
Proof Complexity Lower Bounds from Algebraic Circuit Complexity

Michael A. Forbes ∗ Amir Shpilka † Iddo Tzameret ‡ Avi Wigderson §

Abstract

We give upper and lower bounds on the power of subsystems of the Ideal Proof System
(IPS), the algebraic proof system recently proposed by Grochow and Pitassi [GP14], where the
circuits comprising the proof come from various restricted algebraic circuit classes. This mimics
an established research direction in the boolean setting for subsystems of Extended Frege proofs
whose lines are circuits from restricted boolean circuit classes. Essentially all of the subsystems
considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior
to this work there were no known lower bounds when measuring proof size by the algebraic
complexity of the polynomials (except with respect to degree, or to sparsity).

Our main contributions are two general methods of converting certain algebraic lower bounds
into proof complexity ones. Both require stronger arithmetic lower bounds than common, which
should hold not for a specific polynomial but for a whole family defined by it. These may be
likened to some of the methods by which Boolean circuit lower bounds are turned into related
proof-complexity ones, especially the “feasible interpolation” technique. We establish algebraic
lower bounds of these forms for several explicit polynomials, against a variety of classes, and
infer the relevant proof complexity bounds. These yield separations between IPS subsystems,
which we complement by simulations to create a partial structure theory for IPS systems.

Our first method is a functional lower bound, a notion of Grigoriev and Razborov [GR00],
which is a function f̂ : {0, 1}n → F such that any polynomial f agreeing with f̂ on the boolean
cube requires large algebraic circuit complexity. We develop functional lower bounds for a va-
riety of circuit classes (sparse polynomials, depth-3 powering formulas, roABPs and multilinear
formulas) where f̂(x) equals 1/p(x) for a constant-degree polynomial p depending on the relevant
circuit class. We believe these lower bounds are of independent interest in algebraic complexity,
and show that they also imply lower bounds for the size of the corresponding IPS refutations
for proving that the relevant polynomial p is non-zero over the boolean cube. In particular, we
show super-polynomial lower bounds for refuting variants of the subset-sum axioms in these IPS
subsystems.

Our second method is to give lower bounds for multiples, that is, to give explicit polyno-
mials whose all (non-zero) multiples require large algebraic circuit complexity. By extending
known techniques, we give lower bounds for multiples for various restricted circuit classes such
sparse polynomials, sums of powers of low-degree polynomials, and roABPs. These results are of
independent interest, as we argue that lower bounds for multiples is the correct notion for instan-
tiating the algebraic hardness versus randomness paradigm of Kabanets and Impagliazzo [KI04].
Further, we show how such lower bounds for multiples extend to lower bounds for refutations
in the corresponding IPS subsystem.

∗Email: miforbes@csail.mit.edu. Department of Computer Science, Princeton University. Supported by the
Princeton Center for Theoretical Computer Science.
†Email: shpilka@post.tau.ac.il. Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. The

research leading to these results has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 257575.
‡Email: iddo.tzameret@rhul.ac.uk. Department of Computer Science, Royal Holloway, University of London,

UK.
§Email: avi@math.ias.edu. Institute for Advanced Study, Princeton. This research was partially supported by

NSF grant CCF-1412958.

Contents

Contents 2

1 Introduction 1
1.1 Algebraic Proof Systems . 2
1.2 Algebraic Circuit Classes . 4

1.2.1 Low Depth Classes . 4
1.2.2 Oblivious Algebraic Branching Programs . 5
1.2.3 Multilinear Formulas . 6

1.3 Our Results and Techniques . 6
1.3.1 Upper Bounds for Proofs within Subclasses of IPS 6
1.3.2 Linear-IPS Lower Bounds via Functional Lower Bounds 7
1.3.3 Lower Bounds for Multiples . 9

1.4 Organization . 11

2 Notation 11

3 Algebraic Complexity Theory Background 12
3.1 Polynomial Identity Testing . 12
3.2 Coefficient Dimension and roABPs . 13
3.3 Evaluation Dimension . 15
3.4 Multilinear Polynomials and Multilinear Formulas 15
3.5 Depth-3 Powering Formulas . 16
3.6 Monomial Orders . 16

4 Upper Bounds for Linear-IPS 18
4.1 Simulating IPS Proofs with Linear-IPS . 18
4.2 Multilinearizing roABP-IPSLIN . 19
4.3 Multilinear-Formula-IPS . 21
4.4 Refutations of the Subset-Sum Axiom . 23

5 Lower Bounds for Linear-IPS via Functional Lower Bounds 27
5.1 Degree of a Polynomial . 27
5.2 Sparse polynomials . 29
5.3 Coefficient Dimension in a Fixed Partition . 31
5.4 Coefficient Dimension in any Variable Partition . 33

6 Lower Bounds for Multiples of Polynomials 35
6.1 Connections to Hardness versus Randomness and Factoring Circuits 35
6.2 Lower Bounds for Multiples via PIT . 36
6.3 Lower Bounds for Multiples via Leading/Trailing Monomials 39

6.3.1 Depth-3 Powering Formulas . 39
6.3.2

∑∧∑∏O(1) Formulas . 40
6.3.3 Sparse Polynomials . 40

6.4 Lower Bounds for Multiples of Sparse Multilinear Polynomials 41
6.5 Lower Bounds for Multiples by Leading/Trailing Diagonals 42
6.6 Lower Bounds for Multiples for Read-Once and Read-Twice ABPs 44

7 IPS Lower Bounds via Lower Bounds for Multiples 45
7.1 IPS Lower Bounds for Depth-3 Powering Formulas 46
7.2 IPS Lower Bounds for roABPs . 46

8 The Relative Strength of IPS Fragments 47
8.1 Basic Concepts in Propositional Proof Complexity 47

8.1.1 Simulations . 47
8.2 Relations with Polynomial Calculus . 48
8.3 Relations with PC over roABPs . 49
8.4 Relations with Non-Commutative-IPS and Frege . 49
8.5 Relations with PC over Multilinear Formulas . 50

9 Open Problems 53

References 53

A Explicit Multilinear Polynomial Satisfying a Functional Equation 57

1 Introduction

Propositional proof complexity aims to understand and analyze the computational resources re-
quired to prove propositional tautologies, in the same way that circuit complexity studies the
resources required to compute boolean functions. A typical goal would be to establish, for a give
proof system, super-polynomial lower bounds on the size of any proof of some propositional tau-
tology. The seminal work of Cook and Reckhow [CR79] showed that this goal relates quite directly
to fundamental hardness questions in computational complexity such as the NP vs. coNP question:
establishing super-polynomial lower bounds for every propositional proof system would separate
NP from coNP (and thus also P from NP). We refer the reader to Kraj́ıček [Kra95] for more on this
subject.

Propositional proof systems come in a large variety, as different ones capture different forms
of reasoning, either reasoning used to actually prove theorems, or reasoning used by algorithmic
techniques for different types of search problems (as failure of the algorithm to find the desired
object constitutes a proof of its nonexistence). Much of the research in proof complexity deals
with propositional proof systems originating from logic and from geometry. Logical proof systems
include such systems as resolution (whose variants are related to popular algorithms for automated
theory proving and SAT solving), as well as the Frege proof system (capturing the most common
logic text-book systems) and its many subsystems. Geometric proof systems include cutting-plane
proofs, capturing reasoning used in algorithms for integer programming, as well as proof systems
arising from systematic strategies for rounding linear- or semidefinite-programming such as the
lift-and-project or sum-of-squares hierarchies.

In this paper we focus on algebraic proof systems, in which propositional tautologies (or
rather contradictions) are expressed as unsatisfiable systems of polynomial equations and alge-
braic tools are used to refute them. This study originates with the work of Beame, Impagliazzo,
Kraj́ıček, Pitassi and Pudlák [BIK+96a], who introduced the Nullstellensatz refutation system
(based on Hilbert’s Nullstellensatz), followed by the Polynomial Calculus system of Clegg-Edmonds-
Impagliazzo [CEI96], which is a “dynamic version” of Nullstellensatz. In both systems the main
measures of proof size that have been studied are the degree and sparsity of the polynomials appear-
ing in the proof. Substantial work has lead to a very good understanding of the power of these sys-
tems with respect to these measures (see for example [BIK+96b,Raz98,Gri98,IPS99,BGIP01,AR01]
and references therein).

However, the above measures of degree and sparsity are rather rough measures of a complexity
of a proof. As such, Grochow and Pitassi [GP14] have recently advocated measuring the complex-
ity of such proofs by their algebraic circuit size and shown that the resulting proof system can
polynomially simulate strong proof systems such as the Frege system. This naturally leads to the
question of establishing lower bounds for this stronger proof system, even for restricted classes of
algebraic circuits.

In this work we establish such lower bounds for previously studied restricted classes of algebraic
circuits, and show these lower bounds are interesting by providing non-trivial upper bounds in these
proof systems for refutations of interesting sets of polynomial equations. This provides what are
apparently the first examples of lower bounds on the algebraic circuit size of propositional proofs
in the ideal proof system (IPS) framework of Grochow and Pitassi [GP14].

We note that obtaining proof complexity lower bounds from circuit complexity lower bounds
is an established tradition, and takes many forms. Most prominent are the lower bounds for
susbsystems of the Frege proof system defined by low-depth Boolean circuits, and lower bounds on
Resolution and Cutting Planes system using the so-called feasible interpolation method [Pud97].
We refer the reader again to the monograph [Kra95] for more details. Our approach here for

1

algebraic systems shares features with both of these approaches.
The rest of this long introduction is arranged as follows. In Subsection 1.1 we give the necessary

background in algebraic proof complexity, and explain IPS system. In subsection 1.2 we define the
arithmetic complexity classes that will underlie the subsystems of IPS we will study. In subsection
1.3 we state our results and explain our techniques, for both the arithmetic and proof complexity
worlds.

1.1 Algebraic Proof Systems

We now describe the algebraic proof systems that are the subject of this paper. If one has a
set of polynomials (called axioms) f1, . . . , fm ∈ F[x1, . . . , xn] over some field F, then (the weak
version of) Hilbert’s Nullstellensatz shows that the system f1(x) = ∙ ∙ ∙ = fm(x) = 0 is unsatisfiable
(over the algebraic closure of F) if and only if there are polynomials g1, . . . , gm ∈ F[x] such that
∑
j gj(x)fj(x) = 1 (as a formal identity), or equivalently, that 1 is in the ideal generated by the
{fj}j .

Beame, Impagliazzo, Kraj́ıček, Pitassi, and Pudlák [BIK+96a] suggested to treat these {gj}j
as a proof of the unsatisfiability of this system of equations, called a Nullstellensatz refutation.
This is particular relevant for complexity theory as one can restrict attention to boolean solutions
to this system by adding the boolean axioms, that is, adding the polynomials {x2

i − xi}
n
i=1 to the

system. As such, one can then naturally encode NP-complete problems such as the satisfiability of
3CNF formulas as the satisfiability of a system of constant-degree polynomials, and a Nullstellensatz
refutation is then an equation of the form

∑m
j=1 gj(x)fj(x)+

∑n
i=1 hi(x)(x

2
i−xi) = 1 for gj , hi ∈ F[x].

This proof system is sound (only refuting unsatisfiable systems over {0, 1}n) and complete (refuting
any unsatisfiable system, by Hilbert’s Nullstellensatz).

Given that the above proof system is sound and complete, it is then natural to ask what is
its power to refute unsatisfiable systems of polynomial equations over {0, 1}n. To understand this
question one must define the notion of the size of the above refutations. Two popular notions are
that of the degree, and the sparsity (number of monomials). One can then show (see for example
Pitassi [Pit97]) that for any unsatisfiable system which includes the boolean axioms, there exist
a refutation where the gj are multilinear and where the hi have degree at most O(n + d), where
each fj has degree at most d. In particular, this implies, when d = O(n), that for any unsatisfiable
system there is a refutation of degree O(n) and involving at most exp(O(n)) monomials. This
intuitively agrees with the fact that coNP is a subset of non-deterministic exponential time.

Building on the suggestion of Pitassi [Pit97], Grochow and Pitassi [GP14] have recently consid-
ered more succinct descriptions of polynomials where one measures the size of a polynomial by the
size of an algebraic circuit needed to compute it. This is potentially much more powerful as there
are polynomials such as the determinant which are of high degree and involve exponentially many
monomials and yet can be computed by small algebraic circuits. They named the resulting system
the Ideal Proof System (IPS) which we now define.

Definition 1.1 (Ideal Proof System (IPS), Grochow-Pitassi [GP14]). Let f1(x), . . . , fm(x) ∈
F[x1, . . . , xn] be a system of polynomials. An IPS refutation that the polynomials {fj}j have
no common solution in {0, 1}n is an algebraic circuit C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn], such
that

1. C(x, 0, 0) = 0.

2. C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x

2
n − xn) = 1.

2

The size of the IPS refutation is the size of the circuit C. If C is of individual degree ≤ 1 in each
yj and zi, then this is a linear IPS refutation (called Hilbert IPS by Grochow-Pitassi [GP14]),
which we will abbreviate as IPSLIN . If C is of individual degree ≤ 1 only in the yj then we say
this is a IPSLIN′ refutation. If C comes from a restricted class of algebraic circuits C, then this is
a called a C-IPS refutation, and further called a C-IPSLIN refutation if C is linear in y, z, and a
C-IPSLIN′ refutation if C is linear in y.

Notice also that our definition here necessarily adds the equations {x2
i − xi}i to the system

{fj}j . For convenience we will often denote the equations {x2
i − xi}i as x2 − x. One need not add

the equations x2 − x to the system in general, but this is the most interesting regime for proof
complexity and thus we adopt it as part of our definition.

The above discussion shows that the above proof systems are all sound, and that for any
complete class of algebraic circuits C (classes that can compute any polynomial, possibly requiring
exponential complexity) that C-IPSLIN is a complete proof system. We note that we will also
consider non-complete classes such as multilinear-formulas (which can only compute multilinear
polynomials, but are complete for multilinear polynomials), where we will show that the multilinear-
formula-IPSLIN system is not complete (Subsection 4.3) but that the IPSLIN′ version is complete
(Theorem 4.6).

Grochow-Pitassi [GP14] proved the following theorem, showing that the IPS system has sur-
prising power and that lower bounds on this system give rise to computational lower bounds.

Theorem 1.1 (Grochow-Pitassi [GP14]). Let ϕ be a 3CNF. If there is a Frege proof that ϕ is
unsatisfiable in size-s, then there is an IPS refutation of size poly(|ϕ|, s) computing a polynomial
of degree poly(|ϕ|, s), and this refutation is checkable in randomized poly(|ϕ|, s) time. Conversely,
if every IPS refutation requires size ≥ s then there is an explicit polynomial (that is, in VNP) that
requires ≥ s-size algebraic circuits.

The fact that C-IPS refutations are efficiently checkable (with randomness) follows from the
fact that we need to verify the polynomial identities stipulated by the definition. That is, one
needs to solve an instance of the polynomial identity testing (PIT) problem for the class C: given a
circuit from the class C decide whether it computes the identically zero polynomial. This problem is
solvable in probabilistic polynomial time (BPP) for general algebraic circuits, and there are various
restricted classes for which deterministic algorithms are known (see Subsection 3.1).

Motivated by the fact that PIT of non-commutative formulas can be solved deterministically
([RS05]), Li, Tzameret and Wang [LTW15] have shown that IPS over non-commutative polynomials
can deterministically simulate Frege (see Li, Tzameret and Wang [LTW15] for a definition).

Theorem 1.2 (Li, Tzameret and Wang [LTW15]). Let ϕ be a 3CNF. If Frege can prove that ϕ is
unsatisfiable in size-s, then there is a non-commutative IPS refutation of formula size poly(|ϕ|, s)
computing a polynomial of degree poly(|ϕ|, s), where the commutator axioms xixj − xjxi are also
included in the polynomial system being refuted. Further, this refutation is checkable in deterministic
poly(|ϕ|, s) time.

The above results naturally motivate studying C-IPS for various restricted classes of algebraic
circuits, as lower bounds for such proofs then intuitively correspond to restricted lower bounds
for the Extended Frege proof system. In particular, as exponential lower bounds are known for
non-commutative formulas ([Nis91]), this possibly suggests that such methods could even attack
the full Frege system itself.

3

1.2 Algebraic Circuit Classes

Having motivated C-IPS for restricted circuit classes C, we now give formal definitions of the alge-
braic circuit classes of interest to this paper, all of which were studied independently in algebraic
complexity. Some of them define the state-of-art in our ability to prove lower bounds and pro-
vide efficient deterministic identity tests, so it is natural to attempt converting these to the proof
complexity framework. We define each and briefly explain what we know about it. As the list is
long, the reader may consider skipping to the results (Subsection 1.3), and refer to the definitions
of these classes as they arise.

Arithmetic circuits and formula (over a fixed chosen field) compute polynomials via addition and
multiplication gates, starting from the input variables and constants from the field. For background
on arithmetic circuits in general and their complexity measures we refer the reader to the survey
[SY10]. We next define the restricted circuit classes that we will be studying in this paper.

1.2.1 Low Depth Classes

We start by defining what are the simplest and most restricted classes of algebraic circuits. The
first class simply represents polynomials as a sum of monomials. This is also called the sparse
representation of the polynomial. Notationally we call this model ΣΠ formulas (to capture the fact
that polynomials computed in the class are represented simply as sums of products), but we will
more often call these polynomials “sparse”.

Definition 1.2. The class C = ΣΠ compute polynomials in their sparse representation, i.e., as
sum of monomials. The graph of computation has two layers with an addition gate at the top and
multiplication gates at the bottom. The size of a ΣΠ circuit of a polynomial f is the number of
monomials in f .

