Algorithms for sparse analysis
Lecture Il: Hardness results for sparse
approximation problems

Anna C. Gilbert

Department of Mathematics
University of Michigan

Complexity theory: Reductions

e Problem A (efficiently) reduces to B means a(n efficient)
solution to B can be used to solve A (efficiently)

e If we have an algorithm to solve B, then we can use that
algorithm to solve A; i.e., A is easier to solve than B

e “reduces” does not confer simplification here

e Definition
A <p B if there’s polynomial time computable function f s.t.

weA < f(w)eB.

e B at least as hard as A

Complexity theory: NP-hard

NP-hard

e Definition
A € NP-complete if (i) Ac NP
and (ii) for all X € NP, X <p A.

e Definition
B € NP-hard if there is
A € NP-complete s.t. A<p B.

Examples

RELPRIME Are a and b relatively prime?
e inP
e Euclidean algorithm, simple

PRIMES Is x a prime number?
e inP
e highly non-trivial algorithm, does not determine factors

FACTOR Factor x as a product of powers of primes.

e in NP

e not known to be NP-hard
X3C Given a finite universe U, a collection X of subsets
X1, X2, ..., Xn s.t. |Xi| =3 for each i, does X contain a
disjoint collection of subsets whose union = U?

e NP-complete

NP-hardness

Theorem
Given an arbitrary redundant dictionary ®, a signal x, and a

sparsity parameter k, it is NP-hard to solve the sparse
representation problem D-EXACT. [Natarajan'95 Davis'97]

NP-hardness

Theorem

Given an arbitrary redundant dictionary ®, a signal x, and a
sparsity parameter k, it is NP-hard to solve the sparse
representation problem D-EXACT. [Natarajan'95 Davis'97]

Corollary

SPARSE, ERROR, EXACT are all NP-hard.

NP-hardness

Theorem

Given an arbitrary redundant dictionary ®, a signal x, and a
sparsity parameter k, it is NP-hard to solve the sparse
representation problem D-EXACT. [Natarajan'95 Davis'97]

Corollary

SPARSE, ERROR, EXACT are all NP-hard.

Corollary

Given an arbitrary redundant dictionary ® and a signal x, it is
NP-hard to approximate (in error) the solution of EXACT to within
any factor. [paviso7]

Exact Cover by 3-sets: X3C

Definition
Given a finite universe U, a collection X of subsets X1, X, ..., Xn
s.t. | Xj| = 3 for each /, does X’ contain a disjoint collection of

subsets whose union = U?

Exact Cover by 3-sets: X3C

Definition
Given a finite universe U, a collection X of subsets X1, X, ..., Xn
s.t. | Xj| = 3 for each /, does X’ contain a disjoint collection of

subsets whose union = U?
NP-complete problem.

Exact Cover by 3-sets: X3C

Definition
Given a finite universe U, a collection X of subsets X1, X, ..., Xn
s.t. | Xj| = 3 for each /, does X’ contain a disjoint collection of

subsets whose union = U?
NP-complete problem.

XI XZ X3 XN
® () o
(@) @ J
@ @)
@) @) @
u |l e o) ©
® @ @
@ | @ ®)
@ (e) (@)
@) @) @

Proposition

Any instance of X3C is reducible in polynomial time to D-EXACT.
X3C <p D-ExAcCT

Proof.
® et Q={1,2,...,N} index ®. Set ¢; = 1x;.
X X X Xu Select x = (1,1,...,1), k= ||
°) 0 ® Suppose have solution to X3C. Sufficient to check if
SPARSE solution has zero error.
0 0 (] Assume solutions of X3C indexed by A. Set
Copt = 1Ip.
[} () Dcopt = X.
0 0] => SPARSE solution has zero error and D-Exact
returns YES.
o 0 °
) (0] (]
0| 0 (]
0 0
0 0 0

Proposition

Any instance of X3C is reducible in polynomial time to D-EXACT.

X3C <p D-ExAcCT

XI XZ X3 XN
° o
°
°
o °
°
°
°
°

Proof.

® et Q={1,2,...,N} index ®. Set ¢; = 1x;.

Select x = (1,1,...,1), k= ||

Suppose have solution to X3C. Sufficient to check if
SPARSE solution has zero error.

Assume solutions of X3C indexed by A. Set
Copt = 1Ip.
$copt = x.

= SPARSE solution has zero error and D-Exact
returns YES.

