

WAM: Uhlenbeck Lectures

Kristin Lauter

Microsoft Research

Course Goals

Goal: Convey context and status ofPost-Quantum Cryptography (PQC)

- What is PQC?
- Current Proposals for PQC
- Familiarity with algorithms and running times
- Introduce Supersingular Isogeny Graphs (SIG)
- Introduce Ring-Learning With Errors (RLWE)

Course Outline

- Day 1: Supersingular Isogeny Graphs—definitions and applications
- Day 2: Hard Problems—number theory attacks
- Day 3: RLWE—motivation and definition of schemes
- Day 4: Attacks on Ring-LWE for special rings.

Cryptography:

- The science of keeping secrets!
- But more than that...
 - Confidentiality
 - Authenticity
- Tools:
 - Encryption/Decryption
 - Digital signatures
 - Key exchange

Public Key Cryptography

- <u>Key exchange</u>: two parties agree on a common secret using only publicly exchanged information
- <u>Signature schemes</u>: allows parties to authenticate themselves
- Encryption: preserve confidentiality of data
- Examples of public key cryptosystems:

RSA, Diffie-Hellman, ECDH, DSA, ECDSA

Public Key Cryptography:

- Each party has a *publicly available* key
 - Public key encryption
 - Publicly verifiable signatures
 - Public Key Exchange
- Security of systems in based on some hard math problem:
 - Factoring large integers (RSA)
 - Discrete logarithm problem in (Z/pZ)* (DLP)
 - Elliptic curve groups (ECC):
 - Discrete logarithm problem (ECDLP)
 - Weil pairing on elliptic curves

- Secure browser sessions (https: SSL/TLS)
- Signed, encrypted email (S/MIME)
- Virtual private networking (IPSec)
- Authentication (X.509 certificates)

Quantum Computers!

- 1980-82-85: Idea introduced by Benioff, Manin,
 Feynman, Deutsch
- 1994 Shor's poly time quantum algorithm for factoring
- 2001 factorization of 15 using a 7-qubit NMR computer.
- 2011 researchers factored 143 using 4 qubits
- 2016: Station Q, Microsoft Research, Quantum Compiler, LiQuiD

Quantum Arithmetic

- Basic arithmetic is different
- Requires quantum circuits consisting of quantum gates
- Quantum logic gates are represented by unitary matrices
- Dependent on architecture design

Polynomial time Quantum algorithms

- m = # bits
 - Shor's algorithm for factoring 4m³ time and 2m qbits
 - ECC attack requires 360m³ time and 6m qbits (Proos-Zalka, 2004)

Conclusion:

- RSA: m = 2048
- Discrete log m = 2048
- Elliptic Curve Cryptography m = 256 or 384

Are not resistant to quantum attacks once a quantum computer exists at scale!

Timeline for ECC

- (2006) Suite B set requirements for the use of Elliptic Curve Cryptography
- (2016) CNSA requirements increase the minimum bit-length for ECC from 256 to 384. Advises that adoption of ECC not required.
- (2017) NIST international competition to select post-quantum solutions: PQC Competition

Post-quantum cryptography

- Code-based cryptography (McEliece 1978)
- Multivariate cryptographic systems (Matsumoto-Imai, 1988)
- Hash-based cryptosystems (Merkle, 1989)
- Lattice-based cryptography (Hoffstein-Pipher-Silverman, NTRU 1996)
- Supersingular Isogeny Graphs (Charles-Goren-Lauter 2006)

Challenge! Need to see if these new systems are resistant to *both* classical and quantum algorithms!

Supersingular Isogeny Graphs

New hard problem introduced in 2006: [Charles-Goren-Lauter]

Finding paths between nodes in a Supersingular Isogeny Graph

Graphs: G = (V, E) = (vertices, edges)

- k-regular, undirected graphs, with optimal expansion
- No known efficient routing algorithm

Hash functions

A hash function maps bit strings of some finite length to bit strings of some fixed finite length

$$h: \{0,1\}^n \to \{0,1\}^m$$

- easy to compute
- unkeyed (do not require a secret key to compute output)
- Collision resistant
- Uniformly distributed output

Cryptographic Hash functions: Practical applications

- Security of most cryptographic protocols
- Password verification
- Integrity check of received content
- Signed hashes
- Encryption protocols
- Message digest
- Microsoft source code (720 uses of MD5)

Collisionresistance

- A hash function h is *collision resistant* if it is computationally infeasible to find two distinct inputs, x, y, which hash to the same output h(x) = h(y).
- A hash function h is *preimage resistant* if, given any output of h, it is computationally infeasible to find an input, x, which hashes to that output.

