Exercise 1.1. Show that ui,i+1 is a group homomorphism for all 1 ≤ i ≤ n.
Convince yourself that ui,j is not a group homomorphism if j ≥ i+ 2.

We have a diagram of surjective group homomorphisms

(1.1) Un+1 Un+1 (Z/pZ)n,

where the right map is given (u12, . . . un,n+1), that is, by forgetting all entries except
for the first upper diagonal.

Now let Γ be a profinite group, let p be a prime number, and consider Z/pZ as
a Γ-module with trivial action. We have

H1(Γ,Z/pZ) = Homcont(Γ,Z/pZ).

Let χ1, . . . , χn ∈ H1(Γ,Z/pZ) be continuous homomorphisms, and define

χ := (χ1, . . . , χn) : Γ → Z/pZ.

Consider the diagram

Γ

Un+1 Un+1 (Z/pZ)n,

χ

where the bottom row is (1.1).
Let ρ : Γ → Un+1 be a (continuous) lift of χ. Such a lift may not exist, or one

may get several liftings. We want to understand when ρ, if it exists, may be lifted
to a homomorphism ρ : Γ → Un+1. Pictorially, we want to determine whether a
dashed arrow ρ in the commutative diagram below exists:

(1.2)

Γ

Un+1 Un+1 (Z/pZ)n.

χ
ρρ
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Concretely, ρ may be viewed as a matrix
1 ρ12 . . . ρ1,n □

1 ρ2,n+1

1
...

1 ρn,n+1

1


where ρij := uij◦ρ : Γ → Z/pZ are cochains. By Exercise 1.1, only the ρij appearing
in the first upper diagonal are homomorphisms: in fact, the commutativity of the
right triangle in (1.2) is equivalent to

ρi,i+1 = χi.

We now express in matrix notation the condition that ρ lifts to a homomorphism
ρ : Γ → Un+1. Let η : Γ → Z/pZ be a cochain, and consider the function ρ : Γ →
Un+1 with matrix representation

1 ρ12 . . . ρ1,n η
1 ρ2,n+1

1
...

1 ρn,n+1

1


The function ρ is a group homomorphism if and only if, for all x, y ∈ Γ one has

ρ(xy) = ρ(x)ρ(y).

By considering the (1, n + 1) entry on both sides, we see that this condition is
equivalent to

(1.3) η(xy) = η(y) +

n∑
i=2

ρ1i(x)ρi,n+1(y) + η(x)

for all x, y ∈ Γ. Let us set

∆(ρ) : Γ2 → Z/pZ, ∆(ρ)(x, y) =

n∑
i=2

ρ1i(x)ρi,n+1(y).

Exercise 1.2. Using the fact that ρ is a homomorphism, check that ∆(ρ) is 2-
cocycle:

∆(ρ) ∈ Z2(Γ,Z/pZ).

Note that η(x) + η(y) − η(xy) = ∂(η)(x, y), where ∂ denotes the coboundary
operator. Equation (1.3) may thus be rewritten as

(1.4) ∆(ρ)(x, y) = ∂(−η)(x, y).

Thus ∆(ρ) represents the obstruction to lifting ρ to some ρ:

ρ lifts to ρ ⇐⇒ [∆(ρ)] = 0 in H2(Γ,Z/pZ).

This motivates the following definition.
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Definition 1.3. Let Γ be a profinite group, let p be a prime number, and let
χ1, . . . , χn ∈ H1(Γ,Z/pZ). The mod p Massey product of χ1, . . . , χn is the set

⟨χ1, . . . , χn⟩ := {[∆(ρ)] : ρ : Γ → Un+1 lifts χ} ⊂ H2(Γ,Z/pZ).

We say that ⟨χ1, . . . , χn⟩ is defined if it is non-empty, that is, if and only if there
exists a ρ : Γ → Un+1 lifting χ.

We say that ⟨χ1, . . . , χn⟩ vanishes if it contains 0, that is, if and only if there
exists a ρ : Γ → Un+1 lifting χ.

Of course, if ⟨χ1, . . . , χn⟩ vanishes, then it is defined.

Example 1.4. Suppose that n = 2, so that χ = (χ1, χ2). Then

ρ =

1 χ1 □
0 1 χ2

0 0 1


and ⟨χ1, χ2⟩ = {χ1 ∪ χ2}. Therefore ⟨χ1, χ2⟩ is defined, and it vanishes if and only
if χ1 ∪ χ2 = 0 in H2(Γ,Z/pZ).

1.2. The Massey Vanishing Conjecture. Let Γ be a profinite group, let p be a
prime number, let n ≥ 3 be an integer, and let χ1, . . . , χn ∈ H1(Γ,Z/pZ). We have
the following implications:
(1.5)

⟨χ1, . . . , χn⟩ vanishes ⇒ ⟨χ1, . . . , χn⟩ is defined ⇒ χi ∪ χi+1 = 0 (1 ≤ i ≤ n).

Exercise 1.5. Prove the second implication. Where do you need to use that n ≥ 3?
Hint: First show that the function

πi : Un+1 → U3, A 7→

1 ui,i+1(A) ui,i+2(A)
0 1 ui+1,i+2(A)
0 0 1


is a well-defined group homomorphism, for all 1 ≤ i ≤ n−1. Then use Example 1.4.

For an arbitrary profinite group Γ, the implications of (1.5) cannot be reversed
in general.

Exercise 1.6. (1) Let p be an odd prime, let Γ be a cyclic group of order p, and
let χ ∈ H1(Γ,Z/pZ) be a non-zero character. Show that the p-fold mod p Massey
product ⟨χ, . . . , χ⟩ is defined but does not vanish. (See [MT17, Example 4.7] for a
solution.)

(2) Let G := ⟨a, b : a2b = ba2⟩, and let Γ be the pro-2 completion of G. Find
χ1, χ2, χ3 ∈ H1(Γ,Z/2Z) such that ⟨χ1, χ2, χ3⟩ is defined but does not vanish. (See
[MS23c, Proposition 8.3(3)] for a solution.)

Let F be a field, let p be a prime number invertible in F , let Fs be a separable
closure of F , and let ΓF = Gal(Fs/F ) be the absolute Galois group of F .

Theorem 1.7 (Hopkins–Wickelgren). Suppose that F is a number field. Then
every triple Massey product ⟨χ1, χ2, χ3⟩ ⊂ H2(F,Z/2Z) vanishes if and only if it is
defined.

Theorem 1.8 (Mináč–Tân). Let F be an arbitrary field. Then every triple Massey
product ⟨χ1, χ2, χ3⟩ ⊂ H2(F,Z/2Z) vanishes if and only if it is defined.
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Conjecture 1.9 (Massey Vanishing Conjecture (Mináč–Tân)). Let F be a field,
let n ≥ 3 be an integer, let p be a prime number, and let χ1, . . . , χn ∈ H1(F,Z/pZ).
If ⟨χ1, . . . , χn⟩ is defined, then it vanishes.

Remark 1.10 (Motivation for Conjecture 1.9). The main motivation for the Massey
Vanishing Conjecture comes from the Profinite Inverse Galois Problem: Which
profinite groups are absolute Galois groups of fields?

Some restrictions are known. For example, the only finite absolute Galois groups
are the trivial group and the cylic group of order two (Artin–Schreier).

Assume that F contains a primitive p-th root of unity. The Bloch–Kato Conjec-
ture, proved by Voevodsky and Rost, implies that the cohomology ringH∗(F,Z/pZ)
is quadratic: it admits a presentation with generators in degree 1 (corresponding
to elements of F×) and relations in degree 2 (the Steinberg relations).

Here is a summary of the known results on Conjecture 1.9.