This class of circuits is what is used in the Nullstellensatz proof system. In our terminology
ΣΠ-IPSLIN is exactly the Nullstellensatz proof system.

Another restricted class of algebraic circuits is that of depth-3 powering formulas (sometimes
also called “diagonal depth-3 circuits”). We will sometimes abbreviate this name as a “

∑∧∑

formula”, where
∧

denotes the powering operation. Specifically, polynomials that are efficiently
computed by small formulas from this class can be represented as sum of powers of linear functions.
This model appears implicitly in Shpilka [Shp02] and explicitly in the work of Saxena [Sax08].

Definition 1.3. The class of depth-3 powering formulas, denoted
∑∧∑

, computes polynomials of
the following form

f(x) =
s∑

i=1

`i(x)
di ,

where `i(x) are linear functions. The degree of this
∑∧∑

representation of f is maxi{di} and its
size is n ∙

∑s
i=1(di + 1).

One reason for considering this class of circuits is that it is a simple, but non-trivial model that is
somewhat well-understood. In particular, the partial derivative method of Nisan-Wigderson [NW96]
implies lower bounds for this model and efficient PIT algorithms are known ([Sax08,ASS13,FS13a,
FS13b,FSS14], as discussed further in Subsection 3.1).

We also consider a generalization of this model where we allow powering of low-degree polyno-
mials.

4

Definition 1.4. The class
∑∧∑∏t computes polynomials of the following form

f(x) =
s∑

i=1

fi(x)
di ,

where the degree of the fi(x) is at most t. The size of this representation is
(n+t
t

)
∙
∑s
i=1(di + 1).

We remark that the reason for defining the size this way is that we think of the fi as represented
as sum of monomials (there are

(n+t
t

)
n-variate monomials of degree at most t) and the size captures

the complexity of writing this as an algebraic formula. This model is the simplest that requires
the method of shifted partial derivatives of Kayal [Kay12, GKKS14] to establish lower bounds,
and this has recently been generalized to obtain PIT algorithms ([For14], as discussed further in
Subsection 3.1).

1.2.2 Oblivious Algebraic Branching Programs

Algebraic branching programs (ABPs) form a model whose computational power lies between that
of algebraic circuits and algebraic formulas, and certain read-once and oblivious ABPs are a natural
setting for studying the partial derivative matrix lower bound technique of Nisan [Nis91].

Definition 1.5 (Nisan [Nis91]). An algebraic branching program (ABP) with unrestricted
weights of depth D and width ≤ r, on the variables x1, . . . , xn, is a directed acyclic graph such
that:

• The vertices are partitioned in D + 1 layers V0, . . . , VD, so that V0 = {s} (s is the source
node), and VD = {t} (t is the sink node). Further, each edge goes from Vi−1 to Vi for some
0 < i ≤ D.

• max |Vi| ≤ r.

• Each edge e is weighted with a polynomial fe ∈ F[x].

Each s-t path is said to compute the polynomial which is the product of the labels of its edges, and
the algebraic branching program itself computes the sum over all s-t paths of such polynomials.

• An algebraic branching program is said to be oblivious if for every layer `, all the edge labels
in that layer are univariate polynomials in a variable xi` .

• An oblivious branching program is said to be a read-once oblivious ABP (roABP) if the xi` ’s
are distinct variables, so that D = n. That is, each xi appears in the edge labels in at exactly
one layer. The layers thus define a variable order, which will be x1 < ∙ ∙ ∙ < xn if not
otherwise specified.

• An oblivious branching program is said to be a read-k oblivious ABP if each variable xi
appears in the edge labels of at most k layers, so that D = kn.

Intuitively, roABPs are the algebraic analog of read-once boolean branching program, the non-
uniform model of the class RL. Nisan [Nis91] proved lower bounds for non-commutative ABPs
(and thus also for roABPs) and in a sequence of papers polynomial identity testing algorithms were
devised for it ([RS05,FS13b,FSS14,AGKS14], see also Subsection 3.1). Recently Anderson, Forbes,
Saptharishi, Shpilka, and Volk [AFS+15] obtained exponential lower bounds for read-k oblivious
ABPs (when k = o(log n/ log log n)) as well as a slightly subexponential PIT algorithm.

We note that roABPs are known to simulate non-commutative formulas ([Nis91]). Thus, the
result of Li, Tzameret and Wang [LTW15] (see Theorem 1.2) demonstrates the importance of
studying IPS proofs over roABPs (see also Tzameret [Tza11]).

5

1.2.3 Multilinear Formulas

The last model that we consider is that of multilinear formulas.

Definition 1.6 (Multilinear formula). An algebraic formula is a multilinear formula (or equiv-
alently, multilinear algebraic formula) if the polynomial computed by each gate of the formula is
multilinear (as a formal polynomial, that is, as an element of F[x1, . . . , xn]).

Raz [Raz09, Raz06] proved quasi-polynomial lower bounds for multilinear formulas and sepa-
rated multilinear formulas from multilinear circuits. Raz and Yehudayoff proved exponential lower
bounds for small depth multilinear formulas [RY09]. Only slightly sub-exponential polynomial
identity testing algorithms are known for small-depth multilinear formulas ([OSV15]).

1.3 Our Results and Techniques

We now briefly summarize our results and techniques, stating some results in less than full generality
to more clearly convey the result. We present the results in the order that we later prove them. We
start by giving upper bounds for the IPS (subsubsection 1.3.1). We then describe our functional
lower bounds and the IPSLIN lower bounds they imply (subsubsection 1.3.2). Finally, we discuss
lower bounds for multiples and state our lower bounds for IPS (subsubsection 1.3.3).

1.3.1 Upper Bounds for Proofs within Subclasses of IPS

Grochow and Pitassi [GP14] showed that the full IPS proof system can simulate powerful proof
systems such as Frege. This left open the extent to which C-IPS can refute interesting sets of
polynomial equations for restricted classes C. We establish here that even restricted classes of IPS
are powerful, such as being able to refute interesting unsatisfiable systems of equations arising from
particular instances of NP-complete problems.

Our first upper bound is to show that linear-IPS can simulate the full IPS proof system when
the axioms are computationally simple.

Theorem (Theorem 4.1). For |F| ≥ poly(d), if f1, . . . , fm ∈ F[x1, . . . , xn] are degree-d polynomials
computable by size-s algebraic circuits and they have a size-t IPS refutation, then they also have a
size-poly(d, s, t) IPSLIN refutation.

This theorem is established by pushing the “non-linear” dependencies on the axioms into the
IPS refutation itself, which is possible as the axioms are assumed to themselves be computable by
small circuits. We note that Grochow and Pitassi [GP14] showed such a conversion, but only for
IPS refutations computable by sparse polynomials.

We then turn our attention to IPS involving only restricted classes of algebraic circuits, and
show that they are complete proof systems. This is clear for complete models of algebraic circuits
such as sparse polynomials, depth-3 powering formulas 1 and roABPs. For multilinear formulas
this is more subtle as not every polynomial is multilinear, however we can show a simulation of
sparse-IPSLIN by careful multilinearization.

Theorem (Subsection 4.3, Theorem 4.6). The proof systems of sparse-IPSLIN,
∑∧∑

-IPSLIN

(in large characteristic fields), and roABP-IPSLIN are complete proof systems. The multilinear-
formula-IPSLIN proof system is not complete, but the depth-2 multilinear-formula-IPSLIN′ proof
system is complete (for multilinear axioms) and can polynomially simulate sparse-IPSLIN (for low-
degree axioms).

1Showing that depth-3 powering formulas are complete (in large characteristic) can be seen from the fact that any
multilinear monomial can be computed in this model, see for example Fischer [Fis94].

6

We next consider the equation
∑n
i=1 αixi−β along with the boolean axioms {x2

i −xi}i. Deciding
whether this system of equations is satisfiable is the NP-complete subset-sum problem, and as
such we do not expect small refutations in general (assuming NP 6= coNP). Indeed, Impagliazzo,
Pudlák, and Sgall [IPS99] have shown lower bounds for refutations in the polynomial calculus
system (and thus also the Nullstellensatz system) even when α = 1. Specifically, they showed that
such refutations require both Ω(n)-degree and exp(Ω(n))-many monomials. In the language of this
paper, they gave exp(Ω(n))-size lower bounds for refuting this system in

∑∏
-IPSLIN. In contrast,

we establish here poly(n)-size refutations for α = 1 in the restricted proof systems of roABP-
IPSLIN and depth-3 multilinear-formula-IPSLIN (despite the fact that multilinear-formula-IPSLIN

is not complete). IT: It should be
Corollary 22, I
think.

Theorem (Theorem 4.8, Theorem 4.9). Let F be a field of characteristic char(F) > n. Then the sys-
tem of polynomial equations

∑n
i=1 xi−β, {x

2
i−xi}

n
i=1 is unsatisfiable for β ∈ F\{0, . . . , n}, and there

are explicit poly(n)-size refutations within roABP-IPSLIN, as well as within depth-3 multilinear-
formula-IPSLIN.

This claim is proven by noting that the polynomial p(t) :=
∏n
k=0(t−k) vanishes on

∑
i xi modulo

{x2
i − xi}

n
i=1, but p(β) is a non-zero constant. This implies that

∑
i xi − β divides p(

∑
i xi)− p(β).

Denoting the quotient by f(x), it follows that 1
−p(β) ∙ f(x) ∙ (

∑
i xi − β) ≡ 1 mod {x2

i − xi}
n
i=1,

which is nearly a linear-IPS refutation except for the complexity of establishing this relation over
the boolean cube. We show that the quotient f is easily expressed as a depth-3 powering circuit.
Unfortunately, proving the above equivalence to 1 modulo the boolean cube is not possible in the
depth-3 powering circuit model. However, by moving to more powerful models (such as roABPs
and multilinear formulas) we can give proofs of this multilinearization to 1 and thus give proper
IPS refutations.

1.3.2 Linear-IPS Lower Bounds via Functional Lower Bounds

Having demonstrated the power of various restricted classes of IPS refutations by refuting the
subset-sum axiom, we now turn to lower bounds. We give two paradigms for establishing lower
bounds, the first of which we discus here, named a functional circuit lower bound. This term
appeared in the work of Grigoriev and Razborov [GR00] as well as in the recent work of Forbes,
Kumar and Saptharishi [FKS15]. We briefly motivate this type of lower bound as a topic of
independent interest in algebraic circuit complexity, and then discuss the lower bounds we obtain
and their implications to obtaining proof complexity lower bounds.

In algebraic complexity one computes polynomials syntactically as objects in the ring
F[x1, . . . , xn]. Thus, even if one is only interested in evaluating the polynomial over the boolean
cube, yielding a function f̂ : {0, 1}n → F, an algebraic computation of the polynomial necessarily
gives a method for evaluating the polynomial over F as well as any extension of F. However, some
polynomials such as the permanent are known in boolean complexity to have complex behavior
as functions even over boolean inputs, so one would expect that any polynomial f that agrees
with the permanent on boolean inputs must require large algebraic circuits. We call such results
functional circuit lower bounds. Prior work ([GK98,GR00,KS15]) has established functional lower
bounds over fixed-size finite fields, and the recent work of Forbes, Kumar and Saptharishi [FKS15]
has established some lower bounds for any field.

Goal 1.3 (Functional Circuit Lower Bound ([GR00, FKS15])). Obtain explicit functions f̂ :
{0, 1}n → F such that for any polynomial f ∈ F[x1, . . . , xn] such that f(x) = f̂(x) for all x ∈ {0, 1}n,
it must be that f requires large algebraic circuits.

7

While it is natural to hope that existing methods would yield such lower bounds, many
lower bound techniques inherently use that algebraic computation is syntactic. In particular,
techniques involving partial derivatives (which include the partial derivative method of Nisan-
Wigderson [NW96] and the shifted partial derivative method of Kayal [Kay12, GKKS14]) cannot
as is yield functional lower bounds as computing the partial derivative of a polynomial is not local,
so that knowing a polynomial on {0, 1}n is not enough information to conclude information about
its partial derivatives.

We now explain how functional lower bounds imply lower bounds for linear-IPS refutations in
certain cases. Suppose one considers refutations of the unsatisfiable polynomial system f(x), {x2

i −
xi}ni=1. A linear-IPS refutation would yield an equation of the form g(x)∙f(x)+

∑
i hi(x)∙(x

2
i−xi) = 1

for some polynomials g, hi ∈ F[x]. Viewing this equation modulo the boolean cube, we have that
g(x) ∙ f(x) ≡ 1 mod {x2

i − xi}i. Equivalently, since f(x) is unsatisfiable over {0, 1}n, we see that
g(x) = 1/f(x) for x ∈ {0, 1}n, as f(x) is never zero so this fraction is well-defined. It follows that if
the function x 7→ 1/f(x) induces a functional lower bound then g(x) must require large complexity,
yielding the desired linear-IPS lower bound.

Thus, it remains to instantiate this program. While we are successful, we should note that this
approach as is seems to only yield proof complexity lower bounds for systems with one non-boolean
axiom and thus cannot encode polynomial systems arising from 3CNFs.

Our starting point is to observe that the subset-sum axiom already induces a weak form of
functional lower bound, where the complexity is measured by degree.

Theorem (Theorem 5.1). Let F be a field of a characteristic poly(n) and β /∈ {0, . . . , n}. Then
∑
i xi − β, {x

2
i − xi}i is unsatisfiable and any polynomial f ∈ F[x1, . . . , xn] with f(x) = 1∑

i
xi−β

for

x ∈ {0, 1}n, satisfies deg f ≥ n.

A lower bound of dn2 e was previously established by Impagliazzo, Pudlák, and Sgall [IPS99],
but the bound of ‘n’ (which is tight) will be crucial for our results.

We then lift this result to obtain lower bounds for stronger models of algebraic complexity. In
particular, by replacing “xi” by “xiyi” we show that the function 1∑

i
xiyi−β

has maximal evaluation

dimension between x and y, which is measure of correlation. This measure is essentially functional,
so that one can lower bound this measure by understanding the functional behavior of the polyno-
mial on finite sets such as the boolean cube. Our lower bound for evaluation dimension follows by
examining the above degree bound. Using known relations between this complexity measure and
algebraic circuit classes, we can obtain lower bounds for depth-3 powering linear-IPS.

Theorem (Theorem 5.8). Let F be a field of characteristic ≥ poly(n) and β /∈ {0, . . . , n}. Then
∑n
i=1 xiyi − β, {x

2
i − xi}i, {y

2
i − yi}i is unsatisfiable and any

∑∧∑
-IPSLIN refutation requires size

≥ exp(Ω(n)).

The above axiom only gets maximal correlation between a fixed partition of the variables. By
introducing auxiliary variables we can create such correlation between any partition of (some) of
the variables. By again invoking results showing such structure implies computational hardness we
obtain more linear-IPS lower bounds.

Theorem (Theorem 5.12). Let F be a field of characteristic ≥ poly(n) and β /∈ {0, . . . ,
(2n

2

)
}. Then

∑
i<j zi,jxixj − β, {x

2
i − xi}

n
i=1, {z

2
i,j − zi,j}i<j is unsatisfiable, and any roABP-IPSLIN refutation

(in any variable order) requires exp(Ω(n))-size. Further, any multilinear-formula-IPSLIN′ refuta-
tion requires nΩ(log n)-size, and any depth-(2d + 1) multilinear-formula-IPSLIN′ refutation requires
nΩ((n/logn)1/d/d2)-size.

8

Thus, we show that even though roABP-IPSLIN and depth-3 multilinear formula-IPSLIN′ can
refute the subset-sum axiom in polynomial size, slight variants of this axiom do not have polynomial-
size refutations.

1.3.3 Lower Bounds for Multiples

While the above paradigm can establish super-polynomial lower bounds for linear -IPS, it does
not seem able to establish lower bounds for the general IPS proof system, even for restricted
classes. This is because such systems would induce equations such as h(x)f(x)2 + g(x)f(x) ≡ 1
mod {x2

i −xi}
n
i=1, where we need to design a computationally simple axiom f so that this equation

implies at least one of h or g is of large complexity. In the linear-IPS case we could assume h was
zero, so that we can uniquely solve for g(x) for x ∈ {0, 1}n. However, in general knowing f(x) does
not uniquely determine g(x) or h(x), which makes this approach significantly more complicated.
Further, even though we can efficiently simulate IPS by linear-IPS (Theorem 4.1) in general, this
simulation increases the complexity of the proof so that even if one started with a C-IPS proof for
a restricted circuit class C the resulting IPSLIN proof may not be in C-IPSLIN.

As such, we introduce a second paradigm, called lower bounds for multiples, which can yield
C-IPS lower bounds for various restricted classes C. We begin by defining this question.

Goal 1.4 (Lower Bounds for Multiples). Design an explicit polynomial f(x) such that for any
non-zero g(x) we have that g(x)f(x) is hard to compute.

We now explain how such lower bounds yield IPS lower bounds. Consider the system f, {x2
i−xi}i

with a single non-boolean axiom. An IPS refutation is a circuit C(x, y, z) such that C(x, 0, 0) =
1 and C(x, f, x2 − x) = 1, where (as mentioned) x2 − x denotes {x2

i − xi}i. Expressing this
polynomial as a univariate in f , we obtain that

∑
i≥1Ci(x, x

2 − x)f i = 1 − C(x, 0, x2 − x) for
some polynomials Ci. For many natural measures of circuit complexity 1 − C(x, 0, x2 − x) has
complexity roughly bounded by that of C itself. Though not strictly necessary for this method, it
is worth noting that the complexity of each of the Ci is not much larger than that of C, as one
can compute the Ci by homogenizing or interpolating C in the variable y (see for example the
survey of Shpilka and Yehudayoff [SY10]). Thus, we see that a multiple of f has a small circuit,

as
(∑
i≥1Ci(x, x

2 − x)f i−1
)
∙ f = 1− C(x, 0, x2 − x). Thus, if we can show that all multiples of f

require large circuits then we rule out a small IPS refutation.
We now turn to methods for obtaining polynomials with hard multiples. Intuitively if a polyno-

mial f is hard then so should small modifications such as f2+x1f , and this intuition is supported by
the result of Kaltofen [Kal89] which shows that if a polynomial has a small algebraic circuit then so
do all of its factors. As a consequence, if a polynomial requires super-polynomially large algebraic
circuits than so do all of its multiples. However, Kaltofen’s [Kal89] result is about general algebraic
circuits, and there are very limited results about the complexity of factors of restricted algebraic
circuits ([DSY09,Oli15b]) so that obtaining polynomials for hard multiples via factorization results
seems difficult.