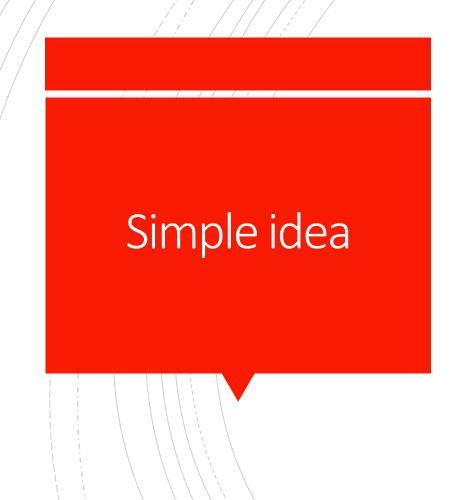
Application: cryptographic hash function [CGL'06]

- k-regular graph G
- Each vertex in the graph has a label

Input: a bit string

- Bit string is divided into blocks
- Each block used to determine which edge to follow for the next step in the graph
- No backtracking allowed!

Output: label of the final vertex of the walk



Random walks on expander graphs are a good source of pseudo-randomness

 Are there graphs such that finding collisions is hard? (i.e. finding distinct paths between vertices is hard)

Bad idea: hypercube (routing is easy, can be read off from the labels)

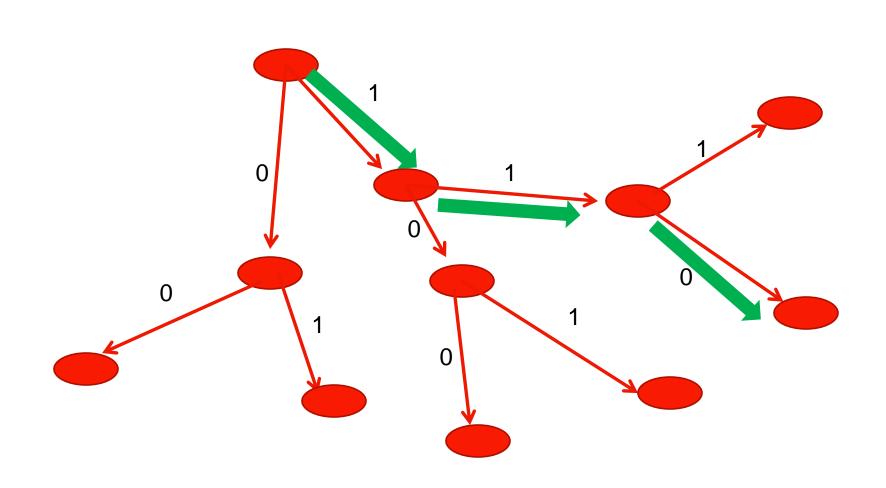
What kind of graph to use?

Random walks on expander graphs mix rapidly: ~log(p) steps to a random vertex, p ~ #vertices

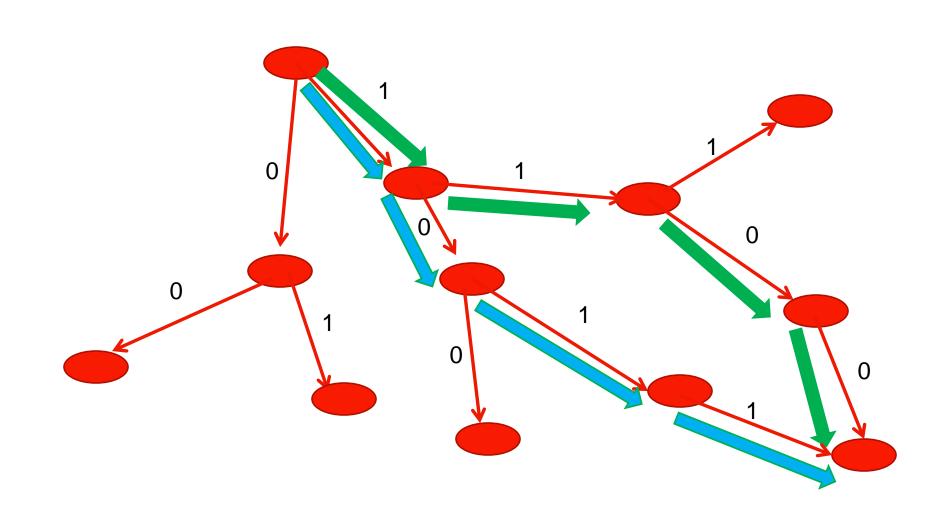
Ramanujan graphs are optimal expanders

To find a collision: find two distinct walks of the same length which end at same vertex

