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= Goal: Convey context and status of

_ Post-Quantum Cryptography (PQC)

= What is PQC?

- P Is for P
COU rse Goals Current Proposals for PQC
= Familiarity with algorithms and running times
= Introduce Supersingular Isogeny Graphs (SIG)
Introduce Ring-Learning With Errors (RLWE)




Day l: Supersingular Isogeny Graphs—definitions and
applications

Day 2: Hard Problems—number theory attacks

Course Outline

Day 3: RLWE—motivation and definition of schemes

Day 4: Attacks on Ring-LWE for special rings.




= But more than that...

= Confidentiality

= Authenticity
Cryptography: + Tools
= Encryption/Decryption

= Digital signatures

= Key exchange



Key exchange: two parties agree on a common secret using

only publicly exchanged information

Signature schemes: allows parties to authenticate themselves

Encryption: preserve confidentiality of data

Public Key
Cryptography

Examples of public key cryptosystems:
RSA, Diffie-Hellman, ECDH, DSA, ECDSA




= FEach party has a *publicly available* key

= Publicly verifiable signatures

= Public Key Exchange

= Security of systems in based on some hard math

P U b | IC Key problem:
Cryptogra phv: * Factoring large integers (RSA)

= Discrete logarithm problem in (Z/pZ)* (DLP)
= Elliptic curve groups (ECC):

= Discrete logarithm problem (ECDLP)

= Weil pairing on elliptic curves



Secure browser sessions (https: SSL/TLS)

Signed, encrypted email (S/MIME)

Applications:

Virtual private networking (IPSec)

Authentication (X.509 certificates)




1980-82-85: Idea introduced by Benioff, Manin,
Feynman, Deutsch

1994 Shor's poly time quantum algorithm for factoring

Quantum
Computers!

2001 factorization of 15 using a 7-qubit NMR computer.

2011 researchers factored 143 using 4 qubits

2016: Station Q, Microsoft Research, Quantum Compiler,
LiQuiD




Quantum
Arithmetic

= Basic arithmetic is different

= Requires quantum circuits
consisting of quantum gates

" Quantum logic gates are
represented by unitary matrices

= Dependent on architecture design



"m = # bits
" Shor’s algorithm for factoring 4m? time and 2m gbits
_ = ECC attack requires 360m? time and 6m gbits
(Proos-Zalka, 2004)
Polynomial time g

Quantum = RSA:m = 2048

. = Discrete log m = 2048
algorithms J
= Elliptic Curve Cryptography m = 256 or 384

Are not resistant to quantum attacks once a quantum computer

exists at scale!



Timeline for ECC

= (2006) Suite B set requirements for the use of
Elliptic Curve Cryptography

= (2016) CNSA requirements increase the minimum
bit-length for ECC from 256 to 384. Advises that
adoption of ECC not required.

= (2017) NIST international competition to select
post-quantum solutions: PQC Competition



Post-quantum
cryptography

Code-based cryptography (McEliece 1978)
Multivariate cryptographic systems (Matsumoto-Imai,1988)
Hash-based cryptosystems (Merkle, 1989)

Lattice-based cryptography (Hoffstein-Pipher-Silverman,
NTRU 1996)

Supersingular Isogeny Graphs (Charles-Goren-Lauter 2006)

Challenge! Need to see if these new systems are resistant to
*both* classical and quantum algorithms!



Supersingular
Isogeny Graphs

New hard problem introduced in 2006:
[Charles-Goren-Lauter]

= Finding paths between nodes in a
Supersingular Isogeny Graph

Graphs: G = (V, E) = (vertices, edges)
= k-regular, undirected graphs, with optimal
expansion

= No known efficient routing algorithm



= A hash function maps bit strings of some finite length to bit
strings of some fixed finite length

h:{0,1}*» = {0,1}™
" easy to compute
H dS h fu N Ct|o NS = unkeyed (do not require a secret key to compute output)
= Collision resistant

= Uniformly distributed output




Cryptographic Hash

functions: Practical
applications

Security of most cryptographic protocols
Password verification

Integrity check of received content
Signed hashes

Encryption protocols

Message digest

Microsoft source code (720 uses of MD5)



= A hash function h is collision resistant if it is
computationally infeasible to find two distinct inputs, x, y,
which hash to the same output h(x) = h(y).

COl | ISION- = A hash function h is preimage resistant if, given any output

- of h, it is computationally infeasible to find an input, x,
[esl Sta Nce which hashes to that output.




Application:

cryptographic
hash function
[CGLO6]

= k-regular graph G

= Each vertex in the graph has a label

Input: a bit string
= Bit string is divided into blocks

= Each block used to determine which edge to follow for
the next step in the graph

* No backtracking allowed!

Output: label of the final vertex of the walk



= Random walks on expander graphs are a good
source of pseudo-randomness

= Are there graphs such that finding collisions is
hard? (i.e. finding distinct paths between vertices
is hard)

Simple idea

= Bad idea: hypercube (routing is easy, can be read
off from the labels)



What kind of

graph to use?