However, note that lower bound for multiples has a different order of quantifiers than the
factoring question. That is, Kaltofen’s [Kal89] result speaks about the factors of any small circuit,
while the lower bound for multiples speaks about the multiples of a single polynomial. Thus, it
seems plausible that existing methods could yield such explicit polynomials, and indeed we show
this is the case.

We begin by noting that obtaining lower bounds for multiples is a natural instantiation of
the algebraic hardness versus randomness paradigm. In particular, Heintz-Schnorr [HS80] and
Agrawal [Agr05] showed that obtaining deterministic (black-box) PIT algorithms implies lower

9

bounds (see Subsection 3.1 for more on PIT), and we strengthen that connection here to lower
bounds for multiples. We can actually instantiate this connection, and we use slight modifications
of existing PIT algorithms to show that multiples of the determinant are hard in some models.

Theorem (Informal Version of Theorem 6.2, Theorem 6.7). Let C be a restricted class of n-variate
algebraic circuits. Full derandomization of PIT algorithms for C yields an explicit polynomials all
of whose multiples require exp(Ω(n))-size as C-circuits.

In particular, when C is the class of sparse polynomials, depth-3 powering formulas,
∑∧∑∏O(1) formulas (in characteristic zero), or “every-order” roABPs, the n × n determinant
has multiples which are all exp(Ω(n))-hard in these models.

The above statement shows that derandomization implies hardness. We also partly address
the converse direction by arguing (Subsection 6.1) that hardness-to-randomness construction of
Kabanets and Impagliazzo [KI04] only requires lower bounds for multiples to derandomize PIT.
Unfortunately, this direction is harder to instantiate for restricted classes as it requires lower bounds
for classes with suitable closure properties.2

Unfortunately the above result is slightly unsatisfying from a proof complexity standpoint as the
(exponential-size) lower bounds for the subclasses of IPS one can derive from the above result would
involve the determinant polynomial as an axiom. While the determinant is efficiently computable,
it is not computable by the above restricted circuit classes (indeed, the above result proves that).
As such, this would not fit the real goal of proof complexity which seeks to show that there are
statements whose proofs must be super-polynomial larger than the length of the statement. Thus,
if we measure the size of the IPS proof and the axioms with respect to the same circuit measure,
the lower bounds for multiples approach cannot establish such super-polynomial lower bounds.

However, we believe that lower bounds for multiples could lead, with further ideas, to proof
complexity lower bounds in the conventional sense. That is, it seems plausible that by adding
extension variables we can convert complicated axioms to simple, local axioms by tracing through
the computation of that axiom. That is, consider the axiom xyzw. This can be equivalently written
as {a−xy, b−zw, c−ab, c}, where this conversion is done by considering a natural algebraic circuit
for xyzw, replacing each gate with a new variable, and adding an axiom ensuring the new variables
respect the computation of the circuit. While we are unable to understand the role of extension
variables in this work, we aim to give as simple axioms as possible whose multiples are all hard as
this may facilitate future work on extension variables.

We now discuss the lower bounds for multiples we obtain.3

Theorem (Theorem 6.8, Theorem 6.9, Theorem 6.10, Theorem 6.18,Theorem 6.20). We obtain
the following lower bounds for multiples.

• All non-zero multiples of x1 ∙ ∙ ∙ xn require exp(Ω(n))-size as a depth-3 powering formula (over
any field), or as a

∑∧∑∏O(1) formula (in characteristic zero).

• All non-zero multiples of (x1 + 1) ∙ ∙ ∙ (xn + 1) require exp(Ω(n))-many monomials.

• All non-zero multiples of
∏
i(xi + yi) require exp(Ω(n))-width as a roABPs in any variable

order where x precedes y.
2Although, we note that one can instantiate this connection with depth-3 powering formulas (or even∑∧∑∏O(1) formulas) using the lower bounds for multiples developed in this paper, building on the work of

Forbes [For15]. However, the resulting PIT algorithms are worse than those developed by Forbes [For15].
3While we discussed functional lower bounds for multilinear formulas, this class is not interesting for the lower

bounds for multiples question. This is because a multiple of a multilinear polynomial may not be multilinear, and
thus clearly cannot have a multilinear formula.

10

• All non-zero multiples of
∏n
i,j=1(zi,j ∙ (xi + xj + xixj) + (1− zi,j)) require exp(Ω(n))-width as

a roABP in any variable order, as well as exp(Ω(n))-width as a read-twice oblivious ABP.

We now briefly explain our techniques for obtaining these lower bounds, focusing on the simplest
case of depth-3 powering formulas. It follows from the partial derivative method of Nisan and
Wigderson [NW94] (see Kayal [Kay08]) that such formulas require exponential size to compute the
monomial x1 . . . xn exactly. Forbes and Shpilka [FS13a], in giving a PIT algorithm for this class,
showed that this lower bound can be scaled down and made robust. That is, if one has a size-s
depth-3 powering formula, it follows that if it computes a monomial xi1 ∙ ∙ ∙ xi` for distinct ij then
l ≤ O(log s) (so the lower bound is scaled down). One can then show that regardless of what
this formula actually computes the leading monomial x

ai1
i1
∙ ∙ ∙ x

ai`
i`

(for distinct ij and positive aij)
must have that ` ≤ O(log s). One then notes that leading monomials are multiplicative. Thus, for
any non-zero g the leading monomial of g ∙ x1 . . . xn involves n variables so that if g ∙ x1 . . . xn is
computed in size-s then n ≤ O(log s), giving s ≥ exp(Ω(n)) as desired. One can then obtain the
other lower bounds using the same idea, though for roABPs one needs to define a leading diagonal
(refining an argument of Forbes-Shpilka [FS12]).

We now conclude our IPS lower bounds.

Theorem (Theorem 7.1,Theorem 7.2). We obtain the following lower bound for subclasses of IPS.

• In characteristic zero, for m 6= n, the system of polynomials x1 ∙ ∙ ∙ xn − 1, x1 + ∙ ∙ ∙ + xn −
m, {x2

i − xi}
n
i=1 is unsatisfiable, any

∑∧∑
-IPS refutation requires exp(Ω(n))-size.

• The system of polynomials, 1+
∏n
i,j=1(zi,j(xi+xj−xixj)+(1−zi,j)), {x2

i −xi}i, {z
2
i,j−zi,j}i,j

is unsatisfiable, and any roABP-IPS refutation (in any variable order) must be of width
exp(Ω(n)).

Note that the first result is an encoding that AND(x1, . . . , xn) = 1 but OR(x1, . . . , xn) 6= 1.
The second is not as natural, but contains the simpler polynomial

∏
i(ui + vi − uivi) + 1 (up to

renaming, and after appropriate substitution of the zi,j to values from {0, 1}), which encodes that
AND(OR(u1, v1), ∙ ∙ ∙ ,OR(un, vn)) /∈ {0, 1}.

1.4 Organization

The rest of the paper is organized as follows. Section 2 contains the basic notation for the paper.
In Section 3 we give background from algebraic complexity, including several important complexity
measures such as coefficient dimension and evaluation dimension (see Subsection 3.2 and Subsec-
tion 3.3). We present our upper bounds for IPS in Section 4. In Section 5 we give our functional
lower bounds and from them obtain lower bounds for IPSLIN. Section 6 contains our lower bounds
for multiples of polynomials and in Section 7 we derive lower bounds for IPS using them. In Sec-
tion 8 we study the relative strength of fragments of IPS, compared to other close algebraic proof
systems that were studied in previous works. Finally, in Section 9 we list some problems which
were left open by this work.

2 Notation

In this section we briefly describe notation used in this paper. We denote [n] := {1, . . . , n}. For a
vector a ∈ Nn, we denote xa := xa1

1 ∙ ∙ ∙ x
an
n so that in particular x1 =

∏n
i=1 xi. The (total) degree

of a monomial xa, denoted deg xa, is equal to |a|1, and the individual degree, denoted ideg xa, is

11

equal to |a|∞. Degree and individual degree can be defined for a polynomial f , denoted deg f and
ideg f respectively, by taking the maximum over all monomials with non-zero coefficients in f . We
will use ≺ to denote a monomial order on F[x], see Subsection 3.6.

Polynomials will often be written out in their monomial expansion. At various points we will
need to extract coefficients from polynomials. When “taking the coefficient of yb in f ∈ F[x, y]” we
mean that both x and y are treated as variables and thus the coefficient returned is a scalar in F,
and this will be denoted Coeffyb(f). However, when “taking the coefficient of y b in f ∈ F[x][y]”
we mean that x is now part of the ring of scalars, so the coefficient will be an element of F[x], and
this coefficient will be denoted Coeff

x|yb
(f).

For a vector a ∈ Nn we denote a≤i ∈ Ni to be the restriction of a to the first i coordinates. For
a set S ⊆ [n] we let S denote the complement set. We will denote the size-k subsets of [n] by

([n]
k

)
.

We will use ml : F[x] → F[x] to denote the multilinearization operator, defined by Theorem 3.7.
We will use x2 − x to denote the set of equations {x2

i − xi}i.

3 Algebraic Complexity Theory Background

In this section we state some known facts regarding the algebraic circuit classes that we will be
studying. We also give some important definitions that will be used later in the paper.

3.1 Polynomial Identity Testing

In the polynomial identity testing (PIT) problem, we are given an algebraic circuit computing some
polynomial f , and we have to determine whether “f ≡ 0”. That is, we are asking whether f
is the zero polynomial in F[x1, . . . , xn]. By the Schwartz-Zippel-DeMillo-Lipton Lemma [Zip79,
Sch80, DL78], if 0 6= f ∈ F[x] is a polynomial of degree ≤ d and S ⊆ F, and α ∈ Sn is chosen
uniformly at random, then f(α) = 0 with probability at most4 d/|S|. Thus, given the circuit, we
can perform these evaluations efficiently,5 giving an efficient randomized procedure for deciding
whether “f ≡ 0?”. It is an important open problem to find a derandomization of this algorithm,
that is, to find a deterministic procedure for PIT that runs in polynomial time (in the size of
circuit).

Note that in the randomized algorithm of Schwartz-Zippel-DeMillo-Lipton we only use the
circuit to compute the evaluation f(α). Such algorithms are said to run in the black-box model.
In contrast, an algorithm that can access the internal structure of the circuit runs in the white-box
model. It is a folklore result that efficient deterministic black-box algorithms are equivalent to
constructions of small hitting sets. That is, a hitting set is set of inputs so that any nonzero circuit
from the relevant class evaluates to nonzero on at least one of the inputs in the set. For more on
PIT we refer to the survey of Shpilka and Yehudayoff [SY10].

A related notion to that of a hitting set is that of a generator, which is essentially a low-
dimensional curve whose image contains a hitting set. The equivalence between hitting sets and
generators can be found in the above mentioned survey.

4Note that this is meaningful only if d < |S| ≤ |F|, which in particular implies that f is not the zero function.
5To present algorithms that are field independent, this paper works in a model of computation where field op-

erations (such as addition, multiplication, inversion and zero-testing) over F can be computed at unit cost, see for
example Forbes [For14, Appendix A]. We say that an algebraic circuit is t-explicit if it can be constructed in t steps
in this unit-cost model.

12

Definition 3.1. Let C ⊆ F[x1, . . . , xn] be a set of polynomials. A polynomial G : Fs → Fn is a
generator for C with seed-length s if for all f ∈ C, f ≡ 0 iff f ◦ G ≡ 0. That is, f(x) = 0 in
F[x] iff f(G(y)) = 0 in F[y].

In words, a generator for a circuit class C is a mapping G : Ft → Fn, such that for any nonzero
polynomial f , computed by a circuit from C, it holds that the composition f(G) is nonzero as well.
By considering the image of G on St, where S ⊆ F is of polynomial size, we obtain a hitting set for
C.

In Subsection 6.2 we explain how one can use generators with small seed-length to obtain lower
bounds for any nonzero multiple of a given polynomial f . Such generators are known for several of
the models that we study in this paper.

Sparse Representation: There are many papers giving efficient black-box PIT algorithm for
ΣΠ formulas. For example, Klivans and Spielman [KS01] gave a hitting set of polynomial size.

Depth-3 Powering Formulas: Saxena [Sax08] gave a polynomial time white-box PIT algorithm
and Forbes, Shpilka, and Saptharishi [FSS14] gave a hitting set of size sO(log log s) for size-s depth-3
powering formulas.
∑∧∑∏O(1) Formulas: Forbes [For15] gave an sO(lg s)-size hitting set for size-s computation in
this model (in large characteristic).

Read-once ABPs: Raz and Shpilka [RS05] gave a polynomial time white-box PIT algorithm.
A long sequence of papers calumniated in the work of Agrawal, Gurjar, Korwar, and Sax-
ena [AGKS14], who gave a quasi-polynomial sized hitting set for roABPs.

Read-k Oblivious ABPs: In a very recent work, Anderson, Forbes, Saptharishi, Shpilka,
Volk [AFS+15] obtained a white-box PIT algorithm for read-k oblivious ABPs that run in time

2Õ(n1−1/2k−1
) and needs white box access only to know the order in which the variables appear in

the ABP.

3.2 Coefficient Dimension and roABPs

This paper proves various lower bounds on roABPs using a complexity measures known as coefficient
dimension. In this section, we define this measures and recall basic properties. Full proofs of these
claims can be found for example in the thesis of Forbes [For14].

We first define the coefficient matrix of a polynomial, called the “partial derivative matrix”
in the prior work of Nisan [Nis91] and Raz [Raz09]. This matrix is formed from a polynomial
f ∈ F[x, y] by arranging its coefficients into a matrix. That is, the coefficient matrix has rows
indexed by monomials xa in x, columns indexed by monomials yb in y, and the (xa, yb)-entry is the
coefficient of xay b in the polynomial f . We now define this matrix, recalling that Coeff

xayb
(f) is

the coefficient of xayb in f .

Definition 3.2. Consider f ∈ F[x, y]. Define the coefficient matrix of f as the scalar matrix

(Cf)a,b := Coeff
xayb

(f) ,

where coefficients are taken in F[x, y], for |a|1, |b|1 ≤ deg f .

We now give the related definition of coefficient dimension, which looks at the dimension of the
row- and column-spaces of the coefficient matrix. Recall that Coeff

x|yb
(f) extracts the coefficient

of yb in f as a polynomial in F[x][y].

13

Definition 3.3. Let Coeffx|y : F[x, y]→ 2F[x] be the space of F[x][y] coefficients, defined by

Coeffx|y(f) :=
{

Coeff
x|yb

(f)
}

b∈Nn
,

where coefficients of f are taken in F[x][y].
Similarly, define Coeffy|x : F[x, y]→ 2F[y] by taking coefficients in F[y][x].

The following basic lemma shows the rank of the coefficient matrix equals the coefficient di-
mension.

Lemma 3.1 (Nisan [Nis91]). Consider f ∈ F[x, y]. Then the rank of the coefficient matrix Cf
obeys

rankCf = dim Coeffx|y(f) = dim Coeffy|x(f) .

Thus, the ordering of the partition ((x, y) versus (y, x)) does not matter in terms of the resulting
dimension. The above matrix-rank formulation of coefficient dimension can be rephrased in terms
of low-rank decompositions.

Lemma 3.2. Let f ∈ F[x, y]. Then dim Coeffx|y(f) equals the minimum r such that there are
g ∈ F[x]r and h ∈ F[y]r such that f can be written as f(x, y) =

∑r
i=1 gi(x)hi(y).

We now state a convenient normal form for roABPs (see for example Forbes [For14, Corollary
4.4.2]).

Lemma 3.3. Consider a polynomial f ∈ F[x1, . . . , xn] and let π : [n]→ [n] be a permutation. The
polynomial f is computed by width-r roABP in variable order π iff there exist matrices Ai(xπ(i)) ∈
F[xπ(i)]

r×r of (individual) degree ≤ deg f such that f = (
∏n
i=1Ai(xπ(i)))1,1.

By splitting a roABP into such variable disjoint inner products one can obtain a lower bound
for roABP width via coefficient dimension. In fact, this complexity measure characterizes roABP
width.

Lemma 3.4. Let f ∈ F[x1, . . . , xn] be computed by a width-r roABP in variable order x1 < ∙ ∙ ∙ <
xn, so that f can be computed as f(x) = (

∏n
i=1Ai(xi))1,1 for matrices Ai(xi) ∈ F[xi]r×r. Then

r ≥ maxi dim Coeffx≤i|x>i(f). Further, f is computable by a roABP in variable order x1 < ∙ ∙ ∙ < xn
of width maxi dim Coeffx≤i|x>i(f).

Using this complexity measure it is rather straightforward to prove the following closure prop-
erties of roABPs.

Fact 3.5. If f, g ∈ F[x] are computable by width-r and width-s roABPs respectively, then

• f + g is computable by a width max{r, s} roABP.

• f ∙ g is computable by a width-(rs) roABP.