F n p Authors Ref.
Number field 3 2 Hopkins–Wickelgren [HW15]
Arbitrary 3 2 Mináč–Tân [MT15]
Arbitrary 3 Any Efrat–Matzri, Mináč–Tân [EM17], [MT17]

Number fields 4 2 Guillot–Mináč–Topaz–Wittenberg [GMT18]
Number fields Any Any Harpaz–Wittenberg [HW23]
Arbitrary 4 2 Merkurjev–Scavia [MS23a]

Exercise 1.11. Prove the Massey Vanishing Conjecture for local fields. (See
[MT17, Theorem 4.3] for a solution.)

(Hint: Let K be a local field. Given a homomorphism ρ : ΓK → Un+1 lifting
(χ1, . . . , χn) : ΓK → (Z/pZ)n, if χ1 ̸= 0 then suitably modify entry (2, n+ 1) of ρ.
Recall that for every local field K, we have dimFp H

2(K,Z/pZ) = 1 and the cup-

product H1(K,Z/pZ) × H1(K,Z/pZ) → H2(K,Z/pZ) ∼= Fp is a non-degenerate
bilinear form. Treat the case χ1 = 0 separately.)

Remark 1.12 (Number field case). The general proof strategy for the Massey Van-
ishing Conjecture over number fields is as follows. Let χ1, . . . , χn ∈ H1(F,Z/pZ) be
such that ⟨χ1, . . . , χn⟩ is defined. One first constructs an F -variety X such that, for
every field extension K/F , we have X(K) ̸= ∅ if and only if ⟨χ1, . . . , χn⟩ is defined
over K. (Here we are considering the pullback H∗(F,Z/pZ) → H∗(K,Z/pZ) in
étale cohomology induced by the morphism Spec(K) → Spec(F ).)

Since ⟨χ1, . . . , χn⟩ is defined over F , it is defined over Fv for every place v of F .
By Exercise 1.11, this implies that ⟨χ1, . . . , χn⟩ vanishes over Fv for every place v,
that is, X(Fv) ̸= ∅ for every v.

Using Brauer–Manin obstruction techniques, one then tries to deduce thatX(F ) ̸=
∅. This is by far the hardest part of argument, and its feasability is highly depen-
dent on the geometry of X. In [HW23], Harpaz and Wittenberg take X to be an
SLN -homogeneous space with finite supersolvable geometric stabilizer.

The main objective of Lectures 2 and 3 is to explain the proof of the statement
appearing in the bottom row of the table.

Theorem 1.13. Let F be a field, let χ1, χ2, χ3, χ4 ∈ H1(F,Z/2Z), be such that
the Massey product ⟨χ1, χ2, χ3, χ4⟩ ⊂ H2(F,Z/2Z) is defined. Then ⟨χ1, χ2, χ3, χ4⟩
vanishes.
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Remark 1.14. Let p be a prime, and let F be a field such that H2(F,Z/pZ) = 0.
Then, for all n ≥ 2, the map H1(F,Un+1) → H1(F,Un+1) is surjective, and hence
the Massey Vanishing Conjecture holds for F .

In particular, the Massey Vanishing Conjecture holds for fields of characteristic
p and for field of cohomological dimension 1 (for example finite fields and function
fields of curves over algebraically closed fields).

1.3. The case when F contains a primitive p-th root of unity. Suppose that
F contains primitive p-th root of unity ζ ∈ F×. We identify Z/pZ = µp by means
of the isomorphism sending 1 to ζ. Kummer Theory gives the identifications

H1(F,Z/pZ) = F×/F×p, H2(F,Z/pZ) = Br(F )[p].

If a ∈ F×, we let χa : ΓF → Z/pZ be the corresponding continuous homomorphism,
that is, letting a′ ∈ F×

s be a p-th root of a, we have (g − 1)(a′) = ζχa(g) for all
g ∈ ΓF . (We always use additive notation for the Galois action on F×

s .) Under
these identifications, the cup product χa∪χb corresponds to (a, b), the Brauer class
of the degree-p cyclic algebra determined by a and b.

We may restate (1.5) for Γ = ΓF purely in terms of F :

(1.6) ⟨a1, . . . , an⟩ vanishes ⇒ ⟨a1, . . . , an⟩ is defined ⇒ ai ∪ ai+1 = 0 (1 ≤ i ≤ n).

1.4. Galois algebras. Let G be a finite group. By definition, a G-algebra L/F
is an étale F -algebra on which G acts via F -algebra automorphisms. We say that
the G-algebra L is Galois if |G| = dimF L and LG = F ; see [KMRT98, Defini-
tions (18.15)]. A G-algebra L/F is Galois if and only if the morphism of schemes
Spec(L) → Spec(F ) is an étale G-torsor. By [KMRT98, Example (28.15)], we have
a canonical bijection

(1.7) H1(F,G)
∼−→ {Isomorphism classes of Galois G-algebras over F}

which is functorial in F and G.

1.5. Galois U3-algebras.

Lemma 1.15. Let p be a prime, and let F be a field of characteristic different from
p and containing a primitive p-th root of unity ζ. The following are equivalent:

(i) (a, b) = 0 in Br(F );
(ii) there exists α ∈ F×

a such that b = Na(α);
(iii) there exists β ∈ F×

b such that a = Nb(β).

Proof. See [Ser79, Chapter XIV, Proposition 4(iii)]. □

Let a, b ∈ F×, and suppose that (a, b) = 0 in Br(F ). By Lemma 1.15, we may
fix α ∈ F×

a and β ∈ F×
b such that Na(α) = b and Nb(β) = a.

We write (Z/pZ)2 = ⟨σa, σb⟩, and we view Fa,b as a Galois (Z/pZ)2-algebra via

(σa − 1)(a1/p) = (σb − 1)(b1/p) = ζ, (σa − 1)(b1/p) = (σb − 1)(a1/p) = 1.

The projection U3 → U3 = (Z/pZ)2 sends e12 7→ σa and e23 7→ σb. We define the
following elements of U3:

σa := e12, σb := e23, τ := e13 = [σa, σb].

Suppose given x ∈ F×
a such that

(1.8) (σa − 1)x =
b

αp
.
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The étale F -algebra K := (Fa,b)x has the structure of a Galois U3-algebra such that
the Galois (Z/pZ)2-algebra KQ3 is equal to Fa,b, and

(1.9) (σa − 1)x1/p =
b1/p

α
, (σb − 1)x1/p = 1, (τ − 1)x1/p = ζ−1.

Similarly, suppose given y ∈ F×
b such that

(1.10) (σb − 1)y =
a

βp
.

The étale F -algebra K := (Fa,b)y has the structure of a Galois U3-algebra, such
that the Galois (Z/pZ)2-algebra KQ3 is equal to Fa,b, and

(1.11) (σa − 1)y1/p = 1, (σb − 1)y1/p =
a1/p

β
, (τ − 1)y1/p = ζ.

In (1.9) and (1.11), the relation involving τ follows from the first two.
If x ∈ F×

a satisfies (1.8), then so does ax. We may thus apply (1.9) to (Fa,b)ax.
Therefore (Fa,b)ax has the structure of a Galois U3-algebra, where U3 acts via

U3 = Gal(Fa,b/F ) on Fa,b, and

(σa − 1)(ax)1/p =
b1/p

α
, (σb − 1)(ax)1/p = 1, (τ − 1)(ax)1/p = ζ−1.

Similarly, if y ∈ F×
b satisfies (1.10), we may apply (1.11) to (Fa,b)by. Therefore

(Fa,b)by admits a Galois U3-algebra structure, where U3 acts via U3 = Gal(Fa,b/F )
on Fa,b, and

(σa − 1)(by)1/p = 1, (σb − 1)(by)1/p =
a1/p

β
, (τ − 1)(by)1/p = ζ.