Suppose copt is optimal solution of SPARSE
®Copt =X

then copt contains k < %\Z/ﬂ nonzero entries and
D-Exact returns YES.

Each column of ® has 3 nonzero entries

= {X;|i € supp(copt)} is disjoint collection
covering U.

What does this mean?

Bad news

e Given any polynomial time algorithm for SPARSE, there is a
dictionary ® and a signal x such that algorithm returns
incorrect answer

e Pessimistic: worst case

e Cannot hope to approximate solution, either

What does this mean?

Bad news
e Given any polynomial time algorithm for SPARSE, there is a
dictionary ® and a signal x such that algorithm returns
incorrect answer
e Pessimistic: worst case
e Cannot hope to approximate solution, either
Good news

Natural dictionaries are far from arbitrary
Perhaps natural dictionaries admit polynomial time algorithms
Optimistic: rarely see worst case

Hardness depends on instance type

Hardness depends on instance

Redundant dictionary ®

input signal x

NP-hard-

depends on |
choice of ®

compressive

sensing

random
(distribution?

+— random
signal model

Leverage intuition from orthonormal basis

e Suppose ® is orthogonal, ®~1 = &7

e Solution to EXACT problem is unique
c=0Ix=0"x ie, c=(x, @)

hence, x =, (x, @) ¢r.

Leverage intuition from orthonormal basis

Solution to SPARSE problem similar

o Let {1 «— arg max,| (x, ¢y) |
Set Co <X7 §0E1>

Residual r «— x — ¢y, 04,

Leverage intuition from orthonormal basis

Solution to SPARSE problem similar

o Let /1 «— arg max, | (x, ¢¢) |
Set ¢7, «— (X, @)
Residual r «— x — ¢y, ¢y,
o Let V5 «— arg max, | (r, vo)| =
arg maxy | (x — ¢y, e) | = arg maxpyy, | (x, ¢0) |
Set ¢y, «— (r, @u,).
Update residual r «— x — (¢, 0, + Co,00,)

Leverage intuition from orthonormal basis

Solution to SPARSE problem similar

o Let /1 «— arg max, | (x, ¢¢) |
Set ¢7, «— (X, @)
Residual r «— x — ¢y, ¢y,
o Let V5 «— arg max, | (r, vo)| =
arg maxy | (x — ¢y, e) | = arg maxpyy, | (x, ¢0) |
Set ¢y, «— (r, @u,).
Update residual r «— x — (¢, 0, + Co,00,)
e Repeat k — 2 times.

Leverage intuition from orthonormal basis

Solution to SPARSE problem similar

o Let /1 «— arg max, | (x, ¢¢) |
Set ¢7, «— (X, @)
Residual r «— x — ¢z, ¢4,
o Let V5 «— arg max, | (r, vo)| =
arg maxy | (x — ¢y, e) | = arg maxpyy, | (x, ¢0) |
Set ¢y, «— (r, @u,).
Update residual r «— x — (cg 00, + o,00,)
e Repeat k — 2 times.
o Set ¢p—— 0 for £ £ l1,0p, ..., 0.

Leverage intuition from orthonormal basis

Solution to SPARSE problem similar

o Let /1 «— arg max, | (x, ¢¢) |
Set ¢7, «— (X, @)
Residual r «— x — ¢z, ¢4,
o Let V5 «— arg max, | (r, vo)| =
arg max | (x — ¢y, @) | = arg maxpzy, | (X, @) |
Set ¢y, «— (r, @u,).
Update residual r «— x — (cg 00, + o,00,)
e Repeat k — 2 times.
o Set ¢p—— 0 for £ £ l1,0p, ..., 0.
e Approximate x ~ $¢c = Zle (X, ©e,) Pe,-

Check: algorithm generates list of coeffs of x over basis in
descending order (by absolute value).

Geometry

e Why is orthogonal case easy?

inner products between atoms are small
it's easy to tell which one is the best choice

(ry i) = (x = civi, pj) = {x, ;) — ci{pi ¥))

e When atoms are (nearly) parallel, can't tell which one is best

Coherence
Definition

The coherence of a dictionary

= max iy Pr
p=max| (), ¢r)|

Coherence

Definition
The coherence of a dictionary

p=max| (v, @) |

J#t
(O] (O]
(O]} [OF P2
(O]
Small coherence Large coherence

(good) (bad)

Coherence: lower bound

Theorem
For a d x N dictionary,

P Vdiv-1) T va
[Welch'73]
Theorem
For most pairs of orthonormal bases in RY, the coherence between
the two is
log d
r= O< d >

[Donoho, Huo '99]

Large, incoherent dictionaries

e Fourier-Dirac, N =2d, u = %

e wavelet packets, N = dlogd, u = \%

e There are large dictionaries with coherence close to the lower
(Welch) bound; e.g., Kerdock codes, N = d?, u=1/v/d

D,

S ”
m
|

Approximation algorithms (error)

e SPARSE. Given k > 1, solve

arg min ||x — &cll, st. ||, <k

C

i.e., find the best approximation of x using k atoms.