Walk on a graph: 110



Colliding walks: 1100 and 1011



Graph of supersingular elliptic curves modulo p with isogeny edges (Pizer graphs)

- Vertices: supersingular elliptic curves mod p
 - Curves are defined over GF(p²) (or GF(p))

Labeled by j-invariants

$$E_1: y^2 = x^3 + ax + b$$

$$j(E_1) = 1728*4a^3/(4a^3+27b^2)$$

Edges: Isogenies between elliptic curves

Need to define:

- Elliptic curve
- Supersingular
- Isogeny
- J-invariant

Lots of deep and beautiful theorems in number theory describe the properties of these graphs...

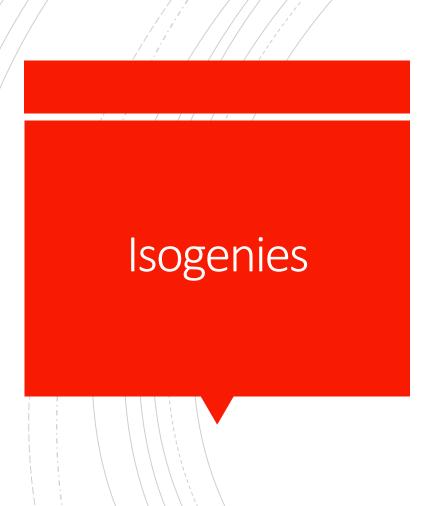
Supersingular is key:

- Graph is Ramanujan (Eichler, Shimura)
- Size, regularity of the graph
- Undirected if we assume p == 1 mod 12

Graph of supersingular elliptic curves modulo p (Pizer)

- Vertices: supersingular elliptic curves mod p
 - # wertices ~ p/12
 - $p \sim 2^{256}$
 - Curves are defined over GF(p²)
 - Labeled by j-invariants

- ■Edges: degree ℓ isogenies between them
 - $\mathbf{k} = \ell + 1 \text{regular}$



The degree of a separable isogeny is the size of its kernel

■ To construct an ℓ -isogeny from an elliptic curve E to another, take a subgroup-scheme C of size ℓ , and take the quotient E/C.

• Formula for the isogeny and equation for E/C were given by Velu.

One step of the walk: (£=2)

$$E_1 : y^2 = x^3 + ax + b$$

- $j(E_1)=1728*4a^3/(a^3+27b^2)$
- 2-torsion point Q = (r, 0)

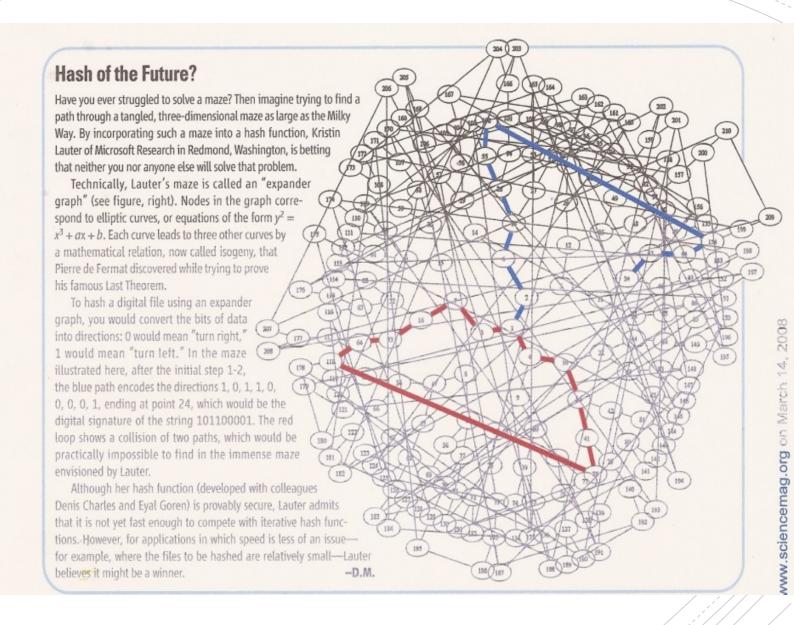
$$E_2 = E_1 / Q$$
 (quotient of groups)