Lemma 1.16. (1) Let x ∈ F×
a satisfy (1.8), and consider the Galois U3-algebras

(Fa,b)x and (Fa,b)ax as in (1.9). Then (Fa,b)x ≃ (Fa,b)ax as Galois U3-algebras.
(2) Let y ∈ F×

b satisfy (1.8), and consider the Galois U3-algebras (Fa,b)y and
(Fa,b)by as in (1.11). Then (Fa,b)y ≃ (Fa,b)by as Galois U3-algebras.

Proof. (1) The automorphism σb : Fa,b → Fa,b extends to an isomorphism of étale

algebras f : (Fa,b)ax → (Fa,b)x by sending (ax)1/p to a1/px1/p. The map f is

well defined because f((ax)1/p)p = [a1/px1/p]p = ax. We now show that f is U3-
equivariant. The restriction of f to Fa,b is U3-equivariant because σaσb = σbσa on
Fa,b. We have

σa(f((ax)
1/p)) = σa(a

1/p) · σa(x
1/p) = ζ · a1/p · b

1/p

α
· x1/p =

ζa1/pb1/px1/p

α

and

f(σa((ax)
1/p)) = f((b1/p/α) · (ax)1/p) = ζ · b

1/p

α
· a1/p · x1/p =

ζa1/pb1/px1/p

α
.

Thus f is ⟨σa⟩-equivariant. We also have

σb(f((ax)
1/p)) = σb(a

1/p) · σb(x
1/p) = a1/p · x1/p

and
f(σb((ax)

1/p)) = f((ax)1/p) = a1/p · x1/p.

Thus f is ⟨σb⟩-equivariant. Since σa and σb generate U3, we conclude that f is
U3-equivariant, as desired.
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(2) The proof is similar to that of (1). □

Proposition 1.17. Let a, b ∈ F× be such that (a, b) = 0 in Br(F ), and fix α ∈ F×
a

and β ∈ F×
b such that Na(α) = b and Nb(β) = a.

(1) Every Galois U3-algebra K over F such that KQ3 ≃ Fa,b as (Z/pZ)2-algebras
is of the form (Fa,b)x for some x ∈ F×

a as in (1.8), with U3-action given by (1.9).
(2) Every Galois U3-algebra K over F such that KQ3 ≃ Fa,b as (Z/pZ)2-algebras

is of the form (Fa,b)y for some y ∈ F×
b as in (1.10), with U3-action given by (1.11).

Proof. (1) Since Q3 = ⟨τ⟩ ≃ Z/pZ and KQ3 ≃ Fa,b as (Z/pZ)2-algebras, we have
an isomorphism of étale Fa,b-algebras K ≃ (Fa,b)z, for some z ∈ F×

a,b such that

(τ − 1)z1/p = ζ−1. We may suppose that K = (Fa,b)z. As τ commutes with σb we
have

(τ − 1)(σb − 1)z1/p = (σb − 1)(τ − 1)z1/p = (σb − 1)ζ−1 = 1,

hence (σb−1)z1/p ∈ F×
a,b. By Hilbert’s Theorem 90 for the extension Fa,b/Fa, there

is t ∈ F×
a,b such that (σb − 1)z1/p = (σb − 1)t. Replacing z by zt−p, we may thus

assume that (σb − 1)z1/p = 1. In particular, z ∈ F×
a . Since (τ − 1)z1/p = ζ−1, we

have σbσa(z
1/p) = ζσaσb(z

1/p). Thus

(σb−1)(σa−1)z1/p = (σbσa−σaσb+(σa−1)(σb−1))z1/p = ζ(σa−1)(σb−1)z1/p = ζ,

and hence (σa−1)z1/p = b1/p/α′ for some α′ ∈ F×
a . Moreover Na(α

′/α) = b/b = 1,
and so by Hilbert’s Theorem 90 there exists θ ∈ F×

a such that α′/α = (σa − 1)θ.
We define x := zθp ∈ F×

a , and set x1/p := z1/pθ ∈ (Fa,b)
×
z . Then K = (Fa,b)x,

where

(σa − 1)x1/p = (σa − 1)z1/p · (σa − 1)θ =
b1/p

α′ · α
′

α
=

b1/p

α

and (σb − 1)x1/p = 1, as desired.
(2) The proof is analogous to that of (1). □

1.6. Proof of Massey Vanishing for n = 3. As as warm-up for the proof of
Theorem 1.13, we first prove the case n = 3 of the Massey Vanishing Conjecture.

Theorem 1.18 (Efrat–Matrzi, Mináč–Tân). Let F be a field, let p be a prime
number, and let χ1, χ2, χ3 ∈ H1(F,Z/pZ). The following are equivalent:

(1) χ1 ∪ χ2 = χ2 ∪ χ3 = 0 in H2(F,Z/pZ);
(2) ⟨χ1, χ2, χ3⟩ is defined;
(3) ⟨χ1, χ2, χ3⟩ vanishes.

Proof. It suffices to prove that (1) implies (3). A simple argument [MT16, Propo-
sition 4.14] shows that we may assume that F contains a primitive p-th root of
unity ζ. We also easily reduce to the case when χ1 and χ3 are non-zero. We fix
a, b, c ∈ F× such that χ1 = χa, χ2 = χb and χ3 = χc. Thus a and c are not
squares in F . Let α ∈ F×

a such that Na(α) = b. By Proposition 1.17(1), there
exists a cochain ρ : ΓF → Z/pZ such that ρ|Γa

= χθ for some θ ∈ F×
a such that

(σa − 1)θ = b/αp and 1 χa ρ
0 1 χb

0 0 1
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is a homomorphism. By a similar argument, there exists a cochain ρ : ΓF → Z/pZ
such that 1 χb ρ′

0 1 χc

0 0 1


is a homomorphism. Thus 

1 χa ρ □
0 1 χb ρ′

0 0 1 χc

0 0 0 1

 .

is a homomorphism. The obstruction A ∈ Br(F )[p] to lifting this homomorphism
to U4 is represented by the cocycle χa ∪ ρ′ + ρ ∪ χc.

Let γ ∈ F×
c such that Nc(γ) = b. Then

Nσaσc
(α/γ) = Na(α)/Nc(γ) = b/b = 1,

and hence by Hilbert’s Theorem 90 there exists ω ∈ F×
a,c such that

α/γ = (σaσc − 1)ω.

Set e := θ ·Nc(ω) ∈ F×
a . We have

(σa − 1)e = (b/αp) ·Nc((σa − 1)ω) = (b/αp) ·Nc((σaσc − 1)ω)

= (b/αp) ·NC(α/γ) = (b/αp)(αp/b) = 1.

Therefore e ∈ F×. We have

AFa
= (ρ ∪ χc)Fa

= (θ, c) = (θ ·Nc(ω), c) = (e, c)Fa
.

Thus A− (e, c) is split by Fa, and hence A− (e, c) = (a, f) for some f ∈ F×, that
is, A = (e, c) + (a, f). Consider the continuous homomorphism

1 χa ρ− χf □
0 1 χb ρ′ − χe

0 0 1 χc

0 0 0 1

 .

The obstruction to lifting this homomorphism to U4 is given by

χa ∪ (ρ′ − χf ) + (ρ− χe) ∪ χc = A−A = 0.