® Copt = optimal solution

® Lopt = H¢Copt — X||2 = optimal error

Approximation algorithms (error)

e SPARSE. Given k > 1, solve

arg min ||x — &cll, st. ||, <k

C

i.e., find the best approximation of x using k atoms.

® Copt = optimal solution

® Lopt = H¢Copt — X||2 = optimal error

e Algorithm returns ¢ with
(1) [l = &
(2) E=||9c — x|, < GEopt

Approximation algorithms (error)

e SPARSE. Given k > 1, solve

arg min ||x — &cll, st. ||, <k

C

i.e., find the best approximation of x using k atoms.

® Copt = optimal solution

® Lopt = Hd)copt — X||2 = optimal error

e Algorithm returns ¢ with
(1) [l = &
(2) E=||9c — x|, < GEopt

: : .. E _ GEops _
e (Error) approximation ratio: £ = == = G

Approximation algorithms (terms)

e Algorithm returns ¢ with
(1) 112l = Cok
(2) E=19C— x|, = Eopt

o (Terms) approximation ratio:

Bi-criteria approximation algorithms

e Algorithm returns ¢ with
(1) [lell, = Cok
(2) E=|¥C—x|; = GEop

e (Terms, Error) approximation ratio: (Cz, (1)

Greedy algorithms

Build approximation one step at a time...

Greedy algorithms

Build approximation one step at a time...

...choose the best atom at each step

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k

Output. Coefficient vector ¢ with k nonzeros, ®c =~ x

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k
Output. Coefficient vector ¢ with k nonzeros, ®c =~ x

Initialize. counter t = 1, residual ro =x, c =0

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k
Output. Coefficient vector ¢ with k nonzeros, ®c =~ x
Initialize. counter t = 1, residual ro =x, c =0

1. Greedy selection. Find atom ¢;, s.t.

Je = argmax| (re-1, ¢r) |

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k
Output. Coefficient vector ¢ with k nonzeros, ®c =~ x
Initialize. counter t = 1, residual ro =x, c =0

1. Greedy selection. Find atom ¢;, s.t.

Je = argmax| (re-1, ¢r) |

2. Update. Find ¢, ..., ¢, to solve

X = § CZSSDZS
S

min

2

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k
Output. Coefficient vector ¢ with k nonzeros, ®c =~ x
Initialize. counter t = 1, residual ro =x, c =0

1. Greedy selection. Find atom ¢;, s.t.

Je = argmax| (re-1, ¢r) |

2. Update. Find ¢, ..., ¢, to solve

X = § CZSSDZS
S

min

2

new residual ry «— x — ®c¢

Orthogonal Matching Pursuit OMP wmait 92, pavisror

Input. Dictionary ®, signal x, steps k
Output. Coefficient vector ¢ with k nonzeros, ®c =~ x
Initialize. counter t = 1, residual ro =x, c =0

1. Greedy selection. Find atom ¢;, s.t.

Je = argmax| (re-1, ¢r) |

2. Update. Find ¢, ..., ¢, to solve

X = § CZSSDZS
S

min

2

new residual r; «—— x — dc¢
3. lterate. t «—— t + 1, stop when t > k.

Many greedy algorithms with similar outline

Matching Pursuit: replace step 2. by ¢y, «— ¢y, + (re—1, ¢k,)

Thresholding

Choose m atoms where | (x, ¢;)| are among m largest

Alternate stopping rules:
l[rell2 <€
maxg | (re, o) | <€

Many other variations

Summary

e Sparse approximation problems are NP-hard
o At least as hard as other well-studied problems
e Hardness result of arbitrary input: dictionary and signal

e Intuition from orthonormal basis suggests some feasible
solutions under certain conditions on redundant dictionary

e Geometric properties and greedy algorithms

e Next lecture: rigorous proofs for algorithms

