Algorithms for sparse analysis Lecture II: Hardness results for sparse approximation problems

Anna C. Gilbert

Department of Mathematics University of Michigan

Complexity theory: Reductions

- Problem A (efficiently) reduces to B means a(n efficient) solution to B can be used to solve A (efficiently)
- If we have an algorithm to solve B, then we can use that algorithm to solve A; i.e., A is easier to solve than B
- "reduces" does not confer simplification here

Definition

 $A \leq_P B$ if there's polynomial time computable function f s.t.

$$w \in A \iff f(w) \in B$$
.

• B at least as hard as A

Complexity theory: NP-hard

Definition

 $A \in \mathbf{NP\text{-}complete}$ if (i) $A \in \mathbf{NP}$ and (ii) for all $X \in \mathbf{NP}$, $X \leq_P A$.

Definition

 $B \in \mathbf{NP}$ -hard if there is $A \in \mathbf{NP}$ -complete s.t. $A \leq_P B$.

Examples

- Release Are a and b relatively prime?
 - in P
 - Euclidean algorithm, simple
- PRIMES Is x a prime number?
 - in **P**
 - highly non-trivial algorithm, does not determine factors
- FACTOR Factor *x* as a product of powers of primes.
 - in NP
 - not known to be NP-hard
- X3C Given a finite universe \mathcal{U} , a collection \mathcal{X} of subsets X_1, X_2, \dots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?
 - NP-complete

NP-hardness

Theorem

Given an arbitrary redundant dictionary Φ , a signal x, and a sparsity parameter k, it is NP-hard to solve the sparse representation problem D-EXACT. [Natarajan'95,Davis'97]

NP-hardness

Theorem

Given an arbitrary redundant dictionary Φ , a signal x, and a sparsity parameter k, it is NP-hard to solve the sparse representation problem D-EXACT. [Natarajan'95,Davis'97]

Corollary

SPARSE, ERROR, EXACT are all NP-hard.

NP-hardness

Theorem

Given an arbitrary redundant dictionary Φ , a signal x, and a sparsity parameter k, it is NP-hard to solve the sparse representation problem D-EXACT. [Natarajan'95, Davis'97]

Corollary

SPARSE, ERROR, EXACT are all NP-hard.

Corollary

Given an arbitrary redundant dictionary Φ and a signal x, it is NP-hard to approximate (in error) the solution of Exact to within any factor. [Davis 97]

Exact Cover by 3-sets: X3C

Definition

Given a finite universe \mathcal{U} , a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?

Exact Cover by 3-sets: X3C

Definition

Given a finite universe \mathcal{U} , a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?

NP-complete problem.

Exact Cover by 3-sets: X3C

Definition

Given a finite universe \mathcal{U} , a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?

NP-complete problem.

Proposition

Any instance of X3C is reducible in polynomial time to D-EXACT. $X3C \leq_P D\text{-EXACT}$

Proof.

• Let $\Omega=\{1,2,\ldots,N\}$ index Φ . Set $\varphi_i=\mathbf{1}_{X_i}$. Select $x=(1,1,\ldots,1),\ k=\frac{1}{3}|\mathcal{U}|.$

 Suppose have solution to X3C. Sufficient to check if SPARSE solution has zero error.

Assume solutions of X3C indexed by Λ . Set $c_{\mathrm{opt}}=1_{\Lambda}$. $\Phi c_{\mathrm{opt}}=x$.

⇒ SPARSE solution has zero error and D-Exact returns YES.

и

Proposition

Any instance of X3C is reducible in polynomial time to D-EXACT. $X3C \leq_P D\text{-EXACT}$

Proof.

• Let $\Omega=\{1,2,\ldots,N\}$ index Φ . Set $\varphi_i=\mathbf{1}_{X_i}$. Select $x=(1,1,\ldots,1),\ k=\frac{1}{2}|\mathcal{U}|$.

 Suppose have solution to X3C. Sufficient to check if SPARSE solution has zero error

Assume solutions of X3C indexed by Λ . Set $c_{\mathrm{ODt}} = \mathbf{1}_{\Lambda}$.

$$\Phi c_{\mathrm{opt}} = x.$$

 \implies Sparse solution has zero error and D-Exact returns Yes.

Suppose copt is optimal solution of Sparse

$$\Phi c_{\text{opt}} = x$$

then c_{opt} contains $k \leq \frac{1}{3}|\mathcal{U}|$ nonzero entries and D-Exact returns YES.