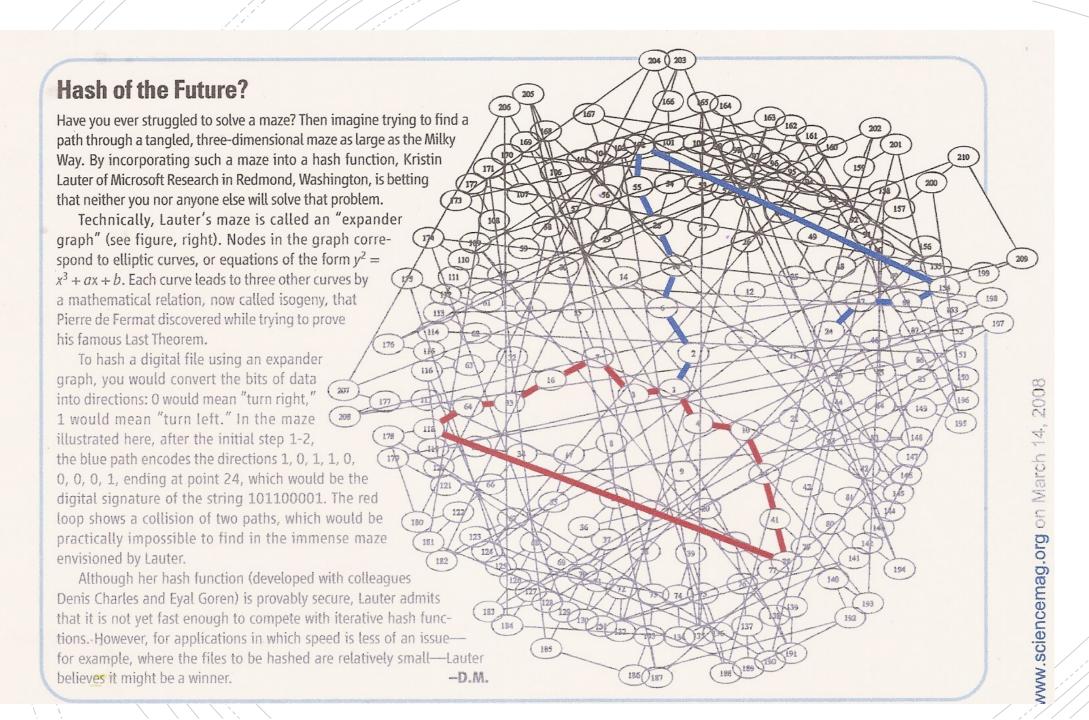
•
$$E_2: y^2 = x^3 - (4a + 15r^2)x + (8b - 14r^3)$$
.

$$E_1 \rightarrow E_2$$

(x,y) \rightarrow (x +(3r² + a)/(x-r), y - (3r² + a)y/(x-r)²)

Science magazine 2008





- Charles-Goren-Lauter presented at NIST 2005 competition, IACR eprint 2006, published J Crypto 2009
- Later in 2006, two papers on eprint, never published:
 - Couveignes, ordinary case (Hard Homogeneous Spaces)
 - Rostovtsev-Stolbunov, ordinary case (Encryption)
- Ordinary case is very different for many reasons:
 - Volcanoe structure of graph
 - Action of an abelian class group
 - Known subexponential classical algorithms to attack

RSA cryptosystems (~1975)

Security based on hardness of factoring n=p*q

$$(n) = (p) (q) = (p - 1)(q - 1) = n - (p + q - 1)$$

Choose an integer e such that gcd(e, (n)) = 1

Determine d as $d e^{-1} \pmod{(n)}$;

Public key (n, e)

Private key (n,d)

p, q, and (n) secret (because they can be used to calculate d)

Encryption

$$c \equiv m^e \pmod{n}$$

Decryption

$$m \equiv c^d \pmod{n}$$

Given a cyclic group G generated by g

Diffie-Hellman Key Exchange Alice picks random a

Bob picks random b

Alice sends
$$g^a$$
 Bob sends g^b

Secret:

$$g^{ab} = (g^b)^a = (g^a)^b$$

Elliptic Curve Cryptography

- Elliptic Curve Cryptography (ECC) is an alternative to RSA and Diffie-Hellman, primarily signatures and key exchange
- Proposed in 1985 (vs. 1975 for RSA) by Koblitz and Miller
- Security is based on a hard mathematical problem different than factoring ECDLP
- ECC 25th anniversary conference October 2010 hosted at MSR Redmond
- Pairing-based cryptography currently entirely on pairings on elliptic curves

