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Complexity theory: Reductions

• Problem A (efficiently) reduces to B means a(n efficient)
solution to B can be used to solve A (efficiently)

• If we have an algorithm to solve B, then we can use that
algorithm to solve A; i.e., A is easier to solve than B

• “reduces” does not confer simplification here

• Definition
A ≤P B if there’s polynomial time computable function f s.t.

w ∈ A ⇐⇒ f (w) ∈ B.

• B at least as hard as A



Complexity theory: NP-hard

• Definition
A ∈ NP-complete if (i) A ∈ NP
and (ii) for all X ∈ NP, X ≤P A.

• Definition
B ∈ NP-hard if there is
A ∈ NP-complete s.t. A ≤P B.
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Figure: Polynomial time
hierarchy



Examples

• RelPrime Are a and b relatively prime?
• in P
• Euclidean algorithm, simple

• Primes Is x a prime number?
• in P
• highly non-trivial algorithm, does not determine factors

• Factor Factor x as a product of powers of primes.
• in NP
• not known to be NP-hard

• X3C Given a finite universe U , a collection X of subsets
X1,X2, . . . ,XN s.t. |Xi | = 3 for each i , does X contain a
disjoint collection of subsets whose union = U?

• NP-complete



NP-hardness

Theorem
Given an arbitrary redundant dictionary Φ, a signal x, and a
sparsity parameter k, it is NP-hard to solve the sparse
representation problem D-Exact. [Natarajan’95,Davis’97]

Corollary

Sparse, Error, Exact are all NP-hard.

Corollary
Given an arbitrary redundant dictionary Φ and a signal x, it is
NP-hard to approximate (in error) the solution of Exact to within
any factor. [Davis’97]
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Exact Cover by 3-sets: X3C

Definition
Given a finite universe U , a collection X of subsets X1,X2, . . . ,XN

s.t. |Xi | = 3 for each i , does X contain a disjoint collection of
subsets whose union = U?
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Proposition

Any instance of X3C is reducible in polynomial time to D-Exact.
X3C ≤P D-Exact

X1 X2 X3 XN

u

Proof.
• Let Ω = {1, 2, . . . , N} index Φ. Set ϕi = 1Xi

.

Select x = (1, 1, . . . , 1), k = 1
3
|U|.

• Suppose have solution to X3C. Sufficient to check if
Sparse solution has zero error.

Assume solutions of X3C indexed by Λ. Set
copt = 1Λ.

Φcopt = x.

=⇒ Sparse solution has zero error and D-Exact
returns Yes.

• Suppose copt is optimal solution of Sparse

Φcopt = x

then copt contains k ≤ 1
3
|U| nonzero entries and

D-Exact returns Yes.

Each column of Φ has 3 nonzero entries

=⇒ {Xi | i ∈ supp(copt)} is disjoint collection
covering U .
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What does this mean?

Bad news

• Given any polynomial time algorithm for Sparse, there is a
dictionary Φ and a signal x such that algorithm returns
incorrect answer

• Pessimistic: worst case

• Cannot hope to approximate solution, either

Good news

• Natural dictionaries are far from arbitrary

• Perhaps natural dictionaries admit polynomial time algorithms

• Optimistic: rarely see worst case

• Hardness depends on instance type
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Hardness depends on instance

Redundant dictionary Φ input signal x

NP-hard

compressive 
sensing

random 
signal model

depends on 
choice of Φ

arbitrary arbitrary

fixed fixed

random 
(distribution?)

random 
(distribution?)



Leverage intuition from orthonormal basis

• Suppose Φ is orthogonal, Φ−1 = ΦT

• Solution to Exact problem is unique

c = Φ−1x = ΦT x i.e., c` = 〈x , ϕ`〉

hence, x =
∑

` 〈x , ϕ`〉ϕ`.



Leverage intuition from orthonormal basis

Solution to Sparse problem similar

• Let `1 ←− arg max` | 〈x , ϕ`〉 |
Set c`1 ←− 〈x , ϕ`1〉
Residual r ←− x − c`1ϕ`1

• Let `2 ←− arg max` | 〈r , ϕ`〉 | =
arg max` | 〈x − c`1ϕ`1 , ϕ`〉 | = arg max`6=`1

| 〈x , ϕ`〉 |
Set c`2 ←− 〈r , ϕ`2〉.
Update residual r ←− x − (c`1ϕ`1 + c`2ϕ`2)

• Repeat k − 2 times.