Further, if f(x, y) ∈ F[x, y] is computable by a width-r roABP in some variable order then the
partial substitution f(x, α), for α ∈ F|y|, is computable by a width-r roABP in the induced order on
x.

14

3.3 Evaluation Dimension

While coefficient dimension measures the size of a polynomial f(x, y) by taking all coefficients in
y, evaluation dimension is a complexity measure due to Saptharishi [Sap12] that measures the
size by taking all possible evaluations in y over the field. This measure will be important for
our applications as one can restrict such evaluations to the boolean cube and obtain circuit lower
bounds for computing f(x, y) as a polynomial via its induced function on the boolean cube. We
begin with the definition.

Definition 3.4 (Saptharishi [Sap12]). Let S ⊆ F. Let Evalx|y,S : F[x, y] → 2F[x] be the space of
F[x][y] evaluations over S, defined by

Evalx|y,S(f(x, y)) :=
{
f(x, β)

}

β∈S|y|
.

Define Evalx|y : F[x, y]→ 2F[x] to be Evalx|y,S when S = F.
Similarly, define Evaly|x,S : F[x, y]→ 2F[y] by replacing x with all possible evaluations α ∈ S|x|,

and likewise define Evaly|x : F[x, y]→ 2F[y].

The equivalence between evaluation dimension and coefficient dimension was shown by Forbes-
Shpilka [FS13b] by appealing to interpolation.

Lemma 3.6 (Forbes-Shpilka [FS13b]). Let f ∈ F[x, y]. For any S ⊆ F we have that Evalx|y,S(f) ⊆
span Coeffx|y(f) so that dim Evalx|y,S(f) ≤ dim Coeffx|y(f). In particular, if |S| > ideg f then
dim Evalx|y,S(f) = dim Coeffx|y(f).

3.4 Multilinear Polynomials and Multilinear Formulas

We state some well-known facts about multilinear polynomials.

Fact 3.7. For any two multilinear polynomials f, g ∈ F[x1, . . . , xn], f = g as polynomials iff they
agree on the boolean cube {0, 1}n. That is, f = g iff f |{0,1}n = g|{0,1}n .

Further, there is a multilinearization map ml : F[x]→ F[x] such that for any f, g ∈ F[x],

1. ml(f) is multilinear.

2. f and ml(f) agree on the boolean cube, that is, f |{0,1}n = ml(f)|{0,1}n .

3. deg ml(f) ≤ deg f .

4. ml(fg) = ml(ml(f) ml(g)).

5. ml is linear, so that for any α, β ∈ F, ml(αf + βg) = αml(f) + βml(g).

Throughout the rest of this paper ‘ml’ will denote the multilinearization operator. Raz [Raz09,
Raz06] gave lower bounds for multilinear formulas using the above notion of coefficient dimension,
and Raz-Yehudayoff [RY08,RY09] gave simplifications and extensions to constant-depth multilinear
formulas.

Theorem 3.8 (Raz [Raz09,RY09]). Let f ∈ F[x1, . . . , x2n, z] be a multilinear polynomial in the set
of variables x and auxiliary variables z. Let fz denote the polynomial f in the ring F[z][x]. Suppose
that for any partition [2n] = S t T with |S| = |T | = n that

dimF(x) Coeff
x|S
∣
∣x|T
fz ≥ 2n ,

then f requires ≥ nΩ(log n)-size to be computed as a multilinear formula. For d = o(logn/log log n), f
requires nΩ((n/logn)1/d/d2)-size multilinear formulas of depth-(2d+ 1).

15

3.5 Depth-3 Powering Formulas

In this section we review facts about depth-3 powering formulas. We begin with the duality trick
of Saxena [Sax08], which shows that one can convert a power of a linear form to a sum of products
of univariate polynomials.

Theorem 1 (Saxena’s Duality Trick [SW01,Sax08,FSG13]). Let n ≥ 1, and d ≥ 0. If |F| ≥ nd+1,
then there are poly(n, d)-explicit univariates fi,j ∈ F[xi] such that

(x1 + ∙ ∙ ∙+ xn)
d =

s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn) ,

where deg fi,j ≤ d and s = (nd+ 1)(d+ 1).

The original proof of Saxena [Sax08] only worked over field over large enough characteristic,
and gave s = nd + 1. A similar version of this trick also appeared in Shpilka-Wigderson [SW01].
The parameters we use here are from the proof of Forbes, Gupta, and Shpilka [FSG13], which has
the advantage of working over any large enough field.

Noting that the product fi,1(x1) ∙ ∙ ∙ fi,n(xn) trivially has a width-1 roABP (in any variable
order), it follows that (x1 + ∙ ∙ ∙ + xn)d has a poly(n, d)-width roABP over a large enough field.
Thus, size-s

∑∧∑
formulas have poly(s)-size roABPs over large enough fields by appealing to

closure properties of roABPs (Theorem 3.5). As it turns out, this result also holds over any field
as Forbes-Shpilka [FS13b] adapted Saxena’s [Sax08] duality to work over any field. Their version
works over any field, but loses the above clean form (sum of product of univariates).

Theorem 2 (Forbes-Shpilka [FS13b]). Let f ∈ F[x] be expressed as f(x) =
∑s
i=1(αi,0+αi,1xi+∙ ∙ ∙+

αi,nxn)di . Then f is computable by a width-r roABP in any variable order, where r =
∑
i(di + 1).

One way to see this claim is to observe that for any variable partition, a linear function can
be expressed as the sum of two variable disjoint linear functions `(x1, x2) = `1(x1) + `2(x2). By
the binomial theorem, the d-th power of this expression is a summation of d + 1 variable disjoint
products, which implies a coefficient dimension upper bound of d+ 1 (Theorem 3.2) and thus also
a roABP-width upper bound (Theorem 3.4). One can then sum over the linear forms.

While this simulation suffices for obtaining roABP upper bounds, we will also want the clean
form obtained via duality for application to multilinear-formula IPS proofs of the subset-sum axiom
(Theorem 4.9).

3.6 Monomial Orders

We recall here the definition and properties of a monomial order, following Cox, Little and
O’Shea [CLO07]. We first fix the definition of a monomial in our context.

Definition 3.5. A monomial in F[x1, . . . , xn] is a polynomial of the form xa = xa1
1 ∙ ∙ ∙ x

an
n for

a ∈ Nn.

We will sometimes abuse notation and associate a monomial xa with its exponent vector a, so
that we can extend this order to the exponent vectors. Note that in this definition “1” is a monomial,
and that scalar multiples of monomials such as 2x are not considered monomials. We now define a
monomial order, which will be total order on monomials with certain natural properties.

Definition 3.6. A monomial ordering is a total order ≺ on the monomials in F[x] such that

16

• For all a ∈ Nn \ {0}, 1 ≺ xa.

• For all a, b, c ∈ Nn, xa ≺ xb implies xa+c ≺ xb+c.

For non-zero f ∈ F[x], the leading monomial of f (with respect to a monomial order
≺), denoted LM(f), is the largest monomial in Supp(f) := {xa : Coeffxa(f) 6= 0} with respect to
the monomial order ≺. The trailing monomial of f , denoted TM(f), is defined analogously to be
the smallest monomial in Supp(f). The zero polynomial has neither leading nor trailing monomial.

For non-zero f ∈ F[x], the leading (resp. trailing) coefficient of f , denoted LC(f) (resp.
TC(f)), is Coeffxa(f) where xa = LM(f) (resp. xa = TM(f)).

Henceforth in this paper we will assume F[x] is equipped with some monomial order ≺. The
results in this paper will hold for any monomial order. However, for concreteness, one can consider
the lexicographic ordering on monomials, which is easily seen to be a monomial ordering (see also
Cox, Little and O’Shea [CLO07]).

We begin with a simple lemma about how taking leading or trailing monomials (or coefficients)
is homomorphic with respect to multiplication.

Lemma 3.9. Let f, g ∈ F[x] be non-zero so that fg 6= 0. Then the leading monomial and trailing
monomials and coefficients are homomorphic with respect to multiplication, that is, LM(fg) =
LM(f) LM(g) and TM(fg) = TM(f) TM(g), as well as LC(fg) = LC(f) LC(g) and TC(fg) =
TC(f) TC(g).

Proof: We do the proof for leading monomials and coefficients, the claim for trailing monomials
and coefficients is symmetric.

Let f(x) =
∑
a αax

a and g(x) =
∑
b βbx

b. Isolating the leading monomials,

f(x) = LC(f) ∙ LM(f) +
∑

xa�LM(f)

αax
a, g(x) = LC(g) ∙ LM(g) +

∑

xb�LM(g)

βbx
b,

with LC(f) = αLM(f) and LC(g) = βLM(g) being non-zero. Thus,

f(x)g(x) = LC(f) LC(g) ∙ LM(f) LM(g) + LC(f) LM(f)






∑

xb�LM(g)

βbx
b






+ LC(g) LM(g)






∑

xa�LM(f)

αax
a




+






∑

xa�LM(f)

αax
a











∑

xb�LM(g)

βbx
b




 .

Using that xaxb � xa LM(g), LM(f)xb � LM(f) LM(g) shows that LM(f) LM(g) is indeed the
maximal monomial in the above expression with non-zero coefficient, and as its coefficient is
LC(f) LC(g).

We now recall the well-known fact that for any set of polynomials the dimension of their span
in F[x] is equal to the number of distinct leading or trailing monomials in their span.

Lemma 3.10. Let S ⊆ F[x] be a set of polynomials. Then dim spanS = |LM(spanS)| =
|TM(spanS)|. In particular, dim spanS ≥ |LM(S)| , |TM(S)|.

17

4 Upper Bounds for Linear-IPS

While the primary focus of this work is on lower bounds for restricted classes of the IPS proof
system, we begin by discussing upper bounds to demonstrate that these restricted classes can prove
the unsatisfiability of non-trivial systems of polynomials equations. This shows that obtaining lower
bounds even for these restricted cases is non-trivial.

We begin by discussing the power of the linear-IPS proof system. While one of the most novel
features of IPS proofs is their consideration of non-linear certificates, we show that in powerful
enough models of algebraic computation, linear-IPS proofs can efficiently simulate IPS proofs. This
result was obtained by Grochow and Pitassi [GP14] for the special case of sparse IPS. We then
consider the subset-sum axioms, previously considered by Impagliazzo, Pudlák, and Sgall [IPS99],
and show that they can be refuted in polynomial size by the C-IPSLIN proof system where C is
either the class of roABPs, or the class of multilinear formulas.

4.1 Simulating IPS Proofs with Linear-IPS

We show here that general IPS proofs can be efficiently simulated by linear-IPS, assuming that the
axioms to be refuted are described by small algebraic circuits. Grochow and Pitassi [GP14] showed
that whenever the IPS proof computes sparse polynomials, one can simulate it by linear-IPS using
(possibly non-sparse) algebraic circuits. We give here a simulation of IPS when the proofs use
general algebraic circuits.

We omit the boolean axioms in the below set of axioms as they do not play a role in this
particular result.

Proposition 4.1. Let F be a field with |F| ≥ d + 1. Let f1, . . . , fm ∈ F[x1, . . . , xn] have an
IPS proof C ∈ F[x, y1, . . . , ym], where f1, . . . , fm, C have degree-(≤ d) and are computed by size-s
algebraic circuits. Then f1, . . . , fm have a linear-IPS proof C ′ ∈ F[x, y] where degC ′ ≤ poly(d)
(and degy C

′ ≤ 1), and C ′ is computable by a poly(d, s)-size algebraic circuit.

Proof: Express C(x, y) as a polynomial in F[x][y], so that C(x, y) =
∑
a>0 Ca(x)y

a, where we use
that C(x, 0) = 0 to see that we can restrict a > 0. Partitioning the a ∈ Nn based on their first
non-zero value, and denoting a<i for the first i− 1 coordinates of a, we obtain

C(x, y) =
∑

a>0

Ca(x)y
a

=
n∑

i=1

∑

a:a<i=0,
ai>0

Ca(x)y
a

Now define Ci(x, y) :=
∑
a:a<i=0,
ai>0

Ca(x)ya−ei , where ei is the i-th standard basis vector. Note that

this is a valid polynomial as in this summation we assume ai > 0 so that a− ei ≥ 0,

=
n∑

i=1

Ci(x, y)yi .

We now claim that C ′(x, y) :=
∑n
i=1 Ci(x, f(x))yi is the desired linear-IPS refutation, where

we have partially substituted in the fi for the yi. First, observe that it is a valid refutation, as
C ′(x, 0) =

∑n
i=1 Ci(x, f(x))0 = 0, and C ′(x, f(x)) =

∑n
i=1 Ci(x, f(x))fi(x) = C(x, f(x)) = 1 via

the above definition.

18

We now argue that C ′ has a small circuit, for which it is enough to show the size claim for each
Ci. First, note that

Ci(x, y)yi =
∑

a:a<i=0,
ai>0

Ca(x)y
a = C(x, 0, yi, y>i)− C(x, 0, 0, y>i) ,

where each “0” here is a vector of i − 1 zeros. Clearly each of C(x, 0, yi, y>i) and C(x, 0, 0, y>i)
have size-s circuits, and it remains to show that 1

yi
(C(x, 0, yi, y>i) − C(x, 0, 0, y>i)) (which is a

polynomial) has a small circuit. A heavy-handed approach would be to use Strassen’s [Str73]
elimination of divisions. Another approach is to interpolation (or more generally, homogenization,
see Shpilka and Yehudayoff [SY10]). That is, view D(yi) := C(x, 0, yi, y>i) − C(x, 0, 0, y>i) as a
univariate polynomial in the ring F[x, y>i][yi], which thus has degree ≤ d. By evaluating D(yi)
at d + 1 distinct points in F, one can for any j take suitable linear combinations to obtain the
coefficient of yji in D(yi). By multiplying this coefficient by yj−1

i and summing over j, one obtains
D(yi)/yi. As this takes poly(d) evaluations of a size-s circuit one obtains that Ci(x, y) has poly(s, d)
size. As f also has such a size, it follows that Ci(x, f(x)) has poly(s, d) size as desired.

We remark that this simulation also roughly preserves the depth of the IPS proof, assuming
the axioms themselves also are computable by low-depth circuits. One can also remove the need
for a large field by using homogenization, but this increases the depth complexity (see Shpilka and
Yehudayoff [SY10]). IT: I think it

should be noted
here that since
the simulation
depends on the
degree d of C,
then it doesn’t
follow from
the theorem
that linear-IPS
polynomially sim-
ulates Extended
Frege (while IPS
does simulate
Extended Frege).

4.2 Multilinearizing roABP-IPSLIN

In this section we show that for roABP-IPSLIN and multilinear-formula-IPSLIN one can efficiently
prove that a refutation equals its multilinearization modulo the boolean axioms. That is, for an
axiom f and polynomial g we wish to prove that g ∙ f ≡ ml(g ∙ f) mod x2 − x by expressing
g ∙ f =

∑
i hi ∙ (x

2
i − xi) where the hi have small circuits. We will use this multilinearization in our

construction of IPS refutations of the subset-sum axiom (Subsection 4.4).
We begin by noting that multilinearization for these two circuit classes is rather special, as these

classes are both not too weak and not too strong. That is, some circuit classes are simply too weak
to compute their multilinearizations. An example is the class of depth-3 powering formulas, where
(x1 + ∙ ∙ ∙+ xn)n has a small

∑∧∑
formula, but is multilinearization has leading term n!x1 ∙ ∙ ∙ xn

and thus requires exponential size as a
∑∧∑

formula (by appealing to 3). On the other hand,
some circuit classes are too strong to admit efficient multilinearization (under plausible complexity
assumptions). That is, consider f(X, y) := (x1,1y1 + ∙ ∙ ∙+x1,nyn) ∙ ∙ ∙ (xn,1y1 + ∙ ∙ ∙+xn,nyn), which is
clearly a simple depth-3 (

∏∑∏
) circuit. Viewing this polynomial in F[X][y] where X is an n× n

matrix, one sees that CoeffX|y1∙∙∙ynf = perm(X), where perm(X) is the n× n permanent. Viewing
ml(f), the multilinearization of f , in F[X][y] one sees that ml(f) is of degree n and its degree n
component is the coefficient of y1 ∙ ∙ ∙ yn in ml(f), which is still perm(X). Hence, by interpolation,
one can extract this degree n part and thus can compute a circuit for perm(X) given a circuit
for ml(f). Since we believe perm(X) does not have small algebraic circuits it follows that the
multilinearization of f does not have small circuits.

We begin by multilinearizing roABPs, where we multilinearize variable by variable via telescop-
ing.

Proposition 4.2. Let f ∈ F[x1, . . . , xn] be computable by a width-r roABP in variable order
x1 < ∙ ∙ ∙ < xn, so that f(x) = (

∏n
i=1Ai(xi))1,1 where Ai ∈ F[xi]r×r have degAi ≤ d. Then ml(f)

19

has a width-r roABP in variable order x1 < ∙ ∙ ∙ < xn, and there are poly(r, n, d)-explicit width-r
roABPs f1, . . . , fn ∈ F[x] in variable order x1 < ∙ ∙ ∙ < xn such that

f(x) = ml(f) +
n∑

i=1

fi ∙ (x
2
i − xi) .

Further, the individual degree of the roABP for ml(f) is ≤ 1.