= Random walks on expander graphs
mix rapidly: ~log(p) steps to a random
vertex, p ~ #vertices

= Ramanujan graphs are optimal
expanders

= To find a collision: find two distinct
walks of the same length which end at
same vertex



Walk on a graph: 110




Colliding walks: 1100 and 1011




= Vertices: supersingular elliptic curves mod p

D - Gurves are defined over GF(p?) (or GF(p)

Graph of supersingular = Labeled by j-invariants
"E, :y¢?=x3+ax+Db
= j(E)= 1728+*4a3/(4a3+27b?)

elliptic curves modulo
p with isogeny edges
(Pizer graphs)

= Edges: Isogenies between elliptic curves



Need to define:

= Elliptic curve
= Supersingular
= [sogeny

*= J-invariant

Lots of deep and beautiful theorems in number theory
describe the properties of these graphs...

Supersingular is key:

= Graph is Ramanujan (Eichler, Shimura)
= Size, regularity of the graph

= Undirected if we assume p == 1 mod 12



= Vertices: supersingular elliptic
curves mod p
= # vertices ~ p/12
" Curves are defined over GF(p?)

Graph of = Labeled by j-invariants

supersingular elliptic
curves modulo p
(Pizer) ="Edges: degree { isogenies
between them

"k ={+1]1-regular



= The degree of a separable isogeny is the size of

its kernel

= To construct an { -isogeny from an elliptic curve E
to another, take a subgroup-scheme C of size (,

Isogenies and take the quotient E/C.

= Formula for the isogeny and equation for E/C
were given by Velu.



E, :y?2=x3% +tax+b
" j(E,)=1728%*4a3/(a%+27b?)
= 2-torsion point Q = (z, 0)

One step of the E, = E, /Q (quotient of groups)
Wa”(Z (822) = E,:y2=x%— (4a + 15r%)x + (8b — 14r3).

E, 2 E
(X,¥) 2 x+(3r2 + a)/(x-r),y — (3r2 + a)y/(x-r)?)



Science magazine

2008
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= Charles-Goren-Lauter presented at NIST 2005 competition,
= Later in 2006, two papers on eprint, never published:

= Couveignes, ordinary case (Hard Homogeneous Spaces)

= Rostovtsev-Stolbunov, ordinary case (Encryption)

= Ordinary case is very different for many reasons:
= Volcanoe structure of graph
= Action of an abelian class group

= Known subexponential classical algorithms to attack




Back-up slides




RSA

cryptosystems
(~1975)

Security based on hardness of factoring n=p*q
(= () (@=@P 0@ 1)=n-(p+tqg-1)
Choose an integer e such that gcd(e, (n))=1

Determinedasd e '(mod (n));

Public key (n, e)
Private key (n,d)

p, d, and (n) secret
(because they can be used to calculate d)

Encryption
c=m" (mod n)
Decryption

m=c¢" (mod n)


http://en.wikipedia.org/wiki/Greatest_common_divisor

Diffie-Hellman

Key Exchange

32

Given a cyclic group G generated by g

Alice picks random a Bob picks random b
Alice sends g* >

< Bob sends g®
Secret :

g = (gP)2= (g?)°



= Elliptic Curve Cryptography (ECC) is an alternative to RSA
and Diffie-Hellman, primarily signatures and key exchange

= Proposed in 1985 (vs. 1975 for RSA) by Koblitz and Miller

= Security is based on a hard mathematical problem different
than factoring ECDLP

Elliptic Curve
Cry ptOg e p hy = ECC 25% anniversary conference October 2010 hosted at

MSR Redmond

= Pairing-based cryptography currently entirely on pairings on

elliptic curves



Flliptic CURVE

Groups

= Group of points (%, y) on an elliptic curve,
y2=x3%+ax+Dh,
Over a field of minimum size: 256-bits

(short Weierstrass form, characteristic not 2 or 3)

Identity in the group is the “point at infinity”

Group law computed via “chord and tangent method”



Group Law on an Elliptic|Curve

o

-
N

Q; + Q; = -Ry




Genus 2 Jacobians

2 _ .5 4 3 2
y? =x3 + ayx? + a;x + ag Yo =xt+aux* +azx’ +ax° +a.x + ag

How to add pairs of points?

#E(F,) ~ p #Jacq(F,) =~ p?



RSA Security

Security based on hardness of factoring n=p*q

= p and g have equal size

Otherwise: Elliptic curve factoring method finds factors in time
proportional to the size of the factor (H. Lenstra, '85)

Quadratic Sieve (Fermat, Kraitchik, Lehmer-Powers, Pomerance)

Number field sieve (NFS) runs in subexponential time
O(ec (log n)*1/3 (log log n)"Z/S)
c=1.526... Special NFS;
c=1.92... General NFS

Pollard "88, Lenstra-Lenstra-Manasse 90, Coppersmith "93,



= Square-root algorithms:
= Pollard rho (Pollard, "78)

= Pohlig-Hellman, "78
Discrete logarithm

= Subexponential:

problem in (Z/pZ)*

= Index calculus (Adleman, '79)

= Recent significant breakthroughs, improving the
exponent in subexponential algorithms for DLP to

V4 for small characteristic:
= Function Field Sieve (Joux 2013)



= Menezes—Okamoto—Vanstone (MOV) attack 93:

= supersingular elliptic curves

= Semaeyv, Satoh, Smart 98-"99 (Trace 1)

El | | pth CU Ve = Generic square-root algorithms:
Cryptog e phy = Baby-Step Giant-Step, Pollard's rho

= NoO generic, classical sub-exponential algorithm known
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