Thus the homomorphism lifts to U4 and ⟨a, b, c⟩ vanishes, as desired. □

2. Lecture 2. Beginning of Proof of Theorem 1.13

2.1. Galois U3-algebras, p = 2. Suppose that char(F ) ̸= 2, let a, b ∈ F×, and
suppose that (a, b) = 0 in Br(F )[2]. We write (Z/2Z)2 = ⟨σa, σb⟩, and we view Fa,b

as a Galois (Z/2Z)2-algebra by

(σa − 1)(
√
a) = (σb − 1)(

√
b) = −1, (σa − 1)(

√
b) = (σb − 1)(

√
a) = 1.

Let α ∈ F×
a satisfy Na(α) = bx2 for some x ∈ F×, and consider the étale F -algebra

(Fa,b)α. We have

U3 = ⟨σa, σb : σ
2
a = σ2

b = [σa, σb]
2 = 1⟩.

Moreover, U3 = (Z/2Z)2 and the surjective homomorphism U3 → U3 is given by
σa 7→ σa and σb 7→ σb. Observe that σa(α) = bx2/α and σb(α) = α. We may thus
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define a Galois U3-algebra structure on (Fa,b)α by letting U3 act on Fa,b via U3 and
by setting

(2.1) σa(
√
α) = x

√
b/
√
α, σb(

√
α) =

√
α.

Exercise 2.1. Verify that σ2
a = σ2

b = [σa, σb]
2 = 1 on (Fa,b)α, that (Fa,b)α is a

Galois U3-algebra and that the subalgebra of Q3-invariants is Fa,b.
Verify that replacing x by −x in (2.1) does not change (Fa,b)α up to U3-algebra

isomorphism.

Symmetrically, if β ∈ F×
b satisfies Nb(β) = ay2 for some y ∈ F×, the étale

F -algebra (Fa,b)β has structure of a Galois U3-algebra defined by

(2.2) σa(
√

β) =
√
β, σb(

√
β) = y

√
a/

√
β.

Proposition 2.2. Let a, b ∈ F×.
(1) Every Galois U3-algebra K over F such that KZ3 = Fa,b is of the form

(Fa,b)α for some α ∈ F×
a with the property Na(α) = b in F×/F×2 and U3-algebra

structure as in (2.1).
(2) Every Galois U3-algebra K over F such that KZ3 = Fa,b is of the form

(Fa,b)β for some β ∈ F×
b with the property Nb(β) = a in F×/F×2 and U3-algebra

structure as in (2.2).

Proof. (1) By Proposition 1.17(1), we have K ∼= (Fa,b)α, where α ∈ F×
a satisfies

(σa − 1)
√
α =

√
b

θ
, (σb − 1)

√
α = 1

for some θ ∈ F×
a ; see (1.9). Taking norms, we see that Na(θ) = b. Moreover,

(σa − 1)θ = Na(θ)/θ
2 = b/θ2 = (σa − 1)α,

and hence α/θ is σa-invariant, that is, α = θx for some x ∈ F×. Thus Na(α) = bx2,

(σa − 1)
√
α =

√
b/(α/x) = x

√
b/α and (σb − 1)

√
α = 1, as desired. □

2.2. Beginning of proof of Theorem 1.13. We begin the proof of Theorem 1.13.
In view of Remark 1.14, we may suppose that char(F ) ̸= 2, so that Theorem 1.13
may be restated as follows.

Theorem 2.3. Let F be a field of characteristic different from 2, let a, b, c, d ∈
F×, be such that the mod 2 Massey product ⟨a, b, c, d⟩ is defined. Then ⟨a, b, c, d⟩
vanishes.

We first show that Theorem 2.3 follows from the next proposition.

Proposition 2.4. Let a, d ∈ F×, α ∈ F×
a and δ ∈ F×

d be such that

(α, δ) ∈ Im(Br(F )[2] → Br(Fa,d)[2]).

Then there exist x, y ∈ F× such that (x,Nd(δ)) = (Na(α), y) = 0 in Br(F ) and
(αx, δy) = 0 in Br(Fa,d).

Proof of 2.4 ⇒ 2.3. Suppose that ⟨a, b, c, d⟩ is defined. We have a homomorphism

ρ =


1 χa θ ϵ □

1 χb π ν
1 χc µ

1 χd

1

 : ΓF → U5.
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By Proposition 1.17(2), we can choose θ so that θ|Γa
= χα, where α ∈ F×

a is
such that Na(α) = b in F×/F×2 and µ so that µ|Γd

= χδ, where δ ∈ F×
d is such

that Nd(δ) = c in F×/F×2. The obstruction to lifting to U5 is equal to

∆ = χa ∪ ν + θ ∪ µ+ ϵ ∪ χd ∈ Br(F )[2].

As χa|Γa
= 0 and χd|Γd

= 0, the restriction of ∆ to (Fs)
Γa,d is equal to

∆|Γa,d
= (θ|Γa,d

) ∪ (µ|Γa,d
) = (α, δ) ∈ Br((Fs)

Γa,d)[2].

Thus
(α, δ) ∈ Im(Br(F )[2] → Br((Fs)

Γa,d)[2].

Let x, y ∈ F× be so that (x, c) = (b, y) = 0. Choose the 1-cochains ϵ′ and ν′ such
that ∂(ϵ′) = χa ∪ χc and ∂(ν′) = χb ∪ χy. Then the map

ρ′ =


1 χa θ + θ′ ϵ+ ϵ′ □

1 χb π ν + ν′

1 χc µ+ µ′

1 χd

1

 : ΓF → U5

is also a homomorphism. The obstruction for lifting ρ′ to U5 is the element

∆′ = χa ∪ (ν + ν′) + (θ + χx) ∪ (µ+ χy) + (ϵ+ ϵ′) ∪ χd ∈ Br(F )[2].

We have

∆′|Fa,d
= ((θ + χx)|Fa,d

) ∪ ((µ+ χy)|Fa,d
) = (αx, δy) ∈ Br((Fs)

Γa,d)[2].

Note that (αx, δy) = 0 in Br((Fs)
Γa,d)[2] if and only if (αx, δy) = 0 over Fa,d.

By Proposition 2.4, we can find ρ′ such that ∆′ is split over Fa,d and hence ∆′ is
decomposable: ∆′ = (a, u) + (v, d). Then the map

ρ′′ =


1 χa θ ϵ+ χv □

1 χb π ν + χu

1 χc µ
1 χd

1

 : ΓF → U5

is a homomorphism. The obstruction ∆′′ to lifting ρ′′ is given by ∆′ + χa ∪ χu +
χv ∪ χd = 2∆′ = 0 in Br(F )[2]. □

Thus Proposition 2.4 implies Theorem 2.3. In turn, Proposition 2.4 is implied
by the combination of the next two statements.

Proposition 2.5. Let a ∈ F×, let π, µ ∈ F×
a such that (π, µ) belongs to the image

of the restriction Br(F )[2] → Br(Fa)[2]. Then there exists y ∈ Na(F
×
a ) such that

(π, µy) = 0 in Br(Fa).

Proposition 2.6. Let a, c, d ∈ F×, let α ∈ F×
a , let δ ∈ F×

d such that Nd(δ) = c in
F× and (α, δ) is in the image of Br(F )[2] → Br(Fa,d)[2]. Suppose that c is not a
square in F×. Then there exist x ∈ Nc(F

×
c ) and ν ∈ F×

a such that

(αx, δ) = (αx, ν) in Br(Fa,d)[2],

Na(αx, ν) = 0 in Br(F )[2].

We prove 2.5 in this lecture. In the next lecture, we will prove Proposition 2.6,
and hence complete the proof of Theorem 1.13.
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Proof of Proposition 2.5. Let A be a biquaternion algebra, that is, A is the tensor
product of two quaternion algebras (a1, b1) and (a2, b2), where a1, b1, a2, b2 ∈ F×.
The Albert form of A is the quadratic form q := ⟨a1, b1,−a1b1,−a2,−b2, a2b2⟩.
(This is a quadratic form, not a Massey product!) The Albert form of A depends
on the presentation of A as (a1, b1)⊗ (a2, b2), but it is well-defined up to similarity.

