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Course Goals

 Goal: Convey context and status of 

Post-Quantum Cryptography (PQC)

 What is PQC?

 Current Proposals for PQC

 Familiarity with algorithms and running times

 Introduce Supersingular Isogeny Graphs (SIG)

 Introduce Ring-Learning With Errors (RLWE)



Course Outline

 Day 1: Supersingular Isogeny Graphs—definitions and 
applications

 Day 2: Hard Problems—number theory attacks 

 Day 3: RLWE—motivation and definition of schemes

 Day 4: Attacks on Ring-LWE for special rings.



Cryptography:

 The science of keeping secrets!

 But more than that…

 Confidentiality

 Authenticity

 Tools:

 Encryption/Decryption

 Digital signatures

 Key exchange



Public Key 
Cryptography

 Key exchange: two parties agree on a common secret using 
only publicly exchanged information 

 Signature schemes: allows parties to authenticate themselves

 Encryption: preserve confidentiality of data

 Examples of public key cryptosystems:

RSA, Diffie-Hellman, ECDH, DSA, ECDSA
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Public Key 
Cryptography:

 Each party has a *publicly available* key

 Public key encryption

 Publicly verifiable signatures

 Public Key Exchange

 Security of systems in based on some hard math 
problem:

 Factoring large integers (RSA)

 Discrete logarithm problem in (Z/pZ)* (DLP)

 Elliptic curve groups (ECC):

 Discrete logarithm problem (ECDLP)

 Weil pairing on elliptic curves 



Applications:

 Secure browser sessions (https: SSL/TLS)

 Signed, encrypted email (S/MIME)

 Virtual private networking (IPSec)

 Authentication (X.509 certificates)
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Quantum 
Computers!

 1980-82-85: Idea introduced by Benioff, Manin, 
Feynman, Deutsch

 1994 Shor's poly time quantum algorithm for factoring

 2001 factorization of 15 using a 7-qubit NMR computer.

 2011 researchers factored 143 using 4 qubits

 2016: Station Q, Microsoft Research, Quantum Compiler, 
LiQuiD



Quantum 
Arithmetic

 Basic arithmetic is different

 Requires quantum circuits 
consisting of quantum gates

 Quantum logic gates are 
represented by unitary matrices 

 Dependent on architecture design



Polynomial time 
Quantum 
algorithms

m = # bits

 Shor’s algorithm for factoring 4m3 time and 2m qbits

 ECC attack requires 360m3 time and 6m qbits
(Proos-Zalka, 2004)

Conclusion:

 RSA: m = 2048 

 Discrete log m = 2048 

 Elliptic Curve Cryptography m = 256 or 384

Are not resistant to quantum attacks once a quantum computer 
exists at scale!



Timeline for ECC

 (2006)  Suite B set requirements for the use of 

Elliptic Curve Cryptography

 (2016) CNSA requirements increase the minimum 

bit-length for ECC from 256 to 384.  Advises that 
adoption of  ECC not required. 

 (2017) NIST international competition to select 

post-quantum solutions: PQC Competition



Post-quantum 
cryptography

 Code-based cryptography (McEliece 1978)

 Multivariate cryptographic systems (Matsumoto-Imai,1988) 

 Hash-based cryptosystems (Merkle, 1989)

 Lattice-based cryptography (Hoffstein-Pipher-Silverman, 
NTRU 1996)

 Supersingular Isogeny Graphs (Charles-Goren-Lauter 2006)

 Challenge!  Need to see if these new systems are resistant to 
*both* classical and quantum algorithms!



Supersingular
Isogeny Graphs

New hard problem introduced in 2006: 
[Charles-Goren-Lauter]

 Finding paths between nodes in a 
Supersingular Isogeny Graph

Graphs: G = (V, E) = (vertices, edges)

 k-regular, undirected graphs, with optimal 
expansion

 No known efficient routing algorithm



Hash functions

 A hash function maps bit strings of some finite length to bit 
strings of some fixed finite length      

h : {0,1}n {0,1}m

 easy to compute 

 unkeyed (do not require a secret key to compute output)

 Collision resistant

 Uniformly distributed output



Cryptographic Hash 
functions: Practical 

applications

 Security of most cryptographic protocols

 Password verification

 Integrity check of received content

 Signed hashes

 Encryption protocols

 Message digest

 Microsoft source code (720 uses of MD5)



Collision-
resistance

 A hash function h is collision resistant if it is 
computationally infeasible to find two distinct inputs, x, y, 
which hash to the same output h(x) = h(y).

 A hash function h is preimage resistant if, given any output 
of h, it is computationally infeasible to find an input, x, 
which hashes to that output. 



Application: 
cryptographic 
hash function

[CGL’06]

 k-regular graph G

 Each vertex in the graph has a label

Input: a bit string

 Bit string is divided into blocks 

 Each block used to determine which edge to follow for 
the next step in the graph 

 No backtracking allowed!

Output: label of the final vertex of the walk         



Simple idea

 Random walks on expander graphs are a good 
source of pseudo-randomness

 Are there graphs such that finding collisions is 
hard? (i.e. finding distinct paths between vertices 
is hard)

 Bad idea: hypercube (routing is easy, can be read 
off from the labels)



What kind of 
graph to use?