Proof: First observe that we can extend the multilinearization map ml : F[x] → F[x] to matrices
ml : F[x]r×r → F[x]r×r by applying the map entry-wise. It follows then that Ai(xi)−ml(Ai(xi)) ≡ 0
mod x2

i −xi, so that Ai(xi)−ml(Ai(xi)) = B(xi) ∙ (x2
i −xi) for some Bi(xi) ∈ F[xi]r×r. Now define

ml≤i be the map which multilinearizes the first i variables and leaves intact the others, so that
ml≤0 is the identity map and ml≤n = ml. Telescoping,

n∏

i=1

Ai(xi) = ml≤n

(
n∏

i=1

Ai(xi)

)

+
n∑

j=1

[

ml<j

(
n∏

i=1

Ai(xi)

)

−ml≤j

(
n∏

i=1

Ai(xi)

)]

using that ml(gh) = ml(ml(g) ml(h)) (Theorem 3.7), even for these partial-multilinearization maps,

= ml≤n

(
n∏

i=1

Ai(xi)

)

+
n∑

j=1



ml<j




∏

i<j

ml<j(Ai(xi))
∏

i≥j

Ai(xi)





−ml≤j




∏

i≤j

ml≤j(Ai(xi))
∏

i>j

Ai(xi)









dropping the outside ml<j and ml≤j as the inside polynomials are now multilinear in the appropriate
variables, and replacing them with ml as appropriate,

=
n∏

i=1

ml(Ai(xi)) +
n∑

j=1




∏

i<j

ml(Ai(xi))
∏

i≥j

Ai(xi)

−
∏

i≤j

ml(Ai(xi))
∏

i>j

Ai(xi)





=
n∏

i=1

ml(Ai(xi)) +
n∑

j=1

∏

i<j

ml(Ai(xi))
(
Aj(xj)−ml(Aj(xj))

)∏

i>j

Ai(xi)

=
n∏

i=1

ml(Ai(xi)) +
n∑

j=1

∏

i<j

ml(Ai(xi))Bj(xj)
∏

i>j

Ai(xi) ∙ (x
2
j − xj) .

Taking the (1, 1)-entry in the above yields that

f(x) =

(
n∏

i=1

Ai(xi)

)

1,1

=

(
n∏

i=1

ml(Ai(xi))

)

1,1

+
n∑

j=1




∏

i<j

ml(Ai(xi))Bj(xj)
∏

i>j

Ai(xi)





1,1

∙ (x2
j − xj) .

Thus, define fi :=
(∏
i<j ml(Ai(xi))Bj(xj)

∏
i>j Ai(xi)

)

1,1
and define f ′ := (

∏n
i=1 ml(Ai(xi)))1,1,

which is an roABP of individual degree 1 as each ml(Ai(xi)) is linear. As the above yields that
f = f ′+

∑
j fj ∙ (x

2
j −xj) and f ′ is multilinear, it follows that ml(f) = f ′ and that this is the desired

expression.

20

4.3 Multilinear-Formula-IPS

We now turn to multilinear-formula-IPS, with the aim of showing that this efficiently simulates
sparse-IPSLIN. We begin by noting that linear -IPS over multilinear polynomials is not a complete
proof system (for the language of all systems of polynomial equations with no 0-1 roots).

Example: Consider the unsatisfiable system of equations xy+1, x2−x, y2−y. A multilinear linear-
IPS proof is a tuple of multilinear polynomials (f, g, h) ∈ F[x, y] such that f ∙(xy+1)+g ∙(x2−x)+h∙
(y2− y) = 1. In particular, f(x, y) = 1

xy+1 for x, y ∈ {0, 1}, which implies by interpolation over the

boolean cube that f(x, y) = 1 ∙(1−x)(1−y)+ 1
2 ∙(1−x)y+

1
2 ∙x(1−y)+ 1

3 ∙xy = 1− 1
2 ∙x−

1
2 ∙y+

1
3 ∙xy.

Thus f ∙ (xy + 1) contains the monomial x2y2. However, as g, h are multilinear we see that x2y2

cannot appear in g∙(x2−x)+h∙(y2−y)−1, so that the equality f ∙(xy+1)+g∙(x2−x)+h∙(y2−y) = 1
cannot hold.

As such, to simulate sparse-IPSLIN (a complete proof system) we must resort to using general
IPS. We first show how to multilinearize a monomial.

Lemma 4.3. Let x1 =
∏n
i=1 xi. Then,

(x1)2 − x1 =
∑

0<a≤1

∏

ai=1

(x2
i − xi)

∏

ai=0

xi .

Proof:

(x1)2 − x1 =
n∏

i=1

((x2
i − xi) + xi)−

n∏

i=1

xi

=
∑

0≤a≤1

∏

ai=1

(x2
i − xi)

∏

ai=0

xi −
n∏

i=1

xi

=
∑

0<a≤1

∏

ai=1

(x2
i − xi)

∏

ai=0

xi .

We now give an IPS proof for showing how a polynomial times a monomial equals its multilin-
earization.

Lemma 4.4. Let f ∈ F[x, y1, . . . , yd] be multilinear be expressed as f =
∑

0≤a≤1 fa(x)y
a in the ring

F[x][y]. Then

f(x, y) ∙ y1 −ml(f(x, y) ∙ y1) = C(x, y, y2 − y) ,

where C ∈ F[x, y, z1, . . . , zd] is defined by C(x, y, z) :=
∑
a fa(x)

∑
0<b≤a

∏
bi=1 zi

∏
bi=0 yi, so that

C(x, y, 0) = 0.

Proof: Simple calculation yields

f(x, y) ∙ y1 −ml(f(x, y) ∙ y1) =
∑

a

fa(x)y
a ∙ y1 −ml

(
∑

a

fa(x)y
a ∙ y1

)

=
∑

a

fa(x)
(
ya+1 − y1

)

appealing to Theorem 4.3,

=
∑

a

fa(x)
∑

0<b≤a

∏

bi=1

(y2i − yi)
∏

bi=0

yi

21

= C(x, y, y2 − y) .

That C(x, y, 0) = 0 is clear.

We now extend the above to a polynomial times a sparse polynomial, keeping track of the
complexity of this IPS proof.

Corollary 4.5. Let f ∈ F[x1, . . . , xn] be computable by a multilinear formula of size-s, and let
g ∈ F[x] be a t-sparse multilinear polynomial with deg g ≤ d. Then

g ∙ f −ml(g ∙ f) = C(x, x2 − x) ,

for C ∈ F[x, u1, . . . , un] where C(x, 0) = 0 and C is computable by a poly(t, 2d, n, s)-size multilinear
formula. Further, if f is actually depth-2 then C is computable in poly(t, 2d, n, s)-size and depth-2.

Proof: As ml is a linear map, it suffices to show the claim for t = 1 where g =
∏
i∈S for some

S ⊆ [n] with |S| ≤ d. Partition x = (y, z) so y = x|[n]\S and z = x|S so that g = z1, and thus z has
≤ d variables. Express f in F[y][z] as f =

∑
0≤a≤1 fa(y)z

a. By Theorem 4.4,

g ∙ f −ml(g ∙ f) = z1 ∙ f −ml(z1 ∙ f)

=
∑

a

fa(y)
∑

0<b≤a

∏

bi=1

(z2i − zi)
∏

bi=0

zi

= C(y, z, z2 − z) ,

where C(y, z, w) =
∑
a fa(y)

∑
0<b≤a

∏
bi=1 wi

∏
bi=0 zi. We now claim that C has a poly(2d, n, s)-size

multilinear formula. First notice that C is indeed multilinear as each fa is multilinear Next notice
that each fa(y) has a poly(2d, n, s)-size formula as it can be computed by interpolating f(y, z) over
z ∈ {0, 1}|z|, so that fa(y) =

∑
α∈{0,1}|z βαf(y, α) for some βa ∈ F. Clearly

∑
0<b≤a

∏
bi=1 wi

∏
bi=0 zi

has the requisite size formula. Finally, summing over all a only multiplies the complexity by at most
2d. The claim about sparsity (depth-2 computation) follows by inspection of the above process,
noting that we can push all multiplication gates to the bottom of the above computation for C.

We now conclude by showing that multilinear-formula-IPSLIN′ can efficiently simulate sparse-
IPSLIN when the axioms are low-degree. As this latter system is complete, this shows the former
is as well. That is, we allow the refutation to depend non-linearly on the boolean axioms, but only
linearly on the other axioms.

Corollary 4.6. Let f1, . . . , fm ∈ F[x1, . . . , xn] be degree ≤ d multilinear polynomials unsatisfiable
over the boolean cube. Suppose that there are s-sparse polynomials g1, . . . , gm, h1, . . . , hn ∈ F[x]
such that

∑m
j=1 gjfj+

∑n
i=1 hi ∙(x

2
i −xi) = 1. Then f, x2−x can be refuted by a depth-2 multilinear-

formula-IPSLIN′ proof of size poly(2d, n, s,m).

Proof: Clearly
∑m
j=1 gjfj ≡ 1 mod x2 − x, and thus by multilinearizing we also have the equation

∑m
j=1 ml(gj)fj ≡ 1 mod x2 − x, where we used that the fj are already multilinear. Now note

that each ml(gj) is an s-sparse multilinear polynomial of degree ≤ d, and thus is computable
by a poly(n, s)-size multilinear formula. By Theorem 4.5, it follows for each j that ml(gj)fj −
ml(ml(gj)fj) = Cj(x, x2 − x), where Cj(x, 0) = 0 and Cj is computable by a poly(2d, n, s)-size
depth-2 multilinear formula, as each gj is sparse. Summing over j, it follows that

∑

j

Cj(x, x
2 − x) =

m∑

j=1

(ml(gj)fj −ml(ml(gj)fj))

22

=
m∑

j=1

ml(gj)fj −ml




m∑

j=1

ml(gj)fj





=
m∑

j=1

ml(gj)fj − 1 ,

where in the last step we used that
∑m
j=1 ml(gj)fj ≡ 1 mod x2 − x. Thus, defining the refutation

C(x, y1 . . . , ym, z1 . . . , zn) by
∑
j fj(x) ∙yj−

∑
j Cj(x, z) we see that C(x, 0, 0) = 0, C(x, f , x2−x2) =

1, and C has a poly(2d, n, s,m)-size multilinear formula. This formula is even depth-2 as each Cj
is depth-2, and fj(x) ∙ yj is depth-2 by pushing yj to the bottom multiplication gate.

4.4 Refutations of the Subset-Sum Axiom

We now give efficient IPS refutations of the subset-sum axiom, where these IPS refutations can
be even placed in the restricted roABP-IPSLIN or multilinear-formula-IPSLIN subclasses. That is,
we give such refutations for whenever the polynomial

∑
i αixi − β is unsatisfiable over the boolean

cube {0, 1}n, where the size of the refutation is polynomial in the size of the set A := {
∑
i αixi :

x ∈ {0, 1}n}. The most natural example is when α = 1 so that A = {0, . . . , n}.
To construct these refutations, we first show that there is an efficiently computable polynomial

f such that f(x) ∙ (
∑
i αixi − β) ≡ 1 mod x2 − x. This will be done by considering the univariate

polynomial pA(t) :=
∏
α∈A(t−α). As for any univariate p(x) we have that x−y divides p(x)−p(y),

so that pA(
∑
i αixi) − pA(β) is a multiple of

∑
i αixi − β. As

∑
i αixi − β is unsatisfiable it must

be that β /∈ A. This implies that pA(
∑
i αixi) ≡ 0 mod x2 − x while pA(β) 6= 0. Consequently,

pA(
∑
i αixi)−pA(β) is equivalent to a non-zero constant modulo x2−x, yielding the Nullstellensatz

refutation
1

−pA(β)
∙
pA(

∑
i αixi)− pA(β)
∑
i αixi − β

∙ (
∑
iαixi − β) ≡ 1 mod x2 − x .

By understanding the quotient
pA(
∑
i
αixi)−pA(β)∑
i
αixi−β

we see that it can be efficiently computable as a

small
∑∧∑

formula and thus a roABP, and we can then multilinearize this roABP (Theorem 4.2).
Over large fields, we can also convert the quotient to a sum of products of univariate linear forms
using duality (1) and multilinearization.

Proposition 4.7. Let α ∈ Fn, β ∈ F and A := {
∑n
i=1 αixi : x ∈ {0, 1}n} be so that β /∈ A. Then

there is a multilinear polynomial f ∈ F[x] such that

f(x) ∙ (
∑
iαixi − β) ≡ 1 mod x2 − x .

For any |F|, f is computable by a poly(|A|, n)-explicit poly(|A|, n)-width roABP of individual degree
≤ 1.

If |F| ≥ poly(|A|, n), then f is computable as

f(x) =
s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn) ,

where each fi,j ∈ F[xi] has deg fi,j ≤ 1, s ≤ poly(|A|, n), and this expression is poly(|A|, n)-explicit.

Proof: defining f : Define pA(t) ∈ F[t] by pA :=
∏
α∈A(t − α), so that pA(A) = 0 and pA(β) 6= 0.

Express pA(t) in its monomial representation as pA(t) =
∑|A|
k=0 γkt

k. Then observe that

pA(t)− pA(β) =




|A|∑

k=0

γk
tk − βk

t− β



 (t− β)

23

=




|A|∑

k=0

γk

k−1∑

j=0

tjβ(k−1)−j



 (t− β)

=




|A|−1∑

j=0




|A|∑

k=j+1

γkβ
(k−1)−j



 tj



 (t− β) .

Thus, plugging in t←
∑
i αixi, we can define the polynomial g(x) ∈ F[x] by

g(x) :=
pA(

∑
i αixi)− pA(β)
∑
i αixi − β

=
|A|−1∑

j=0




|A|∑

k=j+1

γkβ
(k−1)−j





(
∑

i

αixi

)j

. (1)

Hence,

g(x)(
∑
iαixi − β) = pA(

∑
iαixi)− pA(β) . (2)

For any x ∈ {0, 1}n we have that
∑
i αixi ∈ A. As pA(A) = 0 it follows that pA(

∑
i αixi) = 0 for

all x ∈ {0, 1}n. This implies that pA(
∑
i αixi) ≡ 0 mod x2 − x, yielding

g(x)(
∑
iαixi − β) ≡ −pA(β) mod x2 − x .

As −pA(β) ∈ F \ {0}, we have that

1
−pA(β)

∙ g(x) ∙ (
∑
iαixi − β) ≡ 1 mod x2 − x .

We now simply multilinearize, and thus define the multilinear polynomial f(x) := ml(1
−pA(β) ∙

g(x)). First, we see that this has the desired form, using the interaction of multilinearization and
multiplication (Theorem 3.7).

1 = ml
(

1
−pA(β)

g(x) ∙ (
∑
iαixi − β)

)

= ml
(

ml
(

1
−pA(β)

∙ g(x)
)

ml(
∑
iαixi − β)

)

= ml
(
f ∙ml(

∑
iαixi − β)

)

= ml
(
f ∙ (

∑
iαixi − β)

)

Thus, f ∙ (
∑
iαixi − β) ≡ 1 mod x2 − x as desired.

computing f as a roABP: By Equation 1 we see that g(x) is computable by a poly(|A|, n)-
size

∑∧∑
-formula, and by 2 g(x) and thus 1

−pA(β) ∙ g(x) are computable by poly(|A|, n)-width
roABPs. Noting that roABPs can be efficiently multilinearized (Theorem 4.2) we see that f =
ml(1

−pA(β) ∙ g(x)) can thus be computed by such a roABP also, where the individual degree of this
roABP is at most 1.

computing f via duality: We apply duality (1) to see that over large enough fields there are
univariates gj,`,i where

g(x) =
|A|−1∑

j=0




|A|∑

k=j+1

γkβ
(k−1)−j





(
∑

i

αixi

)j

24

=
|A|−1∑

j=0




|A|∑

k=j+1

γkβ
(k−1)−j




(nj+1)(j+1)∑

`=1

gj,`,1(x1) ∙ ∙ ∙ gj,`,n(xn)

Absorbing the constant
(∑|A|
k=j+1 γkβ

(k−1)−j
)

into these univariates and re-indexing,

=
s∑

i=1

gi,1(x1) ∙ ∙ ∙ gi,n(xn)

for some univariates gi,j , where s ≤ |A|(n|A|+ 1)(|A|+ 1) = poly(|A|, n).
We now obtain f by multilinearizing the above expression, again appealing to multilinearization

(Theorem 3.7).

f = ml
(

1
−pA(β)

g(x)
)

= ml

(
1

−pA(β)

s∑

i=1

gi,1(x1) ∙ ∙ ∙ gi,n(xn)

)

absorbing the constant 1/−pA(β) and renaming,

= ml

(
s∑

i=1

g′i,1(x1) ∙ ∙ ∙ g′i,n(xn)

)

= ml

(
s∑

i=1

ml(g′i,1(x1)) ∙ ∙ ∙ml(g′i,n(xn))

)

defining fi,j(xj) := ml(gi,j(xj)), so that deg fi,j ≤ 1,

= ml

(
s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn)

)

and we can drop the outside ml as this expression is now multilinear,

=
s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn) ,

showing that f is computable as desired.

Note that computing f via duality also implies a roABP for f , but only in large enough fields
|F| ≥ poly(|A|, n). Of course, F must have |F| ≥ |A| at least, but by using the field-independent
conversion of

∑∧∑
to roABP (2) this shows that F need not be any larger than A for the refutation

to be efficient.
The above shows that one can give an “IPS proof” g(x)(

∑
i αixi − β) +

∑
i hi(x)(x

2
i − xi) = 1,

where g is efficiently computable. However, this is not yet an IPS proof as it does not bound the
complexity of the hi. We now extend this to an actual IPS proof by using the above multilineariza-
tion results (Theorem 4.2). Note that while the above result gives a small

∑∧∑
formula g such

that g ∙ (
∑
i αixi− β) ≡ −pA(β) mod x2− x for non-zero scalar −pA(β), this does not translate to

a
∑∧∑

-IPS refutation as
∑∧∑

formulas cannot be multilinearized efficiently (see the discussion
in Subsection 4.2).