Let w(q) be the Witt index of q, that is, the dimension of a maximal totally
isotropic subspace of q. By a theorem of Albert, the index of A and the Witt index
of q determine each other: In particular A is split if and only if q is hyperbolic.

ind(A) w(q)
4 0
2 1
1 3

Let:

– s : Fa → F be a non-zero F -linear map such that s(1) = 0;
– Q be the quaternion algebra (π, µ);
– Q◦ ⊂ Q the subspace of pure quaternions;
– q : Q◦ → Fa be the quadratic form given by q(x) = x2. A computation
shows that q = ⟨π, µ,−πµ⟩;

– s∗(q) : Q
◦ → Fa

s−→ F the Scharlau transfer of q.

By another theorem of Albert, s∗(q) is an Albert form for Na(Q).
By assumption, Na(Q) is split, and hence s∗(q) is hyperbolic. Thus s∗⟨µ,−πµ⟩

is a 4-dimensional subform of a 6-dimensional hyperbolic form. Since 4 > 6/2, this
implies that s∗⟨µ,−πµ⟩ is isotropic:

There exist p, q ∈ F×
a , and z ∈ F such that µp2 − πµq2 = z.

If z = 0, then π is a square and we may take y = 1.
If z ̸= 0, then (µp)2 − π(µq)2 = µz implies that µz ∈ F×

a is a norm from
((Fa)π)

×. This is equivalent to (π, µz) = 0 in Br(Fa). We set y = z. Then
(π, µy) = 0 and, as (π, µ) comes from Br(F )[2], we have Na(π, y) = Na(π, µ) = 0,
and hence y = Na(π) ∈ Na(F

×
a ). □

Remark 2.7. The combination of Proposition 2.4 and Proposition 2.5 immediately
implies the Massey Vanishing Conjecture for degenerate fourfold Massey products,
that is, Massey products of the form ⟨a, b, c, a⟩.

3. Lecture 3. End of proof of Theorem 1.13 and Formal Hilbert 90

3.1. Specialization in Galois cohomology. Recall from [Ros96, Remarks 1.11
and 2.5] that the Galois cohomology functor H∗(−,Z/2Z) from the category of
field extensions of F is a cycle module, that is, it satisfies the axioms of [Ros96,
Definitions 1.1 and 2.1].

For all integers n ≥ 1, all regular local F -algebras R of dimension n and
all ordered systems of parameters π := (π1, . . . , πn) in R, letting K and K0 :=
R/(π1, . . . , πn) be the fraction field and residue field of R, respectively, we have a
specialization map

sπ : H
∗(K,Z/2Z) → H∗(K0,Z/2Z),

which is a graded ring homomorphism defined as follows.
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Suppose first that n = 1, that is, R is a discrete valuation ring and π = (π1).
Then we set sπ := ∂π1((−π1) ∪ (−)), where ∂π1 : H

∗+1(K,Z/2Z) → H∗(K0,Z/2Z)
is the residue map at π1; see [Ros96, Definition 1.1, below D4].

Suppose now that n ≥ 2 and that the specialization map has been defined for all
regular local F -algebras of dimension < n and all ordered systems of parameters
on such algebras. For i = 2, . . . , n let πi ∈ R/(π1) be the reduction of πi modulo
π1 and set π := (π2, . . . , πn): it is an ordered system of parameters in the regular
local ring R/(π1). Then sπ is defined by sπ := sπ ◦ s(π1), where π1 is viewed as an
element of the localization R(π1).

The ring homomorphism sπ depends on the choice of the ordered set π. Using
the isomorphism H2(F,Z/2Z) ≃ Br(F )[2] coming from Kummer Theory, we obtain
a specialization map

sπ : Br(K)[2] → Br(K0)[2].

Let X be an F -variety and P ∈ X be a regular F -point. For all ordered systems
of parameters π = (π1, . . . , πn) in the regular local ring R = OX,P the previous
discussion yields specialization maps

sP,π : H
∗(F (X),Z/2Z) → H∗(F,Z/2Z), sP,π : Br(F (X))[2] → Br(F )[2].

If f ∈ O×
X,P (that is, f is regular and nonzero at P ) then it follows from the

definition that sP,π(f) = (f(P )). In particular, if f ∈ F× is constant then sP,π(f) =
(f).

Lemma 3.1. Let n ≥ 1 be an integer, X be an n-dimensional F -variety, P ∈ X
be a regular F -point, and π := (π1, . . . , πn) be an ordered system of parameters in
OX,P . Let F ′ be a finite separable field extension of F , let X ′ := X ×F F ′, let
P ′ be the only F ′-point of X ′ lying over P , and consider the system of parameters
π′ := (π1 ⊗ 1, . . . , πn ⊗ 1) in the regular local ring OX′,P ′ = OX,P ⊗F F ′. Then the
following squares commute:

H∗(F (X),Z/2Z) H∗(F,Z/2Z)

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

(−)F ′(X′)

sP,π

(−)F ′

sP ′,π′

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

H∗(F (X),Z/2Z) H∗(F,Z/2Z).

NF ′(X′)/F (X)

sP ′,π′

NF ′/F

sP,π

Lemma 3.1 admits an obvious generalization to the case when F ′ is an étale
F -algebra.

Proof. One proves the result by induction on n ≥ 1; see [MS23a, Lemma 2.9]. □

3.2. A calculation. Let F be a field of characteristic different from 2, let c, x1, x2, y1, y2, u
be variables over F . Consider the polynomials

d = u2 − c,

w = x1y2 + x2y1

h = x1y1 + ux1y2 + ux2y1 + cx2y2.

Note that these polynomials are symmetric with respect to the change of variables
xi ↔ yi.

Proposition 3.2. Let F be a field of characteristic different from 2, let c, x1, x2, y1, y2, u
be variables over F , and let L := F (c, x1, x2, y1, y2, u). Then we have the following
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equality in Br(L)[2]:(
(x2

1 − cx2
2)(y

2
1 − cy22), 2wh

)
=

(
x2
1 − cx2

2, 2x2(x1 + ux2)
)

+
(
y21 − cy22 , 2y2(y1 + uy2)

)
+
(
d, (x1 + ux2)(y1 + uy2)h

)
.

Proof. We have

(3.1) x2h+ (x2
1 − cx2

2)y2 = w(x1 + ux2).

Indeed,

x2h+ (x2
1 − cx2

2)y2 = x2(x1y1 + ux1y2 + ux2y1 + cx2y2) + (x2
1 − cx2

2)y2

= (x1y2 + x2y1)(x1 + ux2)

= w(x1 + ux2).

Symmetrically, we get the equality

(3.2) y2h+ (y21 − cy22)x2 = w(y1 + uy2).

We deduce from (3.1) and (3.2) that

(3.3) (x2
1 − cx2

2)(y
2
1 − cy22)x2y2 = (w(x1 + ux2)− x2h)(w(y1 + uy2)− y2h).

Note that

(3.4) h = (x1 + ux2)(y1 + uy2)− dx2y2.

Combining (3.1), (3.2) and (3.4), we get the equality

(3.5) (x2h+ (x2
1 − cx2

2)y2) · (y2h+ (y21 − cy22)x2) = w2(h+ dx2y2).

We have

(3.6) x2
1 − cx2

2 = (x1 + ux2)(x1 − ux2) + dx2
2,

and symmetrically

(3.7) y21 − cy22 = (y1 + uy2)(y1 − uy2) + dy22 .