Each column of Φ has 3 nonzero entries

 $\implies \{X_i \mid i \in \mathsf{supp}(c_{\mathrm{opt}})\}$ is disjoint collection covering \mathcal{U} .

What does this mean?

Bad news

- Given any polynomial time algorithm for SPARSE, there is a dictionary Φ and a signal x such that algorithm returns incorrect answer
- Pessimistic: worst case
- Cannot hope to approximate solution, either

What does this mean?

Bad news

- Given any polynomial time algorithm for SPARSE, there is a dictionary Φ and a signal x such that algorithm returns incorrect answer
- Pessimistic: worst case
- Cannot hope to approximate solution, either

Good news

- Natural dictionaries are far from arbitrary
- Perhaps natural dictionaries admit polynomial time algorithms
- Optimistic: rarely see worst case
- Hardness depends on instance type

Hardness depends on instance

- Suppose Φ is orthogonal, $\Phi^{-1} = \Phi^T$
- Solution to EXACT problem is unique

$$c = \Phi^{-1}x = \Phi^T x$$
 i.e., $c_\ell = \langle x, \varphi_\ell \rangle$

hence, $x = \sum_{\ell} \langle x, \varphi_{\ell} \rangle \varphi_{\ell}$.

Solution to Sparse problem similar

• Let $\ell_1 \longleftarrow \operatorname{arg\ max}_{\ell} | \langle x, \varphi_{\ell} \rangle |$ Set $c_{\ell_1} \longleftarrow \langle x, \varphi_{\ell_1} \rangle$ Residual $r \longleftarrow x - c_{\ell_1} \varphi_{\ell_1}$

Solution to Sparse problem similar

- Let $\ell_1 \leftarrow$ arg $\max_{\ell} |\langle x, \varphi_{\ell} \rangle|$ Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$
 - Residual $r \longleftarrow x c_{\ell_1} \varphi_{\ell_1}$
- Let $\ell_2 \longleftarrow \operatorname{arg\ max}_{\ell} |\langle r, \varphi_{\ell} \rangle| =$
 - $\arg\max_{\ell} |\langle x c_{\ell_1} \varphi_{\ell_1}, \varphi_{\ell} \rangle| = \arg\max_{\ell \neq \ell_1} |\langle x, \varphi_{\ell} \rangle|$
 - Set $c_{\ell_2} \longleftarrow \langle r, \varphi_{\ell_2} \rangle$.
 - Update residual $r \longleftarrow x (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$

Solution to Sparse problem similar

- Let $\ell_1 \longleftarrow \operatorname{arg\ max}_{\ell} | \langle x, \varphi_{\ell} \rangle |$ Set $c_{\ell_1} \longleftarrow \langle x, \varphi_{\ell_1} \rangle$ Residual $r \longleftarrow x - c_{\ell_1} \varphi_{\ell_1}$
- Let $\ell_2 \longleftarrow \arg\max_{\ell} |\langle r, \varphi_{\ell} \rangle| = \arg\max_{\ell} |\langle x c_{\ell_1} \varphi_{\ell_1}, \varphi_{\ell} \rangle| = \arg\max_{\ell \neq \ell_1} |\langle x, \varphi_{\ell} \rangle|$ Set $c_{\ell_2} \longleftarrow \langle r, \varphi_{\ell_2} \rangle$.

Update residual $r \longleftarrow x - (c_{\ell_1}\varphi_{\ell_1} + c_{\ell_2}\varphi_{\ell_2})$

• Repeat k-2 times.

Solution to Sparse problem similar

- Let $\ell_1 \longleftarrow \operatorname{arg\ max}_{\ell} | \langle x, \varphi_{\ell} \rangle |$ Set $c_{\ell_1} \longleftarrow \langle x, \varphi_{\ell_1} \rangle$
 - Residual $r \longleftarrow x c_{\ell_1} \varphi_{\ell_1}$
- Let $\ell_2 \leftarrow$ arg $\max_{\ell} |\langle r, \varphi_{\ell} \rangle| =$ arg $\max_{\ell} |\langle x c_{\ell_1} \varphi_{\ell_1}, \varphi_{\ell} \rangle| =$ arg $\max_{\ell \neq \ell_1} |\langle x, \varphi_{\ell} \rangle|$
 - Set $c_{\ell_2} \longleftarrow \langle r, \varphi_{\ell_2} \rangle$.
 - Update residual $r \longleftarrow x (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$
- Repeat k-2 times.
- Set $c_{\ell} \longleftarrow 0$ for $\ell \neq \ell_1, \ell_2, \dots, \ell_k$.