25

Corollary 4.8. Let α ∈ Fn, β ∈ F and A := {
∑n
i=1 αixi : x ∈ {0, 1}n} be so that β /∈ A. Then

∑
i αixi − β, x

2 − x has a poly(|A|, n)-explicit poly(|A|, n)-size roABP-IPSLIN refutation in any
variable order.

Proof: We prove the claim for the variable order x1 < ∙ ∙ ∙ < xn, the proof for other orders is
symmetric. By Theorem 4.7 there is a multilinear polynomial f ∈ F[x] such that f(x) ∙ (

∑
i αixi −

β) ≡ 1 mod x2−x and so that f has a poly(|A|, n)-size roABP. Similarly,
∑
i αixi−β is computable

by a poly(n)-size roABP. From Theorem 3.5 it follows that f ∙ (
∑
i αixi − β) is computable by a

poly(|A|, n)-size roABP. Thus, by efficient multilinearization of roABPs (Theorem 4.2) f ∙(
∑
i αixi−

β) = 1 +
∑
i fi(x) ∙ (x

2
i − xi) for fi ∈ F[x] computable by poly(|A|, n)-size roABPs (all in the

variable orders x1 < ∙ ∙ ∙ < xn). The desired roABP-IPSLIN refutation is thus C(x, y, z1, . . . , zn) :=
f(x)y − f1(x)z1 − ∙ ∙ ∙ − fn(x)zn, which has a poly(|A|, n)-size roABP (in any variable order of the
x, y, z respecting x1 < ∙ ∙ ∙ < xn) by appealing to Theorem 3.5 again.

We now turn to refuting the subset-sum axioms by multilinear-formula IPSLIN (which is not
itself a complete proof system, but will suffice here). While one can use the multilinearization
techniques for multilinear-formula-IPS of Subsection 4.3, we directly multilinearize the refutations
we built above using that the subset-sum axiom is linear.

Proposition 4.9. Let α ∈ Fn, β ∈ F and A := {
∑n
i=1 αixi : x ∈ {0, 1}n} be so that β /∈ A.

If |F| ≥ poly(|A|, n), then
∑
i αixi − β, x

2 − x has a poly(|A|, n)-explicit poly(|A|, n)-size depth-3
multilinear-formula-IPSLIN refutation.

Proof: By Theorem 4.7, there is a multilinear polynomial f ∈ F[x] such that f(x)∙(
∑
iαixi − β) ≡ 1

mod x2 − x, and f is explicitly given as as

f(x) =
s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn) ,

where each fi,j ∈ F[xi] has deg fi,j ≤ 1, s ≤ poly(|A|, n).
We now efficiently prove that f(x) ∙ (

∑n
i=1 αixi − β) is equal to its multilinearization (which is

1) modulo the boolean cube. The key step is that for a linear function p(x) = γx+ δ we have that
(γx+ δ)x = (γ + δ)x+ γ(x2 − x) = p(1)x+ (p(1)− p(0))(x2 − x).

Thus,

f(x) ∙ (
∑
iαixi − β)

=

(
s∑

i=1

fi,1(x1) ∙ ∙ ∙ fi,n(xn)

)

∙ (
∑
iαixi − β)

=
s∑

i=1

−βfi,1(x1) ∙ ∙ ∙ fi,n(xn)

+
s∑

i=1

n∑

j=1

αj
∏

k 6=j

fi,k(xk) ∙
(
fi,j(1)xj + (fi,j(1)− fi,j(0))(x2

j − xj)
)

=
s∑

i=1

−βfi,1(x1) ∙ ∙ ∙ fi,n(xn) +
s∑

i=1

n∑

j=1

αj
∏

k 6=j

fi,k(xk) ∙ fi,j(1)xj

+
s∑

i=1

n∑

j=1

αj
∏

k 6=j

fi,k(xk) ∙ (fi,j(1)− fi,j(0)) ∙ (x2
j − xj)

26

absorbing constants and renaming, using j = 0 to incorporate the above term involving β,

=
s∑

i=1

n∑

j=0

n∏

k=1

fi,j,k(xk) +
n∑

j=1

(
s∑

i=1

n∏

k=1

hi,j,k(xk)

)

(x2
j − xj)

where each fi,j,k and hi,j,k are linear univariates. As f(x) ∙ (
∑n
i=1 αixi − β) ≡ 1 mod x2 − x it

follows that
∑
i

∑
j

∏
k fi,j,k(xk) ≡ 1 mod x2 − x, but as each fi,j,k is linear it must actually be

that
∑
i

∑
j

∏
k fi,j,k(xk) = 1, so that,

= 1 +
n∑

j=1

(
s∑

i=1

n∏

k=1

hi,j,k(xk)

)

(x2
j − xj) .

Define C(x, y, z) := f(x)y −
∑n
j=1 hj(x)zj , where hj(x) :=

∑s
i=1

∏n
k=1 hi,j,k(xk). It follows that

C(x, 0, 0) = 0 and that C(x,
∑
i αixi− β, x

2− x) = 1, so that C is a linear-IPS refutation. Further,
as each f, hj is computable as a sum of products of linear univariates, these are depth-3 multilinear
formulas. By distributing the multiplication of the variables y, z1, . . . , zn to the bottom multiplica-
tion gates, we see that C itself has a depth-3 multilinear formula of the desired complexity.

5 Lower Bounds for Linear-IPS via Functional Lower Bounds

In this section we give functional circuit lower bounds for various measures of algebraic complexity,
such as degree, sparsity, roABPs and multilinear formulas. That is, while algebraic complexity
typically treats a polynomial f ∈ F[x1, . . . , xn] as a syntactic object, one can also see that it defines
a function on the boolean cube f̂ : {0, 1}n → F. If this function is particularly complicated then
one would expect that this implies that the polynomial f requires large algebraic circuits. In this
section we obtain such lower bounds, showing that for any polynomial f that agrees with a certain
function on the boolean cube must in fact have large algebraic complexity. We stress that f need
not be multilinear, though for the restricted classes we consider here one can assume that f is
multilinear without increasing its size (see Subsection 4.2 and Subsection 4.3).

We then observe that by deriving such lower bounds for carefully crafted functions f̂ : {0, 1}n →
F one can easily obtain linear-IPS lower bounds for the above circuit classes. That is, suppose
that the function f̂ obeys the functional equation f̂(x) = 1/p(x) for all x ∈ {0, 1}n for a polynomial
p(x) ∈ F[x]. Then consider the system of equations p(x), x2−x, where p(x) is chosen so this system
is unsatisfiable. Any linear-IPS refutation yields an equation g(x) ∙ p(x) +

∑
i hi(x)(x

2
i − xi) = 1,

which implies g(x) = 1/p(x), for all x ∈ {0, 1}n, so that the polynomial g(x) agrees with the function
f̂ on the boolean cube. The functional circuit lower bound then implies that g must have large
complexity.

5.1 Degree of a Polynomial

We begin with a particularly weak form of algebraic complexity, the degree of a polynomial. While
it is trivial to obtain such bounds in some cases (as any polynomial that agrees with the AND
function on the boolean cube {0, 1}n must have degree ≥ n), for our applications to proof complexity
(Subsection 5.3) we will need such degree bounds for functions defined by f̂(x) = 1/p(x) for simple
polynomials p(x).

We show that any multilinear polynomial agreeing with 1/p(x), where p(x) is the subset-sum
axiom

∑
i xi − β, must have the maximal degree n. We note that a degree lower bound of dn/2e

27

was established by Impagliazzo, Pudlák, and Sgall [IPS99]. They actually established this degree
bound 6 when p(x) =

∑
i αixi − β for any α, while we only consider α = 1 here. However, we need

the tight bound of n here as it will be used crucially in the proof of Theorem 5.6.

Proposition 5.1. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}.
Let f ∈ F[x1, . . . , xn] be a multilinear polynomial such that

f(x)

(
∑

i

xi − β

)

= 1 mod x2 − x .

Then deg f = n.

Proof: Clearly deg f ≤ n as f is multilinear, so it remains to show the lower bound.
Begin by observing that as β /∈ {0, . . . , n}, this implies that

∑
i xi − β is never zero on the

boolean cube, so that the above functional equation implies that for x ∈ {0, 1}n the expression

f(x) =
1

∑
i xi − β

,

is well defined.
Now observe that this implies that f is a symmetric polynomial. That is, define the multilinear

polynomial g by symmetrizing f ,

g(x1, . . . , xn) :=
1
n!

∑

σ∈Sn

f(xσ(1), . . . , xσ(n)) ,

where Sn is the symmetric group on n symbols. Then we see that f and g agree on x ∈ {0, 1}n, as

g(x) =
1
n!

∑

σ∈Sn

f(xσ(1), . . . , xσ(n))

=
1
n!

∑

σ∈Sn

1
∑
i xσ(i) − β

=
1
n!

∑

σ∈Sn

1
∑
i xi − β

=
1
n!
∙ n! ∙

1
∑
i xi − β

=
1

∑
i xi − β

= f(x) .

It follows then that g = f as polynomials, since they are multilinear and agree on the boolean cube
(Theorem 3.7). As g is clearly symmetric, so is f . Thus f can be expressed as f =

∑d
k=0 γkSn,k(x),

where d := deg f , Sn,k :=
∑
S⊆([n]

k)
∏
i∈S xi is the k-th elementary symmetric polynomial, and

γk ∈ F are scalars with γd 6= 0.
Now observe that for k < n, we can clearly understand the action of multiplying Sn,k by

∑
i xi − β.

(
∑
i xi − β)Sn,k(x) =

∑

S∈([n]
k)

(
∑
i xi − β)

∏
i∈S xi

=
∑

S∈([n]
k)

(∑
j∈S xj

∏
i∈S xi +

∑
j /∈S xj

∏
i∈S xi − β

∏
i∈S xi

)

6The degree lower bound of Impagliazzo, Pudlák, and Sgall [IPS99] actually holds for the (dynamic) polynomial
calculus proof system, while we only consider the (static) Nullstellensatz proof system here. Note that for polynomial
calculus there is also a matching upper bound of dn/2e for α = 1.

28

=
∑

S∈([n]
k)








∑

|T |=k+1
T⊇S

∏

i∈T

xi + (k − β)
∏

i∈S

xi








mod x2 − x

= (k + 1)Sn,k+1 + (k − β)Sn,k mod x2 − x .

Note that we used that each subset of [n] of size k is contained in n− k subsets of size k + 1, and
every subset of size k + 1 contains k + 1 subsets of size k.

Putting the above together, suppose for contradiction that d < n. Then

1 = f(x)

(
∑

i

xi − β

)

mod x2 − x

=

(
d∑

k=0

γkSn,k

)(
∑

i

xi − β

)

mod x2 − x

=

(
d∑

k=0

γk
(
(k + 1)Sn,k+1 + (k − β)Sn,k

)
)

mod x2 − x

= γd(d+ 1)Sn,d+1 + (degree ≤ d) mod x2 − x

However, as γd 6= 0, d+1 ≤ n (so that d+1 6= 0 in F and Sn,d+1 is multilinear) this is a contradiction
to the uniqueness of representation of multilinear polynomials modulo x2− x. Thus, we must have
d = n.

To paraphrase the above argument, it shows that for multilinear f of deg f < n with ml(f(x) ∙
(
∑
i xi − β)) = 1 it holds that deg ml(f(x) ∙ (

∑
i xi − β)) = deg f + 1. This contradicts the fact

that deg 1 = 0, so that deg f = n. It is tempting to attempt to argue this claim without using that
ml(f(x) ∙(

∑
i xi−β)) = 1 in some way. That is, one could hope to argue that deg(ml(f(x) ∙(

∑
i xi−

β))) = deg f + 1 directly. Unfortunately this is false, as seen by the example ml((x+ y)(x− y)) =
ml(x2 − y2) = x − y. However, one can make this approach work to obtain a degree lower bound
of dn/2e, as shown by Impagliazzo, Pudlák, and Sgall [IPS99].

Putting the above together we obtain that any polynomial agreeing with 1∑
i
xi−β

on the boolean

cube must be of degree ≥ n.

Corollary 5.2. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}. Let
f ∈ F[x1, . . . , xn] be a multilinear polynomial such that

f(x)

(
∑

i

xi − β

)

= 1 mod x2 − x .

Then deg f ≥ n.

In Appendix A we give another, more concrete, proof of the above fact, which exactly computes
the unique multilinear polynomial agreeing with 1∑

i
xi−β

(see Theorem A.1).

5.2 Sparse polynomials

We now use the above functional lower bounds for degree, along with random restrictions, to obtain
functional lower bounds for sparsity. We then apply this to obtain exponential lower bounds for

29

sparse-IPSLIN refutations of the subset-sum axioms. Recall that sparse-IPSLIN is equivalent to
the Nullstellensatz proof system when we measure the size of the proof in terms of the number
of monomials. While we provide the proof here for completeness, we note that this result has
already been obtained by Impagliazzo-Pudlák-Sgall [IPS99], who also gave such a lower bound for
the stronger polynomial calculus proof system.

We first recall the random restrictions lemma. This lemma shows that by randomly setting
half of the variables to zero, sparse polynomials become sums of monomials involving few variables,
which after multilinearization is a low-degree polynomial.

Lemma 5.3. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial. Let ρ : F[x] → F[x] be the homo-
morphism induced by randomly and independently setting each variable xi to 0 with probability 1/2
and leaving xi intact with probability 1/2. Then with probability ≥ 1/2, each monomial in ρ(f(x))
involves ≤ lg s+ 1 variables. Thus, with probability ≥ 1/2, deg ml(ρ(f)) ≤ lg s+ 1.

Proof: Consider a monomial xa involving ≥ t variables. Then the probability that ρ(xa) is non-
zero is at most 2−t. Now consider f(x) =

∑s
j=1 αjx

aj . By a union bound, the probability that any
monomial xaj involving at least t variables survives the random restriction is at most s2−t. For
t = lg s+1 this is at most 1

2 . The claim about the multilinearization of ρ(f(x)) follows by observing
that for a monomial xa involving ≤ lg s+ 1 variables it must be that deg ρ(xa) ≤ lg s+ 1.

We now give our functional lower bound. This follows from taking any refutation of the subset-
sum axiom and applying a random restriction. The subset-sum axiom will be relatively unchanged,
but any sparse polynomial will become (after multilinearization) low-degree, to which our degree
lower bounds (Subsection 5.1) can then be applied.

Proposition 5.4. Let n ≥ 8 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}.
Let f ∈ F[x1, . . . , xn] be a polynomial such that

f(x) =
1

∑
i xi − β

,

for x ∈ {0, 1}n. Then f requires ≥ 2n/4−1 monomials.

Proof: Suppose that f is s-sparse so that f(x) =
∑s
j=1 αjx

aj . Take a random restriction ρ as in
Theorem 5.3, so that with probability at least 1/2 we have that deg ml(ρ(f)) ≤ lg s + 1. By the
Chernoff bound,7 we see that ρ keeps alive at least n/4 variables with probability at least 1−e−2∙1/42∙n,
which is ≥ 1 − e−1 for n ≥ 8. Thus, by a union bound the probability that ρ fails to have either
that deg ml(ρ(f)) ≤ lg s + 1 or that it keeps at least n/4 variables alive is at most 1/2 + e−1 < 1.
Thus a ρ exists obeying both properties.

Thus, the functional equation for f implies that

f(x)

(
∑

i

xi − β

)

= 1 +
∑

i

hi(x)(x
2
i − xi) ,

for some hi ∈ F[x]. Applying the random restriction and multilinearization to both sizes of this
equation, we obtain that

ml(ρ(f)) ∙




∑

ρ(xi) 6=0

xi − β



 ≡ 1 mod {x2
i − xi}ρ(xi) 6=0 .

7For independent [0, 1]-valued random variables X1, . . . ,Xn, Pr
[∑

i
Xi −

∑
i
E[Xi] ≤ −εn

]
≤ e−2ε2n.

30

Thus, by appealing to the degree lower bound for this functional equation (Theorem 5.1) we obtain
that lg s+ 1 ≥ deg ml(ρ(f)) is at least the number of variables which is ≥ n/4, so that s ≥ 2n/4−1 as
desired.

As sparse-IPSLIN refutations of
∑
i xi − β, x

2 − x give rise to functional equations of the above
form we obtain the lower bound for such refutations.

Corollary 5.5. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}.
Then

∑
i xi − β, x

2 − x is unsatisfiable and any sparse-IPSLIN refutation requires size exp(Ω(n)).

5.3 Coefficient Dimension in a Fixed Partition

We now seek to prove functional circuit lower bounds for more powerful models of computation such
as roABPs and multilinear formulas. As recalled in Section 3, the coefficient dimension complexity
measure can give lower bounds for such models. However, by definition it is a syntactic measure
as it speaks about the coefficients of a polynomial. Unfortunately, knowing that a polynomial
f ∈ F[x] agrees with a function f̂ : {0, 1}n → F on the boolean cube {0, 1}n does not in general give
enough information to determine its coefficients. In contrast, the evaluation dimension measure
is concerned with evaluations of a polynomial (which is functional). Obtaining lower bounds for
evaluation dimension, and leveraging the fact that the evaluation dimension lower bounds coefficient
dimension (Theorem 3.6) we can obtain the desired lower bounds for this complexity measure.

We now proceed to the lower bound. It will follow from the degree lower bound for the subset-
sum axiom (Theorem 5.1). That is, this degree bound shows that if f(z)∙(

∑
i zi−β) ≡ 1 mod z2−z

then f must have degree ≥ n. We then replace z ← x ◦ y where ‘◦’ is the Hadamard (entry-wise)
product. We then leverage the degree bound to show that the evaluation dimension, which can be
thought as measure of the “correlation” between x and y is maximal.