We prove that the residues of both sides of the equality with respect to every
irreducible polynomial p ∈ F [c, x1, x2, y1, y2, u] are equal.

(1) The cases p = x1 +ux2 (resp. p = y1 +uy2) follow from (3.6) (resp. (3.7)).
(2) The cases p = x2

1− cx2
2 (resp. p = y21 − cy22) follows from (3.1) (resp. (3.2)).

(3) The case p = h follows from (3.5).
(4) The case p = w follows from (3.3).
(5) The case p = d follows from (3.4).
(6) The cases p = x2 (resp. p = y2) are obvious.
(7) The case when p is any other polynomial is obvious.

This shows that the two sides differ by a class in the image of Br(F ) → Br(L). As
the equality holds after specializing x2 = y2 = 0, the proof is complete. □



LECTURES ON THE MASSEY VANISHING CONJECTURE 15

3.3. Proof of the Key Proposition 2.6.

Lemma 3.3 (Trace Lemma). Let a, b ∈ F×, ρ ∈ F×
a and µ ∈ F×

b be such that
Na(ρ) = Nb(µ). Let g := Tra(ρ) + Trb(µ) ∈ F , and suppose g ̸= 0. Then (µ, a) =
(g, a) in Br(Fb)[2].

Exercise 3.4. Prove Lemma 3.3.

Proof of Proposition 2.6. Since (α, c) = 0, there exist α1, α2 ∈ F×
a such that

α = α2
1 − cα2

2.

Claim 3.5. We may suppose α1, α2 linearly independent over F .

Proof of Claim 3.5. Suppose that α1 and α2 are linearly dependent over F , so
that there exists t ∈ F such that either α1 = tα2 or α2 = tα1. In the first
case α = (t2 − c)α2

2, and in the second case α = (1 − ct2)α2
1. Thus, there exist

i ∈ {1, 2} and u ∈ F× such that α = uα2
i . Note that u ∈ F× and αi ∈ F×

a because
α ∈ F×

a . Letting x = u and ν = 1, we have (αx, δ) = (u2, δ) = 0 in Br(Fa,d) and
(αx, ν) = (ux, ν) = 0 in Br(Fa), which proves Proposition 2.6 in this case. □

From now on, we assume that α1 and α2 are linearly independent over F . Let
K := F (A2) = F (x1, x2), and define

f := x2
1 − cx2

2 ∈ K×.

Let

h1 := α1x1 + cα2x2 ∈ K×
a , h2 := α1x2 + α2x1 ∈ K×

a .

Let u1, u2 ∈ F be such that

δ = u1 + u2

√
d,

so that Nd(δ) = u2
1 − du2

2 = c. We define the following elements of F×
a :

β1 := α1 + u1α2, β2 := u1α1 + cα2, θ := 2α2β1.

Finally, we define

g := 2hh2 ∈ K×
a , t := x1 + u1x2 ∈ K×, s := 2x2t = 2(x1x2 + u1x

2
2) ∈ K×.

Lemma 3.6. We have (α, θ) = (α, δ) and (αf, g) = (αf, δ) in Br(Ka,d)[2].

Proof. Set ρ := (α1 +
√
α)α2

−1. We have Nα(ρ) = c = Nd(δ). The equality

Trα(ρ) + Trd(δ) = 2(α1α
−1
2 + u1) = 2α−1

2 β1,

and Lemma 3.3 imply that (α, θ) = (α, 2α2β1) = (α, δ) over Fa,d. The proof that
(αf, g) = (αf, δ) over Ka,d is similar. □

Specialization of the equality of Proposition 3.2 at y1 = α1, y2 = α2 and u = u1

yields

(fα, 2h2h) = (f, 2x2t) + (α, 2α2β1) + (d, tβ1h) in Br(Ka)[2],

or equivalently

(3.8) (αf, g) + (f, s) + (d, β1ht) + (α, θ) = 0 in Br(Ka)[2].

So far, we have not yet used the fact that (α, δ) comes from Br(F )[2]. Let
A ∈ Br(F )[2] be such that (α, δ) = AFa,d

over Fa,d. Applying NKa/K to (3.8), we
get

NKa/K(αf, g) = (d,NKa/K(hη)),
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where η := ϵβ1 ∈ F×
a . Let P = (P1, P2) ∈ A2

F such that h is regular at P , let
π := (x1−P1, x2−P2) be a system of parameters at P , and define the specializations
x := sπ(f) ∈ F× and ν := sπ(g). We specialize the above equation at P via π to
obtain

NFa/F (αx, ν) = (d,NFa/F (h(P )η)).

We wish to find P so that the right-hand side is zero. This would be case if we
could choose P such that h is regular at P and h(P ) = η. We have

h(P ) = η ⇐⇒ u1(α1P2 + α2P1) + (α1P1 + cα2P2) = η

⇐⇒ (α1 + u1α2)P1 + (u1α1 + cα2)P2 = η.

Recall that α1 and α2 were chosen to be linearly independent over F . Thus it
suffices to check that

det

[
1 u1

u1 c

]
= c− u2

1

is not zero. This is true because c is not square in F . Thus we may find P such
that h(P ) = η, and the proof is complete. □

4. Lecture 4. Formal Hilbert 90 and non-formality of Galois
cohomology

4.1. Formal Hilbert 90. We wish to examine the following vague question.

Question 4.1. Is the Massey Vanishing Conjecture a consequence of Hilbert’s The-
orem 90 alone?

Here is one way to make this question precise. Let p be a prime number, let Γ
be a profinite group, and let θ : Γ → Z×

p be a continuous group homomorphism.
We call θ a p-orientation of Γ and the pair (Γ, θ) a p-oriented profinite group.

We write Zp(1) for the topological Γ-module with underlying topological group
Zp and where Γ acts via θ, that is, g · v := θ(g)v for every g ∈ Γ and every v ∈ Zp.
For all n ≥ 0, we set Z/pnZ(1) := Zp(1)/p

nZp(1).
Let (Γ, θ) be a p-oriented profinite group. We say that (Γ, θ) satisfies formal

Hilbert 90 if for every open subgroup H ⊂ Γ and all n ≥ 1 the reduction map
H1(H,Z/pnZ(1)) → H1(H,Z/pZ(1)) is surjective.

Example 4.2. Let F be a field and write ΓF for the absolute Galois group of F .
We define the canonical p-orientation θF on ΓF as follows. If char(F ) ̸= p, we
define θF as the continuous homomorphism θF : ΓF → Z×

p given by g(ζ) = ζθF (g)

for every root of unity ζ of p-power order. If char(F ) = p, we let θF be the trivial
homomorphism. The pair (ΓF , θF ) is a p-oriented profinite group.

Exercise 4.3. Let F be a field, let ΓF be the absolute Galois group of F , and let
θF be the canonical orientation on ΓF defined in Example 4.2. Prove that (ΓF , θF )
satisfies formal Hilbert 90.

We now may now formulate Question 4.1 in a more precise way.

Question 4.4. Let p be a prime number, let (Γ, θ) be a p-oriented profinite gruop
which satisfies formal Hilbert 90, let n ≥ 3, and let χ1, . . . , χn ∈ H1(Γ,Z/pZ). If
⟨χ1, . . . , χn⟩ is defined, does it vanish?

We prove that Question 4.4 has affirmative answer when n = 3, or when (n, p) =
(4, 2) and χ1 = χ4 (the degenerate case).
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Theorem 4.5. Let p be a prime number, let (Γ, θ) be a p-oriented profinite group
satisfying formal Hilbert 90 and let χ1, χ2, χ3 ∈ H1(Γ,Z/pZ). The following are
equivalent:

(1) χ1 ∪ χ2 = χ2 ∪ χ3 = 0 in H2(Γ,Z/pZ);
(2) the mod p Massey product ⟨χ1, χ2, χ3⟩ is defined;
(3) the mod p Massey product ⟨χ1, χ2, χ3⟩ vanishes.