Solution to Sparse problem similar

- Let $\ell_1 \longleftarrow \operatorname{arg\ max}_{\ell} | \langle x, \varphi_{\ell} \rangle |$ Set $c_{\ell_1} \longleftarrow \langle x, \varphi_{\ell_1} \rangle$
 - Residual $r \longleftarrow x c_{\ell_1} \varphi_{\ell_1}$
- Let $\ell_2 \leftarrow$ arg $\max_{\ell} |\langle r, \varphi_{\ell} \rangle| =$ arg $\max_{\ell} |\langle x c_{\ell_1} \varphi_{\ell_1}, \varphi_{\ell} \rangle| =$ arg $\max_{\ell \neq \ell_1} |\langle x, \varphi_{\ell} \rangle|$
 - Set $c_{\ell_2} \longleftarrow \langle r, \varphi_{\ell_2} \rangle$. Update residual $r \longleftarrow x - (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$
- Repeat k-2 times.
- Set $c_{\ell} \leftarrow 0$ for $\ell \neq \ell_1, \ell_2, \dots, \ell_k$.
- Approximate $x \approx \Phi c = \sum_{t=1}^{k} \langle x, \varphi_{\ell_t} \rangle \varphi_{\ell_t}$.

Check: algorithm generates list of coeffs of x over basis in descending order (by absolute value).

Geometry

Why is orthogonal case easy?
 inner products between atoms are small it's easy to tell which one is the best choice

$$\langle r, \varphi_j \rangle = \langle x - c_i \varphi_i, \varphi_j \rangle = \langle x, \varphi_j \rangle - c_i \langle \varphi_i, \varphi_j \rangle$$

When atoms are (nearly) parallel, can't tell which one is best

Coherence

Definition

The coherence of a dictionary

$$\mu = \max_{j \neq \ell} |\left\langle \varphi_j, \ \varphi_\ell \right\rangle|$$

Coherence

Definition

The coherence of a dictionary

$$\mu = \max_{j \neq \ell} |\left\langle \varphi_j, \ \varphi_\ell \right\rangle|$$

Small coherence (good)

Large coherence (bad)

Coherence: lower bound

Theorem

For a $d \times N$ dictionary,

$$\mu \geq \sqrt{\frac{N-d}{d(N-1)}} \approx \frac{1}{\sqrt{d}}.$$

[Welch'73]

Theorem

For most pairs of orthonormal bases in \mathbb{R}^d , the coherence between the two is

$$\mu = O\left(\sqrt{\frac{\log d}{d}}\right).$$

[Donoho, Huo '99]

Large, incoherent dictionaries

- Fourier–Dirac, N=2d, $\mu=\frac{1}{\sqrt{d}}$
- wavelet packets, $N = d \log d$, $\mu = \frac{1}{\sqrt{2}}$
- There are large dictionaries with coherence close to the lower (Welch) bound; e.g., Kerdock codes, $N=d^2$, $\mu=1/\sqrt{d}$

Approximation algorithms (error)

• Sparse. Given $k \ge 1$, solve

$$\arg\min_{c} \|x - \Phi c\|_2 \quad \text{s.t.} \quad \|c\|_0 \le k$$

i.e., find the best approximation of x using k atoms.

- ullet $c_{
 m opt}=$ optimal solution
- $E_{\mathrm{opt}} = \left\|\Phi c_{\mathrm{opt}} x \right\|_2 = \mathsf{optimal} \; \mathsf{error}$

Approximation algorithms (error)

• SPARSE. Given $k \ge 1$, solve

$$\arg\min_{c} \|x - \Phi c\|_2 \quad \text{s.t.} \quad \|c\|_0 \le k$$

i.e., find the best approximation of x using k atoms.

- $c_{
 m opt} = {\sf optimal\ solution}$
- $E_{\mathrm{opt}} = \left\| \Phi c_{\mathrm{opt}} x
 ight\|_2 = \mathsf{optimal} \; \mathsf{error}$
- Algorithm returns \hat{c} with
 - $(1) \|\widehat{c}\|_0 = k$
 - (2) $E = \|\Phi \hat{c} x\|_2 \le C_1 E_{\text{opt}}$

Approximation algorithms (error)

• SPARSE. Given $k \ge 1$, solve

$$\arg\min_{c} \|x - \Phi c\|_2 \quad \text{s.t.} \quad \|c\|_0 \le k$$

i.e., find the best approximation of x using k atoms.