• Set c` ←− 0 for ` 6= `1, `2, . . . , `k .

• Approximate x ≈ Φc =
∑k

t=1 〈x , ϕ`t 〉ϕ`t .

Check: algorithm generates list of coeffs of x over basis in
descending order (by absolute value).
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Geometry

• Why is orthogonal case easy?

inner products between atoms are small
it’s easy to tell which one is the best choice

〈r , ϕj〉 = 〈x − ciϕi , ϕj〉 = 〈x , ϕj〉 − ci 〈ϕi , ϕj〉

• When atoms are (nearly) parallel, can’t tell which one is best



Coherence

Definition
The coherence of a dictionary

µ = max
j 6=`
| 〈ϕj , ϕ`〉 |

φ1

φ2 φ3

φ1

φ2

φ3

Small coherence
(good)

Large coherence
(bad)
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Coherence: lower bound

Theorem

For a d × N dictionary,

µ ≥

√
N − d

d(N − 1)
≈ 1√

d
.

[Welch’73]

Theorem

For most pairs of orthonormal bases in Rd , the coherence between
the two is

µ = O
(√ log d

d

)
.

[Donoho, Huo ’99]



Large, incoherent dictionaries

• Fourier–Dirac, N = 2d , µ = 1√
d

• wavelet packets, N = d log d , µ = 1√
2

• There are large dictionaries with coherence close to the lower
(Welch) bound; e.g., Kerdock codes, N = d2, µ = 1/

√
d
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Approximation algorithms (error)

• Sparse. Given k ≥ 1, solve

arg min
c
‖x − Φc‖2 s.t. ‖c‖0 ≤ k

i.e., find the best approximation of x using k atoms.

• copt = optimal solution

• Eopt = ‖Φcopt − x‖2 = optimal error

• Algorithm returns ĉ with

(1) ‖ĉ‖0 = k
(2) E = ‖Φĉ − x‖2 ≤ C1Eopt

• (Error) approximation ratio: E
Eopt

=
C1Eopt

Eopt
= C1
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(1) ‖ĉ‖0 = k
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Approximation algorithms (terms)

• Algorithm returns ĉ with

(1) ‖ĉ‖0 = C2k
(2) E = ‖Φĉ − x‖2 = Eopt

• (Terms) approximation ratio:
‖bc‖0
‖copt‖0

= C2k
k = C2



Bi-criteria approximation algorithms

• Algorithm returns ĉ with

(1) ‖ĉ‖0 = C2k
(2) E = ‖Φĉ − x‖2 = C1Eopt

• (Terms, Error) approximation ratio: (C2,C1)



Greedy algorithms

Build approximation one step at a time...

...choose the best atom at each step
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Orthogonal Matching Pursuit OMP [Mallat ’92], [Davis’97]

Input. Dictionary Φ, signal x , steps k

Output. Coefficient vector c with k nonzeros, Φc ≈ x

Initialize. counter t = 1, residual r0 = x , c = 0

1. Greedy selection. Find atom ϕjt s.t.

jt = argmax`| 〈rt−1, ϕ`〉 |

2. Update. Find c`1 , . . . , c`t to solve

min

∥∥∥∥∥x −∑
s

c`sϕ`s

∥∥∥∥∥
2

new residual rt ←− x − Φc

3. Iterate. t ←− t + 1, stop when t > k.
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Many greedy algorithms with similar outline

• Matching Pursuit: replace step 2. by c`t ←− c`t + 〈rt−1, ϕkt 〉

• Thresholding

Choose m atoms where | 〈x , ϕ`〉 | are among m largest

• Alternate stopping rules:

‖rt‖2 ≤ ε
max` | 〈rt , ϕ`〉 | ≤ ε

• Many other variations



Summary

• Sparse approximation problems are NP-hard

• At least as hard as other well-studied problems

• Hardness result of arbitrary input: dictionary and signal

• Intuition from orthonormal basis suggests some feasible
solutions under certain conditions on redundant dictionary

• Geometric properties and greedy algorithms

• Next lecture: rigorous proofs for algorithms