Proposition 5.6. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F has that
β ∈ F \ {0, . . . , n}. Let f ∈ F[x1, . . . , xn, y1, . . . , yn] be a polynomial such that

f(x, y) =
1

∑
i xiyi − β

,

for x, y ∈ {0, 1}n. Then dim Coeffx|yf ≥ 2n.

Proof: By lower bounding coefficient dimension by the evaluation dimension over the boolean cube
(Theorem 3.6),

dim Coeffx|yf ≥ dim Evalx|y,{0,1}f

= dim{f(x,1S) : S ⊆ [n]}

≥ dim{ml(f(x,1S)) : S ⊆ [n]} ,

where 1S ∈ {0, 1}n is the indicator vector for a set S, and ml is the multilinearization operator.
Note that we used that ml is linear (Theorem 3.7) and that dimension is non-increasing under
linear maps. Now note that for x ∈ {0, 1}n,

f(x,1S) =
1

∑
i∈S xi − β

,

It follows then ml(f(x,1S)) is a multilinear polynomial only depending on x|S , and by its functional
behavior it follows from Theorem 5.1 that deg ml(f(x,1S)) = |S|. As ml(f(x,1S)) is multilinear

31

it thus follows that the leading monomial of ml(f(x,1S)) is
∏
i∈S xi, which is distinct for each

distinct S. This is also readily seen from the explicit description of ml(f(x,1S)) given by Theo-
rem A.1. Thus, we can lower bound the dimension of this space by the number of leading monomials
(Theorem 3.10),

dim Coeffx|yf ≥ dim{ml(f(x,1S)) : S ⊆ [n]}

≥
∣
∣
∣LM

(
{ml(f(x,1S)) : S ⊆ [n]}

)∣∣
∣

=

∣
∣
∣
∣
∣

{
∏

i∈S

xi : S ⊆ [n]

}∣∣
∣
∣
∣

= 2n .

Note that in the above proof we crucially leveraged that the degree bound of Theorem 5.1 is
exactly n, not just Ω(n). This exact bound allows us to determine the leading monomials of these
polynomials, which seems not to follow from Ω(n) degree lower bounds.

As coefficient dimension lower bounds roABP width (Theorem 3.4) and depth-3 powering for-
mulas can be computed by roABPs in any variable order (2), we obtain as a corollary our functional
lower bound for these models.

Corollary 5.7. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F has that
β ∈ F \ {0, . . . , n}. Let f ∈ F[x1, . . . , xn, y1, . . . , yn] be a polynomial such that

f(x, y) =
1

∑
i xiyi − β

,

for x, y ∈ {0, 1}n. Then f requires width ≥ 2n to be computed as a roABP in any variable order
where x precedes y. In particular, f requires exp(Ω(n))-size as a depth-3 powering formula.

We now conclude with a lower bound for linear-IPS over roABPs in certain variable orders, and
thus also for depth-3 powering formulas.

Corollary 5.8. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}.
Then

∑
i xiyi−β, x

2−x, y2−y is unsatisfiable and any roABP-IPSLIN refutation, where the roABP
reads x before y, requires width ≥ exp(Ω(n)). In particular, any

∑∧∑
-IPSLIN refutation requires

size ≥ exp(Ω(n)).

Proof: That this system is unsatisfiable is clear from construction. Now consider a width-r
roABP C(x, y, z, u, v) which reads x before y, and which is a roABP-IPSLIN refutation. That is,
C(x, y, z, u, v) = f(x, y)∙z+

∑n
i=1 gi(x, y)ui+

∑n
i=1 hi(x, y)vi and C(x, y,

∑
i xiyi−β, x

2−x, y2−y) =
1. In particular, f(x, y) = C(x, y, 1, 0, 0) is computable by a width-r roABP reading x before y
(Theorem 3.5). Thus, f(x, y)∙(

∑
i xiyi−β) ≡ 1 mod x2−x, y2−y so that our functional lower bound

(Theorem 5.7) implies that the width of f (and thus C) must be ≥ 2n. One obtains the conclusion
about depth-3 powering formulas similarly, as these are also closed under partial substitution.

Note that while Theorem 5.7 gives a lower bound for roABP refutations in any variable or-
der where x precedes y, if we allow the roABP to read the variables in the interleaved order
x1, y1, x2, . . . , xn, yn then a simple modification of Theorem 4.8 would show that there is a simple
poly(|A|, n)-size roABP-IPSLIN refutation of

∑
i xiyi−β, x

2−x, y2−y. We thus obtain the following
separation between roABP-IPSLIN and IPSLIN over depth-3 powering formulas.

32

Corollary 5.9. Let α ∈ Fn, β ∈ F and A := {
∑n
i=1 αixiyi : x, y ∈ {0, 1}n} be so that β /∈ A. Then

∑
i αixiyi − β, x

2 − x, y 2 − y has a poly(|A|, n)-explicit poly(|A|, n)-size roABP-IPSLIN refutation
in the variable order x1 < y1 < . . . < xn < yn. On the other hand, any

∑∧∑
-IPSLIN refutation

requires size ≥ exp(Ω(n)).

5.4 Coefficient Dimension in any Variable Partition

The previous section gave functional lower bounds for coefficient dimension, and thus roABP width,
in the x|y variable partition. However, this lower bound fails for other variable orderings. In this
section we extend the lower bound to any variable ordering by using suitable auxiliary variables
to plant the previous lower bound into any partition we desire by suitably evaluating the auxiliary
variables.

We begin by developing some preliminaries for how coefficient dimension works in the presence
of auxiliary indicator variables. That is, consider a polynomial f(x, y, z) where we wish to study
the coefficient dimension of f in the x|y partition. We can view this polynomial as lying in F[z][x, y]
so that its coefficients are polynomials in z and one studies the dimension of the coefficient space
in the field of rational functions F(z). Alternatively one can evaluate z at some point z ← α so
that f(x, y, α) ∈ F[x, y] and study its coefficient dimension over F. The following straightforward
lemma shows the first dimension over F(z) is lower-bounded by the second dimension over F.

Lemma 5.10. Let f ∈ F[x, y, z]. Let fz denote f as a polynomial in F[z][x, y], so that for any
α ∈ F|z| we have that fα ∈ F[x, y]. Then for any such α,

dimF(z) Coeffx|yfz(x, y) ≥ dimF Coeffx|yfα(x, y) .

Proof: By Theorem 3.1 we see that dimF(z) Coeffx|yfz(x, y) is equal to the rank (over F(z)) of the
coefficient matrix Cfz , which has entries in F[z]. Similarly, dimF Coeffx|yfα(x, y) is equal to the
rank (over F) of the coefficient matrix Cfα , which has entries in F. It follows that Cfz |z←α = Cfα .
The claim then follows by noting that for a matrix M(w) ∈ F[w]r×r it holds that rankF(w)M(w) ≥
rankFM(β) for any β ∈ F|w|. This follows as the rank of M(w) is equal to the maximum size of
a minor with a non-vanishing determinant. As such determinants are polynomials in w, they can
only further vanish when w ← β.

Proposition 5.11. Let n ≥ 1 and F be a field with char(F) >
(2n

2

)
. Suppose that β ∈ F has that

β ∈ F \ {0, . . . ,
(2n

2

)
}. Let f ∈ F[x1, . . . , x2n, z1, . . . , z(2n

2)] be a polynomial such that

f(x, z) =
1

∑
i<j zi,jxixj − β

,

for x ∈ {0, 1}2n, z ∈ {0, 1}(
2n
2). Let fz denote f as a polynomial in F[z][x]. Then for any partition

[2n] = S t T with |S| = |T | = n,

dimF(z) Coeff
x|S
∣
∣x|T
fz ≥ 2n .

Proof: As S and T are of the same size, define an arbitrary bijection σ : S → T . Then define the
z-evaluation α ∈ {0, 1}(

n
2) to restrict f to sum over xixj in the matching, so that

αi.j =

{
1 i = σ(j)

0 else
.

33

It follows then that f(x, α) = 1∑
i∈S
xixσ(i)−β

for x ∈ {0, 1}2n, which is, up to renaming, the polyno-

mial studied in the previous section. Thus, by appealing to our lower bound for a fixed partition
(Theorem 5.6) and the relation between the coefficient dimension in fz versus fα (Theorem 5.10),

dimF(z) Coeff
x|S
∣
∣x|T
fz(x|S , x|T) ≥ dimF Coeff

x|S
∣
∣x|T
fα(x|S , x|T)

≥ 2n .

We remark that this lower bound is only exp(Ω(
√
m)) where m = 2n +

(2n
2

)
is the number

of total variables, while one could hope for an exp(Ω(m)) lower bound. One can achieve such a
lower bound by replacing the above auxiliary variable scheme (which corresponds to a complete
graph) with one derived from constant-degree expander graphs. That is because in such graphs
any large partition of the vertices induces a large matching across that partition, where one can
then embed the fixed-partition lower bounds of the previous section (Subsection 5.3). While this
would strengthen our result for functional lower bounds of roABPs, it would not suffice for the
below application to multilinear formulas (Theorem 5.12) as that application requires a full rank
polynomial. Indeed, the lower bound here of 2n is also the trivial upper bound for the coefficient
dimension of any multilinear polynomial, so that the above result is particularly sharp.

We now obtain our desired functional lower bounds for roABPs and multilinear formulas. IT: Note that here
it’s corollary but
in the intro it is
referred to as The-
orems.

Corollary 5.12. Let n ≥ 1 and F be a field with char(F) >
(2n

2

)
. Suppose that β ∈ F has that

β ∈ F \ {0, . . . ,
(2n

2

)
}. Let f ∈ F[x1, . . . , x2n, z1, . . . , z(2n

2)] be a polynomial such that

f(x, z) =
1

∑
i<j zi,jxixj − β

,

for x ∈ {0, 1}2n, z ∈ {0, 1}(
2n
2). Then f requires width ≥ 2n to be computed by a roABP in

any variable order. Also, f requires nΩ(log n)-size to be computed as a multilinear formula. For
d = o(logn/log log n), f requires nΩ((n/logn)1/d/d2)-size multilinear formulas of depth-(2d+ 1).

Proof: roABPs: Suppose that f(x, z) is computable by a width-r roABP in some variable order. By
pushing the z variables into the fraction field, it follows that fz (f as a polynomial in F[z][x]) is also
computable by a width-r roABP over F(z) in the induced variable order on x (Theorem 3.7). By
splitting x in half along its variable order one obtains the lower bound by combining the coefficient
dimension lower bound of Theorem 5.11 with its relation to roABPs (Theorem 3.4).

multilinear formulas: This follows immediately from our coefficient dimension lower bound
(Theorem 5.11) and the Raz [Raz09] and Raz-Yehudayoff [RY09] results (Theorem 3.8).

As before, this immediately yields the desired linear-IPS lower bounds.

Corollary 5.13. Let n ≥ 1 and F be a field with char(F) >
(2n

2

)
. Suppose that β ∈ F has that

β ∈ F \ {0, . . . ,
(2n

2

)
}. Then

∑
i<j zi,jxixj −β, x

2−x, z2− z is unsatisfiable, and any roABP-IPSLIN

refutation (in any variable order) requires exp(Ω(n))-size. Further, any multilinear-formula-IPSLIN′

refutation requires nΩ(log n)-size, and any depth-(2d+ 1) multilinear-formula-IPSLIN′ refutation re-
quires nΩ((n/logn)1/d/d2)-size.

Proof: Clearly the system is unsatisfiable. The roABP-IPSLIN lower bound follows as in Theo-
rem 5.8. For the multilinear-formula result, note that a IPSLIN′-refutation must be linear in those
axioms aside from x2 − x, z 2 − z. Thus, taking the refutation modulo these equations we obtain
f(x, z) ∙ (

∑
i<j zi,jxixj − β) ≡ 1 mod x2 − x, z 2 − z which by the above functional lower bound

implies the desired lower bound for the complexity of f . As the size of f is at most the size of the
refutation (as argued in Theorem 5.8) this gives the claim.

34

6 Lower Bounds for Multiples of Polynomials

In this section we consider the problem of finding explicit polynomials whose non-zero multiples
are all hard. Such polynomials are natural to search for, as intuitively if f is hard to compute than
so should small modifications such as x1f

2 +4f3. This intuition is buttressed by Kaltofen’s [Kal89]
result that if a polynomial has a small algebraic circuit then so do all its factors. The problem
is that this result is only known to hold for general algebraic circuits, or for small depth circuits
(with some additional restrictions ([DSY09,Oli15b])) and not when the polynomial is computed by
a restricted circuit such as roABPs or depth-3 powering formulas.

We will begin by discussing the applications of this problem to the hardness versus randomness
paradigm in algebraic complexity. We then use existing derandomization results to show that
multiples of the determinant are hard for certain restricted classes. However, this method is very
rigidly tied to the determinant. Thus, we also directly study existing lower bound techniques for
restricted models of computation (depth-3 powering formulas, sparse polynomials, and roABPs) and
extend these results to also apply to multiples. We will show the applications of such polynomials
to proof complexity in section Section 7.

6.1 Connections to Hardness versus Randomness and Factoring Circuits

To motivate the problem of finding polynomials with hard multiples, we begin by discussing the
hardness versus randomness approach to derandomizing polynomial identity testing. That is, Ka-
banets and Impagliazzo [KI04] extended the hardness versus randomness paradigm of Nisan and
Wigderson [NW94] to the algebraic setting, showing that sufficiently good algebraic circuit lower
bounds for an explicit polynomial would qualitatively derandomize PIT. While much of the con-
struction is similar (using combinatorial designs, hybrid arguments, etc.) to the approach of Nisan
and Wigderson [NW94] for boolean derandomization, there is a key difference. In the boolean set-
ting, obtaining a hardness versus randomness connection requires converting worst-case hardness
(no small computation can compute the function everywhere) to average-case hardness (no small
computation can compute the function on most inputs). Such a reduction (obtained by Impagli-
azzo and Wigderson [IW97]) can in fact be obtained using certain error-correcting codes based in
multivariate polynomials (as shown by Sudan, Trevisan and Vadhan [STV01]).

Such a worst-case to average-case reduction is also needed in the algebraic setting, but as
multivariate polynomials are one source of this reduction in the boolean regime, it is natural to
expect it to be easier in the algebraic setting. Specifically, the notion of average-case hardness for a
polynomial f(x) used in Kabanets-Impagliazzo [KI04] is that for any g(x, y) satisfying g(x, f(x)) =
0, it must be that g then requires large algebraic circuits (by taking g(x, y) := y− f(x) this implies
f itself requires large circuits). This can be interpreted as average-case hardness because if such a
g existed with a small circuit, then for any value α we have that g(α, y) is a univariate polynomial
that vanishes on f(α). By factoring this univariate (which can be done efficiently), we see that such
g give a small list (of size at most deg g) of possible values for f(α). By picking a random element
from this list, one can correctly compute f(x) with noticeable probability, which by an averaging
argument one can convert to a (non-uniform) deterministic procedure to compute f(x) on most
inputs (over any fixed finite set). While this procedure (involving univariate factorization) is not
an algebraic circuit, the above argument shows that the Kabanets-Impagliazzo [KI04] notion is a
natural form of average case hardness.

To obtain this form of average-case hardness from worst-case hardness, Kabanets and Im-
pagliazzo [KI04] used a result of Kaltofen [Kal89], who showed that (up to pathologies in low-
characteristic fields), factors of small (general) circuits have small circuits. As g(x, f(x)) = 0 iff

35

y − f(x) divides g(x, y), it follows that if g(x, y) has a small circuit then so does y − f(x), and
thus so does f(x). Taking the contrapositive, if f requires large circuits (worst-case hardness) then
any such g(x, y) with g(x, f(x)) = 0 also requires large circuits (average-case hardness). Note that
this says that any worst-case hard polynomial is also average-case hard. In contrast, this is prov-
ably false for boolean functions, where such worst-case to average-case reductions thus necessarily
modify the original function.

Unfortunately, Kaltofen’s [Kal89] factoring algorithm does not preserve structural restrictions
(such as multilinearity, homogeneousness, low-depth, read-once-ness, etc.) of the original circuit, so
that obtaining average-case hardness for restricted classes of circuits requires worst-case hardness
for much stronger classes. While follow-up work has reduced the complexity of the circuits re-
sulting from Kaltofen’s [Kal89] algorithm (Dvir-Shpilka-Yehudayoff [DSY09] and Oliveira [Oli15b]
extended Kaltofen’s [Kal89] to roughly preserve the depth of the original computation) these works
are limited to factoring polynomials of small individual degree and do not seem applicable to other
types of computations such as roABPs. Indeed, it even remains an open question to show any
non-trivial upper bounds on the complexity of the factors of sparse polynomials. In fact, we ac-
tually have non-trivial lower bounds. Specifically, von zur Gathen and Kaltofen [vzGK85] gave
an explicit s-sparse polynomial (over any field) which has a factor with sΩ(log s) monomials, and
Volkovich [Vol15b] gave, for a prime p, an explicit n-variate n-sparse polynomial which in charac-
teristic p has a factor with

(n+p−2
n

)
monomials (an exponential separation for p ≥ poly(n)). .

While showing the equivalence of worst-case and average-case hardness for restricted circuit
classes seems difficult, to derandomize PIT via Kabanets-Impagliazzo [KI04] only requires a single
polynomial which is average case hard. To facilitate obtaining such hard polynomials, we now give
a lemma showing that polynomials with only hard multiples are average case hard.

Lemma 6.1. Let f(x) ∈ F[x] and g(x, y) ∈ F[x, y] both be non-zero. If g(x, f(x)) = 0 then
f(x)|g(x, 0).