Elliptic CURVE Groups

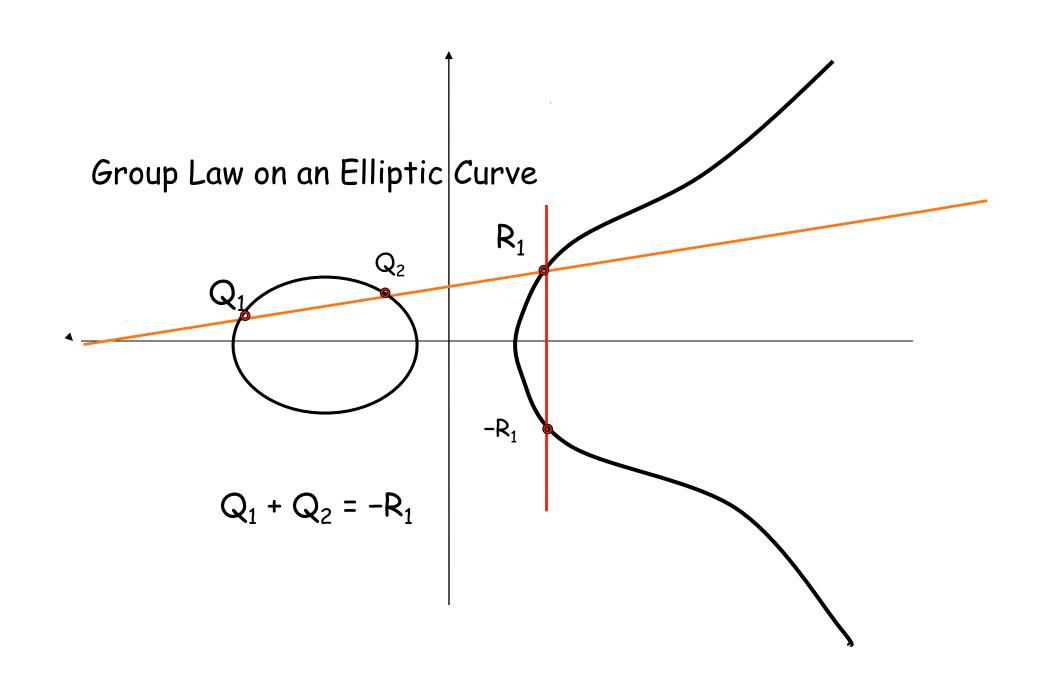
Group of points (x, y) on an elliptic curve,

$$y^2 = x^3 + a x + b$$
,

Over a field of minimum size: 256-bits (short Weierstrass form, characteristic not 2 or 3)

Identity in the group is the "point at infinity"

Group law computed via "chord and tangent method"



Genus 2 Jacobians

$$y^2 = x^3 + a_2x^2 + a_1x + a_0$$

$$\ell$$

$$y^2 = x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

How to add pairs of points?

$$\#E(\mathbf{F}_p) \approx p$$

$$\#\operatorname{Jac}_{\mathcal{C}}(\mathbf{F}_p) \approx p^2$$

- Security based on hardness of factoring n=p*q
 - p and q have equal size
- Otherwise: Elliptic curve factoring method finds factors in time proportional to the size of the factor (H. Lenstra, `85)
- Quadratic Sieve (Fermat, Kraitchik, Lehmer-Powers, Pomerance)
- Number field sieve (NFS) runs in subexponential time

 $O(e^{c (\log n)^{1/3} (\log \log n)^{2/3}})$

c=1.526... Special NFS;

c=1.92... General NFS

Pollard '88, Lenstra-Lenstra-Manasse '90, Coppersmith '93,

Discrete logarithm problem in (Z/pZ)*

- Square-root algorithms:
 - Baby-Step-Giant-Step (Shanks `71)
 - Pollard rho (Pollard, `78)
 - Pohlig-Hellman, `78
- Subexponential:
 - Index calculus (Adleman, `79)
- Recent significant breakthroughs, improving the exponent in subexponential algorithms for DLP to ¼ for small characteristic:
 - Function Field Sieve (Joux 2013)

Elliptic Curve Cryptography

- Menezes-Okamoto-Vanstone (MOV) attack `93:
 - supersingular elliptic curves
- Semaev, Satoh, Smart `98-`99 (Trace 1)
- Generic square-root algorithms:
 - Baby-Step Giant-Step, Pollard's rho
- No generic, classical sub-exponential algorithm known