- $c_{
 m opt} = {\sf optimal\ solution}$
- $E_{\mathrm{opt}} = \left\|\Phi c_{\mathrm{opt}} x
 ight\|_2 = \mathsf{optimal}\;\mathsf{error}$
- Algorithm returns \hat{c} with
 - $(1) \|\widehat{c}\|_0 = k$
 - (2) $E = \|\Phi \hat{c} x\|_2 \le C_1 E_{\text{opt}}$
- (Error) approximation ratio: $\frac{E}{E_{\rm opt}} = \frac{C_1 E_{\rm opt}}{E_{\rm opt}} = C_1$

Approximation algorithms (terms)

- Algorithm returns \hat{c} with
 - (1) $\|\hat{c}\|_0 = C_2 k$
 - (2) $E = \|\Phi \hat{c} x\|_2 = E_{\text{opt}}$
- (Terms) approximation ratio: $\frac{\|\widehat{c}\|_0}{\|c_{\text{opt}}\|_0} = \frac{c_2 k}{k} = C_2$

Bi-criteria approximation algorithms

- Algorithm returns \hat{c} with
 - (1) $\|\hat{c}\|_0 = C_2 k$
 - (2) $E = \|\Phi \hat{c} x\|_2 = C_1 E_{\text{opt}}$
- (Terms, Error) approximation ratio: (C_2, C_1)

Greedy algorithms

Build approximation one step at a time...

Greedy algorithms

Build approximation one step at a time...

...choose the best atom at each step

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$ **Initialize.** counter t=1, residual $r_0=x$, c=0

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$ **Initialize.** counter t=1, residual $r_0=x$, c=0

1. **Greedy selection.** Find atom φ_{j_t} s.t.

$$j_t = \operatorname{argmax}_{\ell} |\langle r_{t-1}, \varphi_{\ell} \rangle|$$

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$ **Initialize.** counter t=1, residual $r_0=x$, c=0

1. Greedy selection. Find atom φ_{j_t} s.t.

$$j_t = \operatorname{argmax}_{\ell} |\langle r_{t-1}, \varphi_{\ell} \rangle|$$

2. **Update.** Find $c_{\ell_1}, \ldots, c_{\ell_t}$ to solve

$$\min \left\| x - \sum_{s} c_{\ell_s} \varphi_{\ell_s} \right\|_2$$

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$ **Initialize.** counter t=1, residual $r_0=x$, c=0

1. Greedy selection. Find atom φ_{j_t} s.t.

$$j_t = \operatorname{argmax}_{\ell} |\langle r_{t-1}, \varphi_{\ell} \rangle|$$

2. **Update.** Find $c_{\ell_1}, \ldots, c_{\ell_t}$ to solve

$$\min \left\| x - \sum_{s} c_{\ell_s} \varphi_{\ell_s} \right\|_2$$

new residual $r_t \longleftarrow x - \Phi c$

Input. Dictionary Φ , signal x, steps k **Output.** Coefficient vector c with k nonzeros, $\Phi c \approx x$ **Initialize.** counter t=1, residual $r_0=x$, c=0

1. **Greedy selection.** Find atom φ_{j_t} s.t.

$$j_t = \operatorname{argmax}_{\ell} |\langle r_{t-1}, \varphi_{\ell} \rangle|$$

2. **Update.** Find $c_{\ell_1}, \ldots, c_{\ell_t}$ to solve

$$\min \left\| x - \sum_{s} c_{\ell_s} \varphi_{\ell_s} \right\|_2$$

new residual $r_t \longleftarrow x - \Phi c$

3. **Iterate.** $t \leftarrow t + 1$, stop when t > k.

Many greedy algorithms with similar outline

- Matching Pursuit: replace step 2. by $c_{\ell_t} \longleftarrow c_{\ell_t} + \langle r_{t-1}, \ \varphi_{k_t} \rangle$
- Thresholding Choose m atoms where $|\langle x, \varphi_\ell \rangle|$ are among m largest
- Alternate stopping rules:

$$||r_t||_2 \le \epsilon \max_{\ell} |\langle r_t, \varphi_{\ell} \rangle| \le \epsilon$$

Many other variations

Summary

- Sparse approximation problems are NP-hard
- At least as hard as other well-studied problems
- Hardness result of arbitrary input: dictionary and signal
- Intuition from orthonormal basis suggests some feasible solutions under certain conditions on redundant dictionary
- Geometric properties and greedy algorithms
- Next lecture: rigorous proofs for algorithms