Theorem 4.6. Let (Γ, θ) be a 2-oriented profinite group satisfying formal Hilbert
90 and let χ1, χ2, χ3 ∈ H1(Γ,Z/2Z). If the mod 2 Massey product ⟨χ1, χ2, χ3, χ1⟩
is defined, then it vanishes.

Recall that, in the case of absolute Galois groups, this had been proved by using
quadratic forms theory (in particular, the theory of Albert forms associated to
biquaternion algebras). Theorem 4.6 generalizes [MS22, Theorem 1.3] and shows
that the latter can be proved using Hilbert’s Theorem 90 only.

Remark 4.7. We do not know whether Theorem 1.13 can be extended to 2-oriented
profinite groups satisfying formal Hilbert 90. The reason is that we do not know
how to generalize Proposition 2.5 to this setting.

The group Z×
p acts on the abelian group Q/Z(p) by multiplication. We let S be

the Γ-module whose underlying abelian group is Q/Z(p) and on which Γ acts via θ.
For all n ≥ 1, we have an isomorphism of Γ-modules Z/pnZ(1) → S[pn] given by
a+ pnZ 7→ a/pn + Z(p). Therefore, S is the colimit of the Z/pnZ(1) for n ≥ 1.

The key idea for the proof of Theorems 4.5 and 4.6 is contained in the following
definition.

Definition 4.8. Let (Γ, θ) be a p-oriented profinite group. A Hilbert 90 module for
(Γ, θ) is a discrete Γ-module M such that

(i) pM = M ,
(ii) M [p∞] ≃ S as Γ-modules, and
(iii) H1(H,M) = 0 for any open subgroup H ⊂ Γ.

Example 4.9. Let p be a prime number, let F be a field of characteristic different
from p, let ΓF be the absolute Galois group of F , and let θ be the canonical
orientation on ΓF ; see Example 4.2. It follows from Hilbert’s Theorem 90 that F×

sep

is a Hilbert 90 module for (ΓF , θF ).

It turns out that every p-oriented profinite group satisfying formal Hilbert 90
admits a Hilbert 90 module.

Theorem 4.10. Let (Γ, θ) be a p-oriented profinite group. Then (Γ, θ) satisfies
formal Hilbert 90 if and only if it admits a Hilbert 90 module.

With Theorem 4.10 at our disposal, one may try to adapt the proofs of the
Massey Vanishing Conjecture in the n = 3 case or in the degenerate (n, p) = (4, 2)
case. In the first case, one must replace the arguments involving central simple
algebras split by a (Z/pZ)2-extension by cocycle arguments. In the second case,
the key point is to prove Proposition 2.6 without quadratic form theory. The point
is that Proposition 2.6 may be also proved

To help the reader see the point of a Hilbert 90 module, we propose the following
exercise.
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Exercise 4.11. Let (Γ, θ) be a p-oriented profinite group satisfying formal Hilbert
90, and let M be a Hilbert 90 module for (Γ, θ).

(1) Let χ : Γ → Z/pZ be a character and set H := Ker(χ). Then the sequence

H1(H,Z/pZ) Cor−−→ H1(Γ,Z/pZ) ∪χ−−→ H2(Γ,Z/pZ) Res−−→ H2(H,Z/pZ)
is exact.

(2) Let a, b ∈ MΓ be such that χa ∪ χb = 0 in H2(Γ,Z/pZ). Then there exists
α ∈ MΓa such that NΓ/Γa

(α) = b in MΓ.
Hint: look at the classical proofs in the case of a field F , and replace the Galois

module (Fs)
× by the Γ-module M .

4.2. Non-formality of Galois cohomology: Positselski’s question. Let (A, ∂)
be a differential graded ring, i.e, A = ⊕i≥0A

i is a non-negatively graded abelian
group with an associative multiplication which respects the grading, and ∂ : A → A
is a group homomorphism of degree 1 such that ∂ ◦ ∂ = 0 and ∂(ab) = ∂(a)b +
(−1)ia∂(b) for all i ≥ 0, a ∈ Ai and b ∈ A.

We say that A is formal if it is quasi-isomorphic as a differential graded ring to
H∗(A) with the zero differential, that is, if there exist a differential graded ring B
and a diagram

A B H∗(A),

where both maps are quasi-isomorphisms. Loosing speaking, A is formal if no
essential information about A is lost when passing to H∗(A).

Hopkins–Wickelgren [HW15] asked whether C·(ΓF ,Z/pZ) is formal for every
field F and every prime p. The authors of [HW15] were unaware of earlier work of
Positselski, who had already showed in [Pos10, Section 9.11] that C·(ΓF ,Z/pZ) is
not formal for some finite extensions F of Qℓ and Fℓ((z)), where ℓ ̸= p. Positselski
then wrote a detailed exposition of his counterexamples in [Pos17].

For Positselski’s method to work, it seemed important that F did not contain
all the roots of unity of p-power order. This motivated the following question; see
[Pos17, p. 226].

Question 4.12 (Positselski). Does there exist a field F containing all roots of unity
of p-power order such that C·(ΓF ,Z/pZ) is not formal?

4.3. Massey products and formality. Let n ≥ 2 be an integer and a1, . . . , an ∈
H1(A). A defining system for the n-th order Massey product ⟨a1, . . . , an⟩ is a
collection M of elements of aij ∈ A1, where 1 ≤ i < j ≤ n + 1, (i, j) ̸= (1, n + 1),
such that

(1) ∂(ai,i+1) = 0 and ai,i+1 represents ai in H1(A), and

(2) ∂(aij) = −
∑j−1

l=i+1 ailalj for all i < j − 1.

It follows from (2) that −
∑n

l=2 a1lal,n+1 is a 2-cocycle: we write ⟨a1, . . . , an⟩M
for its cohomology class in H2(A), called the value of ⟨a1, . . . , an⟩ corresponding to
M .

Definition 4.13. The Massey product of a1, . . . , an is the subset ⟨a1, . . . , an⟩ of
H2(A) consisting of the values ⟨a1, . . . , an⟩M of all defining systemsM . We say that
the Massey product ⟨a1, . . . , an⟩ is defined if it is non-empty, and that it vanishes
if 0 ∈ ⟨a1, . . . , an⟩.

By a theorem of Dwyer [Dwy75], this definition reduces to Definition 1.3 when
A is the cochain DGA of a profinite group.
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Lemma 4.14. Let (A, ∂) be a differential graded ring, let n ≥ 3 be an integer, and
let a1, . . . , an be elements of H1(A) satisfying ai ∪ ai+1 = 0 for all 1 ≤ i ≤ n − 1.
If A is formal, then ⟨a1, . . . , an⟩ vanishes.

Proof. See [PQ22, Theorem 3.8]. □

Exercise 4.15. Find a direct proof of Lemma 4.14 in the case n = 4. (This is the
only case that we will need.)

Recall that the Massey Vanishing Conjecture asks whether the first implication
of (1.5) can be reversed for absolute Galois groups. It is natural to wonder whether
both implications of (1.5) can be reversed for absolute Galois groups; see [PS18,
Definition 1.3].

Question 4.16 (Strong Massey Vanishing (Mináč–Tân)). Let F be a field, let
n ≥ 3 be an integer, let p be a prime number, and let χ1, . . . , χn ∈ H1(F,Z/pZ) be
such that χi ∪ χi+1 = 0 for all i = 1, . . . , n. Does ⟨χ1, . . . , χn⟩ vanish?