 Random walks on expander graphs 
mix rapidly: ~log(p) steps to a random 
vertex, p ~ #vertices

 Ramanujan graphs are optimal 
expanders

 To find a collision: find two distinct 
walks of the same length which end at 
same vertex
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Colliding walks:   1100 and 1011 
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Graph of supersingular
elliptic curves modulo 
p with isogeny edges 

(Pizer graphs)

 Vertices: supersingular elliptic curves mod p

 Curves are defined over GF(p2) (or GF(p))

 Labeled by j-invariants

 E1 : y2 = x3 + ax + b 
 j(E1)= 1728*4a3/(4a3+27b2)

 Edges: Isogenies between elliptic curves



Need to define:

 Elliptic curve

 Supersingular

 Isogeny

 J-invariant

Lots of deep and beautiful theorems in number theory 
describe the properties of these graphs…

Supersingular is key: 

 Graph is Ramanujan (Eichler, Shimura)

 Size, regularity of the graph

 Undirected if we assume p == 1 mod 12



Graph of 
supersingular elliptic 

curves modulo p 
(Pizer)

Vertices: supersingular elliptic 
curves mod p
# vertices ~ p/12
p ~ 2256

Curves are defined over GF(p2)
 Labeled by j-invariants

Edges: degree ℓ isogenies 
between them
k = ℓ+1 – regular



Isogenies

 The degree of a separable isogeny is the size of 
its kernel

 To construct an ℓ -isogeny from an elliptic curve E 
to another, take a subgroup-scheme C of size ℓ, 
and take the quotient E/C.

 Formula for the isogeny and equation for E/C 
were given by Velu.



One step of the 
walk: (ℓ=2)

E1 : y2 = x3 +ax+b

 j(E1)=1728*4a3/(a3+27b2)

 2-torsion point Q = (r, 0) 

E2 = E1 /Q (quotient of groups)

 E2 : y2 = x3 − (4a + 15r2)x + (8b − 14r3).

E1   E2

(x, y)  (x +(3r2 + a)/(x-r), y − (3r2 + a)y/(x-r)2) 



Science magazine 
2008





History

 Charles-Goren-Lauter presented at NIST 2005 competition,  
IACR eprint 2006, published J Crypto 2009

 Later in 2006, two papers on eprint, never published:

 Couveignes, ordinary case (Hard Homogeneous Spaces) 

 Rostovtsev-Stolbunov, ordinary case (Encryption)

 Ordinary case is very different for many reasons:

 Volcanoe structure of graph

 Action of an abelian class group

 Known subexponential classical algorithms to attack



Back-up slides



RSA 
cryptosystems 

(~1975)

Security based on hardness of factoring n=p*q

φ (n) = φ (p)φ (q) = (p −  1)(q −  1) = n - (p + q -1)

Choose an integer e such that gcd(e, φ (n)) = 1

Determine d as d ≡  e− 1 (mod φ (n)); 

Public key (n, e)

Private key (n,d)

p, q, and φ (n) secret 
(because they can be used to calculate d)
Encryption

Decryption

http://en.wikipedia.org/wiki/Greatest_common_divisor


Diffie-Hellman 
Key Exchange

Alice picks random a

Alice sends ga

Secret : 

g ab  = (g b) a =  (g a) b
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Bob picks random b

Bob sends gb

Given a cyclic group G generated by g



Elliptic Curve 
Cryptography

 Elliptic Curve Cryptography (ECC) is an alternative to RSA 
and Diffie-Hellman,  primarily signatures and key exchange 

 Proposed in 1985 (vs. 1975 for RSA) by Koblitz and Miller

 Security is based on a hard mathematical problem different 
than factoring  ECDLP

 ECC 25th anniversary conference October 2010 hosted at 
MSR Redmond

 Pairing-based cryptography currently entirely on pairings on 
elliptic curves
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Elliptic CURVE 
Groups 

 Group of points (x, y) on an elliptic curve, 

y 2 = x 3 + a x + b, 

Over a field of minimum size: 256-bits

(short Weierstrass form, characteristic not 2 or 3)

Identity in the group is the “point at infinity”

Group law computed via “chord and tangent method”
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Group Law on an Elliptic Curve

Q1 + Q2 = −R1

Q2

R1

Q1

−R1



How to add pairs of points?

#𝐸𝐸 𝐅𝐅𝑝𝑝 ≈ 𝑝𝑝 #Jac𝐶𝐶 𝐅𝐅𝑝𝑝 ≈ 𝑝𝑝2

𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0 𝑦𝑦2 = 𝑥𝑥5 + 𝑎𝑎4𝑥𝑥4 + 𝑎𝑎3𝑥𝑥3 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0

Genus 2 Jacobians



RSA Security

 Security based on hardness of factoring n=p*q

 p and q have equal size

 Otherwise: Elliptic curve factoring method finds factors in time 
proportional to the size of the factor (H. Lenstra, `85)

 Quadratic Sieve (Fermat, Kraitchik, Lehmer-Powers, Pomerance)

 Number field sieve (NFS) runs in subexponential time

O(ec (log n)^1/3 (log log n)^2/3)

c=1.526… Special NFS; 

c=1.92… General NFS

Pollard `88, Lenstra-Lenstra-Manasse `90, Coppersmith `93, 



Discrete logarithm 
problem in (Z/pZ)*

 Square-root algorithms: 

 Baby-Step-Giant-Step (Shanks `71) 

 Pollard rho (Pollard, `78)

 Pohlig-Hellman, `78

 Subexponential: 

 Index calculus (Adleman, `79)

 Recent significant breakthroughs, improving the 
exponent in subexponential algorithms for DLP to 
¼ for small characteristic:

 Function Field Sieve (Joux 2013)



Elliptic Curve 
Cryptography

 Menezes–Okamoto–Vanstone (MOV) attack `93: 

 supersingular elliptic curves

 Semaev, Satoh, Smart `98-`99 (Trace 1)

 Generic square-root algorithms: 

 Baby-Step Giant-Step, Pollard's rho

 No generic, classical sub-exponential algorithm known
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