If Strong Massey Vanishing is true for F , then the Massey Vanishing Conjecture
holds for F . Moreover, if F is a field for which the Strong Massey Vanishing
Conjecture fails, for some n ≥ 3 and some prime p, then C·(ΓF ,Z/pZ) is not
formal. However, as shown by Harpaz and Wittenberg [GMT18, Example A.15],
Strong Massey Vanishing does not always hold.

Example 4.17 (Harpaz–Wittenberg). Strong Massey Vanishing fails for F = Q,
n = 4, and p = 2. More precisely, if we let b = 2, c = 17 and a = d = bc = 34, then
(a, b) = (b, c) = (c, d) = 0 in Br(Q) but ⟨a, b, c, d⟩ is not defined over Q.

In [MS22, Theorem 1.4], we have generalized the Harpaz–Wittenberg example
to arbitrary fields as follows.

Theorem 4.18 (Merkurjev–Scavia). Let p = 2, let F be a field of characteristic
different from 2, and let b, c ∈ F×. The following are equivalent:

(1) the Massey product ⟨bc, b, c, bc⟩ is defined,
(2) the Massey product ⟨bc, b, c, bc⟩ vanishes,
(3) (b, c) = 0 in Br(F ) and −1 ∈ Nb,c(F

×
b,c).

Theorem 4.18 does not imply Theorem 4.19. Indeed, if F contains a primitive
8-th root of unity ζ8, then −1 = Nb,c(ζ8) ∈ Nb,c(F

×
b,c), and hence if (b, c) = 0 then

⟨bc, b, c, bc⟩ vanishes by Theorem 4.18.
Nevertheless, we showed in [MS23b] that Question 4.12 has negative answer.

Theorem 4.19. Let p be a prime number and let F be a field of characteristic
different from p. There exists a field L containing F such that the differential
graded ring C·(ΓL,Z/pZ) is not formal.

This is a consequence of the next more precise result.

Theorem 4.20. Let p be a prime number, let F be a field of characteristic different
from p. There exist a field L containing F and χ1, χ2, χ3, χ4 ∈ H1(L,Z/pZ) such
that χ1 ∪ χ2 = χ2 ∪ χ3 = χ3 ∪ χ4 = 0 in H2(L,Z/pZ) but ⟨χ1, χ2, χ3, χ4⟩ is not
defined. Thus the Strong Massey Vanishing conjecture at n = 4 and the prime p
fails for L, and C·(ΓL,Z/pZ) is not formal.
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The field L is a function field over F . Replacing F by a finite extension if
necessary, we may suppose that F contains a primitive p-th root of unity ζ. Let
E := F (x, y), where x and y are independent variables over F , let X be the Severi-
Brauer variety of the degree-p cyclic algebra (x, y) over E, and let L := E(X).
Consider the following elements of E×:

a := 1− x, b := x, c := y, d := 1− y.

We have (a, b) = (c, d) = 0 in Br(E) by the Steinberg relations [Ser79, Chapter
XIV, Proposition 4(iv)], and hence (a, b) = (b, c) = 0 in Br(L). Moreover, (b, c) ̸= 0
in Br(E) because the residue of (b, c) along x = 0 is non-zero, while (b, c) = 0 in
Br(L) by [GS17, Theorem 5.4.1]. Thus (a, b) = (b, c) = (c, d) = 0 in Br(L). In
order to prove Theorem 4.20, it suffices to prove that ⟨a, b, c, d⟩ is not defined. We
summarize the main steps of the proof.

The first step is to find an equivalent condition for the property “⟨a, b, c, d⟩ is
defined”.

Proposition 4.21. Let p be a prime number, let F be a field of characteristic
different from p and containing a primitive p-th root of unity ζ, and let a, b, c, d ∈
F×. The mod p Massey product ⟨a, b, c, d⟩ is defined if and only if there exist
u ∈ F×

a,c, v ∈ F×
b,d and w0 ∈ F×

b,c such that

Na(u) ·Nd(v) = wp
0 , (σb − 1)(σc − 1)w0 = ζ.

We refer to [MS23b, Proposition 3.7] for the complete proof of Proposition 4.21.
The idea is the following. The Massey product ⟨a, b, c, d⟩ is defined if and only
if there exists a Galois U5-algebra L/F with induced (Z/pZ)4-algebra Fa,b,c,d/F .

Contemplating the following picture of U5

(4.1)

1 ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1

we see that this is equivalent to the existence of a U4-algebra inducing Fa,b,c/F
(top-left 4× 4 square), a U4-algebra inducing Fb,c,d/F (bottom-right 4× 4 square),
and an isomorphism of the induced U3-algebras (central 3×3 square). The strategy
is to parametrize all possibilities for the U4-algebras, and to impose the condition
that they agree on the common U3 square. Loosely speaking, u corresponds to
the upper U4-square, v to the bottom U4-square, and w0 to the fact that the two
U4-squares agree on the common U3-square.

Once Proposition 4.21 is established, elementary calculations yield the following.

Corollary 4.22. Let p be a prime, let F be a field of characteristic different from p
and containing a primitive p-th root of unity ζ, let a, b, c, d ∈ F×, and suppose that
⟨a, b, c, d⟩ is defined over F . For every w ∈ F×

b,c such that (σb − 1)(σc − 1)w = ζ,

there exist u ∈ F×
a,c and v ∈ F×

b,d such that Na(u)Nd(v) = wp.

We can rephrase this corollary as follows. Let T be the kernel of the homomor-
phism of E-tori

Ra,c(Gm)×Rb,d(Gm) → Rb,c(Gm), (u, v) 7→ Na(u)Nd(v) = 1.



LECTURES ON THE MASSEY VANISHING CONJECTURE 21

Then T is an F -torus, that is, it is connected. Given w ∈ F×
b,c such that (σb −

1)(σc−1)w = ζ, the Massey product ⟨a, b, c, d⟩ is defined if and only if the T -torsor
Ew ⊂ Ra,c(Gm)×Rb,d(Gm) given by Na(u)Nd(v) = wp is split.

More generally, suppose that T is a torus over a field F , let K be a Galois field
extension of F such that TK is split, and let G = Gal(K/F ). We have an exact
sequence of G-modules

(4.2) 1 → T (K) → T (K(X))
div−−→ Div(XK)⊗ T∗

deg−−→ T∗ → 0,

where T∗ denotes the cocharacter lattice of T . We consider the subgroup of unram-
ified torsors

H1(G,T (K(X)))nr := Ker[H1(G,T (K(X)))
div−−→ H1(G,Div(XK ⊗ T∗))],

and the homomorphism

θ : H1(G,T (K(X)))nr → Coker[(Div(XK)⊗ T∗)
G deg−−→ (T∗)

G],

induced by (4.2). It turns out that it is possible to compute θ explicitly in terms
of any short exact sequence

1 → T → P → S → 1

where P is a quasi-trivial torus.
In our situation, we have F = E, T = T , K = Ea,b,c,d, and P = Ra,c(Gm) ×

Rb,d(Gm) → Rb,c(Gm). Using the above setup, we show that the TL-torsor Ew is
unramified and that θ([Ew]) ̸= 0. In fact, in our example the codomain is Z/pZ
and θ([Ew]) is a generator. Therefore Ew is non-trivial, and hence ⟨a, b, c, d⟩ is not
defined.

References

[Dwy75] William G. Dwyer. Homology, Massey products and maps between groups. J. Pure
Appl. Algebra, 6(2):177–190, 1975. 2, 18

[EM17] Ido Efrat and Eliyahu Matzri. Triple Massey products and absolute Galois groups. J.

Eur. Math. Soc. (JEMS), 19(12):3629–3640, 2017. 5
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