Proof: Let g(x, y) =
∑
i gi(x)y

i, so that g(x, 0) = g0(x). That g(x, f(x)) = 0 implies that

0 = g(x, f(x)) =
∑

i

gi(x)(f(x))
i = g0(x) +

∑

i≥1

gi(x)(f(x))
i

so that g0(x) = f(x) ∙
(
−
∑
i≥1 gi(x)(f(x))

i−1
)

as desired.

That is, as the size of computing g(x, 0) is bounded by that of g(x, y) (for most natural measures
of circuit size), we have that if f(x) has only hard multiples then it is also average-case hard in the
sense needed for Kabanets-Impagliazzo [KI04]. However, note that the converse of this lemma is
false, as seen by considering g(x, y) := y − x(x+ 1), so that x|g(x, 0) but g(x, x) 6= 0.

6.2 Lower Bounds for Multiples via PIT

This above discussion shows that obtaining lower bounds for multiples is a weaker condition suf-
ficient for instantiating the hardness versus randomness paradigm. While at first this may seem
no easier than the more general problem of bounding the complexity of factors, we now observe
that one can obtain such polynomials with hard multiples via derandomizing (black-box) PIT,
or equivalently, producing generators with small seed-length. That is, Heintz-Schnorr [HS80] and
Agrawal [Agr05] showed that one can use explicit hitting sets for small circuits to obtain explicit
hard polynomials, and we observe here that the resulting polynomials also have only hard multiples.

Lemma 6.2. Let C ⊆ F[x] be a class of polynomials and let G : F` → Fx be a generator for C.
Suppose 0 6= h ∈ F[x] has h ◦ G = 0. Then for any non-zero g ∈ F[x] we have that g ∙ h /∈ C.

36

Proof: By definition of G, for any f ∈ C, f = 0 iff f ◦ G = 0. Then for any such g, g ∙ h 6= 0 and
(g ∙ h) ◦G = (g ◦ G) ∙ (h ∙ G) = (g ◦ G) ∙ 0 = 0. Thus, we must have that g ∙ h /∈ C.

While one can analogously prove the hitting-set version of this claim, it is a weaker claim. That
is, it is possible to consider classes C of unbounded degree and still have generators with small
seed-length (see Theorem 6.5 below), but for such classes one must have hitting sets with infinite
size (as hitting univariate polynomials of unbounded degree requires an infinite number of points).

Thus the above claim shows that obtaining black-box PIT yields the existence of a polynomial
with hard multiples, which yields average-case hardness, which (for general enough classes) will
allow the Kabanets-Impagliazzo [KI04] reduction to again yield black-box PIT. Thus, we see that
obtaining such polynomials with hard multiples is essentially what is needed for this hardness versus
randomness approach.

While there are now a variety of restricted circuit classes with non-trivial (black-box) PIT
results, it seems challenging to find for any given generator G an explicit non-zero polynomial f
with f ◦G = 0. Indeed, to the best of our knowledge no such examples have ever been furnished for
interesting generators. Aside from the quest for polynomials with hard multiples, this question is
independently interesting as it demonstrates the limits of the generator in question, especially for
generators that are commonly used. There is not even a consensus as to whether the generators
currently constructed could suffice to derandomize PIT for general circuits. Agrawal [Agr05] has
even conjectured that a certain generator for depth-2 circuits (sparse polynomials) would actually
suffice for PIT of constant-depth circuits.

We consider here the generator of Shpilka-Volkovich [SV09]. This generator has a parameter
`, and intuitively can seen as an algebraic analogue of the boolean pseudorandomness notion of a
(randomness efficient) `-wise independent hash function. Just as `-wise independent hash functions
are ubiquitous in boolean pseudorandomness, the Shpilka-Volkovich [SV09] generator has likewise
been used in a number of papers on black-box PIT (for example [SV09, AvMV11, FS13a, FSS14,
Vol15b,For15] is a partial list). As such, we believe it is important to understand the limits of this
generator.

However, `-wise independence is a property of a hash function and likewise the Shpilka-
Volkovich [SV09] generator is really a family of generators that all share a certain property. Specif-
ically, the map G

SV

`,n : Fr → Fn has the property 8 that the image G
SV

`,n(F
r) contains all `-sparse

vectors in Fn. The most straightforward construction of a randomness efficient generator with this
property has that r = 2`, though even in this construction there is freedom to choose the finite set
of points where Lagrange interpolation will be performed. To understand the power of the above
property we are free to construct another generator G

SV′

`,n with this property for which we can find

an explicit f where f ◦ G
SV′

`,n = 0 for small `. We choose a variant of the original construction so
that we can take f as the determinant.

In the original Shpilka-Volkovich [SV09] generator, one first obtains the ` = 1 construction by
using two variables, the control variable y and another variable z. By using Lagrange polynomials to
simulate indicator functions, the value of y can be set to choose between the outputs ze1, . . . , zen ∈
F[z]n, where ei ∈ Fn is the i-th standard basis vector. By varying z one obtains all 1-sparse vectors
in Fn. To obtain G

SV

`,n one can sum ` independent copies of G
SV

1,n. In contrast, our construction will

8The most obvious algebraic analogue of a `-wise independent hash function would require that for a generator
G : Fr → Fn that any subset S ⊆ [n] with |S| ≤ ` the output of G restricted to S is all of FS . This property is implied
by the Shpilka-Volkovich [SV09] property, but is strictly weaker, and is in fact too weak to be useful for PIT. That is,
consider the map (x1, . . . , xn) 7→ (x1, . . . , xn, x1 + ∙ ∙ ∙+xn). This map has this naive “algebraic n-wise independence”
property, but does not even fool linear polynomials (which the Shpilka-Volkovich [SV09] generator would).

37

simply use a different control mechanism, where instead of using univariate polynomials we use
bivariates.

Construction 6.3. Let n, ` ≥ 1. Let F be a field of size > n. Let Ω := {ω1, . . . , ωn} be distinct

elements in F. Define G
SV′

1,n : F3 → Fn×n by

(
G

SV′

1,n(x, y, z)
)

i,j
= z ∙ 1ωi,Ω(x) ∙ 1ωj ,Ω(y) .

where 1ωi,Ω(x) ∈ F[x] is the unique univariate polynomial of degree < n such that

1ωi,Ω(ωj) =

{
1 i = j

0 else
.

Define G
SV′

`,n : F3` → Fn×n by the polynomial map

G
SV′

`,n (x1, y1, z1, . . . , x`, y`, z`) := G
SV′

1,n(x1, y1, z1) + ∙ ∙ ∙+ G
SV′

1,n(x`, y`, z`) ,

working in the ring F[x, y, z].

Note that this map has n2 outputs. Now observe that it is straightforward to see that this map
has the desired property.

Lemma 6.4. Assume the setup of Theorem 6.3. Then the image of the generator, G
SV′

`,n (F3`),
contains all `-sparse vectors in Fn×n.

As this property is all that is used 9 about the Shpilka-Volkovich [SV09] generator, we replace
it with our construction in known black-box PIT results (such as [SV09, ASS13, FS13a, FSS14,
GKST15,For15]), some of which we now state.

Corollary 6.5. Assume the setup of Theorem 6.3. Then G
SV′

O(log s),n is a generator for the following
classes of n-variate polynomials, of arbitrary degree.

• Polynomials of sparsity s ([SV09,GKST15,For15]).

• Polynomials computable as a depth-3 powering formula of size s ([ASS13,FS13a]).

• Polynomials computable as a
∑∧∑∏O(1) formula of size s ([For15]), in characteristic zero.

• Polynomials computable by width-s roABPs in every variable order, also known as commuta-
tive roABPs ([FSS14]).

The above result shows the power of the G
SV′

`,n generator to hit restricted classes of circuits. We
now observe that it is also limited by its inability to hit the determinant.

Proposition 6.6. Assume the setup of Theorem 6.3. The output of G
SV′

`,n is an n×n matrix of rank
≤ `, when viewed as a matrix over the ring F(x, y, z). Thus, taking detn ∈ F[X] to be the n × n

determinant, we have that detn ◦ G
SV′

` = 0 for ` < n.

9Note that for black-box PIT it is important that we use a generator that contains all sparse vectors, instead of
just the set of sparse vectors. As an example, the monomial x1 . . . xn is zero on all k-sparse vectors for k < n, but is
non-zero when evaluated on the Shpilka-Volkovich [SV09] generator for any ` ≥ 1.

38

Proof: ` = 1: For a field K, a (non-zero) matrix M ∈ Kn×n is rank-1 if it can be expressed as
an outer-product, so that (M)i,j = αiβj for α, β ∈ Kn. Taking α, β ∈ F(x, y, z)n defined by

αi := z1ωi,Ω(x) and βj := 1ωj ,Ω(y) we immediately see that G
SV′

1,n(x, y, z) is rank-1.

` > 1: This follows as rank is subadditive, and G
SV′

` is the sum of ` copies of G
SV′

1 .
detn vanishes: This follows as the n× n determinant vanishes on matrices of rank < n.

Note that in the above we could hope to find an f such that f ◦ G
SV′

` = 0 for all ` < n2, but we
are only able to handle ` < n. Given the above result, along with Theorem 6.2, we obtain that the
multiples of the determinant are hard.

Corollary 6.7. Let detn ∈ F[X] denote the n×n determinant. Then any non-zero multiple f ∙detn
of detn, for 0 6= f ∈ F[X], has the following lower bounds.

• f ∙ detn involves exp(Ω(n)) monomials.

• f ∙ detn requires size exp(Ω(n)) to be expressed as a depth-3 powering formula.

• f ∙ detn requires size exp(Ω(n)) to be expressed as a
∑∧∑∏O(1) formula, in characteristic

zero.

• f ∙ detn requires width-exp(Ω(n)) to be computed as a roABP in some variable order.

Proof: By Theorem 6.5, G
SV′

O(log s),n is a generator for the above size-s computations in the above

classes. However, following Theorem 6.2, (f ∙ detn) ◦
(
G

SV′

`,n

)
= 0 for ` < n. Thus, if f ∙ detn (which

is non-zero) is computable in size-s it must be that O(log s) ≥ n, so that s ≥ exp(Ω(n)).

Note that the above results do not directly apply to other polynomials, as we crucially leveraged
that the determinant vanishes on low-rank matrices. However, one can extend some of these results
to (say) the permanent by using VNP-completeness of the permanent, but we do not do so here as
it does not qualitatively change the result.

6.3 Lower Bounds for Multiples via Leading/Trailing Monomials

We now use the theory of leading (and trailing) monomials to obtain explicit polynomials with
hard multiples. We aim at finding as simple polynomials as possible so they will give rise to
simple “axioms” with no small refutations. These results will essentially be immediate corollaries
of previous work.

6.3.1 Depth-3 Powering Formulas

Kayal [Kay08] observed that using the partial derivative method of Nisan and Wigderson [NW96]
one can show that these formulas require exp(Ω(n)) size to compute the monomial x1 ∙ ∙ ∙ xn. Forbes
and Shpilka [FS13a] later observed that this result can be made robust by modifying the hardness
of representation technique of Shpilka and Volkovich [SV09], in that similar lower bounds apply
when the leading monomial involves many variables, as we now quote.

Theorem 3 (Forbes-Shpilka [FS13a]). Let f(x) ∈ F[x] be computed a
∑∧∑

formula of size ≤ s.
Then the leading monomial xa = LM(f) involves |a|0 ≤ lg s variables.

We now note that as the leading monomial is multiplicative (Theorem 3.9) this lower bound
automatically extends to multiples of the monomial.

39

Corollary 6.8. All non-zero multiples of x1 ∙ ∙ ∙ xn require size ≥ 2n to be computed as
∑∧∑

formula.

Proof: Consider any 0 6= g(x) ∈ F[x1, . . . , xn]. Then as the leading monomial is multiplicative
(Theorem 3.9) we have that LM(g ∙x1 ∙ ∙ ∙ xn) = LM(g) ∙x1 ∙ ∙ ∙ xn, so that LM(g ∙x1 ∙ ∙ ∙ xn) involves n
variables. By the robust lower bound (3) this implies g(x) ∙ x1 ∙ ∙ ∙ xn requires size ≥ 2n as a

∑∧∑

formula.

6.3.2
∑∧∑∏O(1) Formulas

Kayal [Kay12] introduced the method of shifted partial derivatives, and Gupta-Kamath-Kayal-
Saptharishi [GKKS14] refined it to give exponential lower bounds for various sub-models of depth-
4 formulas. In particular, it was shown that the monomial x1 ∙ ∙ ∙ xn requires exp(Ω(n))-size to be
computed as a

∑∧∑∏O(1) formula. Applying the hardness of representation approach of Shpilka
and Volkovich [SV09], Mahajan-Rao-Sreenivasaiah [MRS14] showed how to develop a deterministic
black-box PIT algorithm for multilinear polynomials computed by

∑∧∑∏O(1) formulas. Indepen-
dently, Forbes [For15] (following Forbes-Shpilka [FS13a]) showed that this lower bound can again
be made to apply to leading monomials 10 (which implies a deterministic black-box PIT algorithm
for all

∑∧∑∏O(1) formulas, with the same complexity as Mahajan-Rao-Sreenivasaiah [MRS14]).
This leading monomial lower bound, which we now state, is important for its applications to poly-
nomials with hard multiples.

Theorem 4 (Forbes [For15]). Let f(x) ∈ F[x] be computed as a
∑∧∑∏t formula of size ≤ s. If

char(F) ≥ ideg(xa), then the leading monomial xa = LM(f) involves |a|0 ≤ O(t lg s) variables.

As for depth-3 powering formulas (Theorem 6.8), this immediately yields that all multiples (of
degree below the characteristic) of the monomial are hard.

Corollary 6.9. All non-zero multiples of x1 ∙ ∙ ∙ xn of degree < char(F) require size ≥ exp(n/t) to
be computed as

∑∧∑∏t formula.

6.3.3 Sparse Polynomials

While the above approaches for
∑∧∑

and
∑∧∑∏O(1) formulas focus on leading monomials,

one cannot show that the leading monomials of sparse polynomials involve few variables as sparse
polynomials can easily compute the monomial x1 ∙ ∙ ∙ xn. However, following the translation idea
of Agrawal-Saha-Saxena [ASS13], Gurjar-Korwar-Saxena-Thierauf [GKST15] showed that sparse
polynomials under full-support translations have some monomial involving few variables, and
Forbes [For15] (using different techniques) showed that in fact the trailing monomial involving
few variables (translations do not affect the leading monomial, so the switch to trailing monomials
is necessary here).

Theorem 5 (Forbes [For15]). Let f(x) ∈ F[x] be (≤ s)-sparse, and let α ∈ (F \{0})n so that α has
full-support. Then the trailing monomial xa = TM(f(x+ α)) involves |a|0 ≤ lg s variables.

This result thus allows one to construct polynomials whose multiples are all non-sparse.

Corollary 6.10. All non-zero multiples of (x1 + 1) ∙ ∙ ∙ (xn + 1) ∈ F[x] require sparsity ≥ 2n.
Similarly, all non-zero multiples of (x1 + y1) ∙ ∙ ∙ (xn + yn) ∈ F[x, y] require sparsity ≥ 2n.

10The result there is stated for trailing monomials, but the argument equally applies to leading monomials

40

Proof: Define f(x) =
∏n
i=1(xi + 1). For any 0 6= g(x) ∈ F[x] the multiple g(x)f(x) under the

translation x 7→ x − 1 is equal to g(x − 1)
∏
i xi. Then all monomials (in particular the trailing

monomial) involves n variables (as g(x) 6= 0 implies g(x − 1) 6= 0). Thus, by 5 it must be that
g(x)f(x) requires ≥ 2n monomials.

The second part of the claim follows from the first, noting that setting y ← 1 does not increase
sparsity in a multiple g(x, y) ∙

∏
i(xi + yi).

6.4 Lower Bounds for Multiples of Sparse Multilinear Polynomials

While the previous section established that all multiples of (x1 + 1) ∙ ∙ ∙ (xn + 1) are non-sparse,
the argument was somewhat specific to that polynomial and fails to obtain an analogous result for
(x1 + 1) ∙ ∙ ∙ (xn + 1) + 1. Further, while that argument can show for example that all multiples of
the n × n determinant or permanent require sparsity ≥ exp(Ω(n)), this is the best sparsity lower
bound obtainable for these polynomials with this method.11 In particular, one cannot establish
a sparsity lower bound of “n!” for the determinant or permanent (which would be tight) via this
method.

We now give a different argument, due to Oliveira [Oli15a] that establishes a much more general
result showing that multiples of any multilinear polynomial have at least the sparsity of the original
polynomial. While Oliveira [Oli15a] gave a proof using Newton polytopes, we give a more compact
proof here using induction on variables (loosely inspired by a similar result of Volkovich [Vol15a]
on the sparsity of factors of multi-quadratic polynomials).

Proposition 6.11 (Oliveira [Oli15a]). Let f(x) ∈ F[x1, . . . , xn] be a non-zero multilinear polyno-
mial with sparsity exactly s. Then any non-zero multiple of f has sparsity ≥ s.

Proof: By induction on variables.
n = 0: Then f is a constant, so that s = 1 as f 6= 0. All non-zero multiples are non-zero

polynomials so have sparsity ≥ 1.
n ≥ 1: Partition the variables x = (y, z), so that f(y, z) = f1(y)z + f0(y), where fi(y) has

sparsity si and s = s1 + s0. Consider any non-zero g(y, z) =
∑d1
i=d0
gi(y)zi with gd0(y), gd1(y) 6= 0

(possibly d0 = d1). Then

g(y, z)f(y, z) =
(
f1(y)z + f0(y)

)
∙




d1∑

i=d0

gi(y)z
i





= f1(y)gd1(y)zd1+1 +




∑

d0<i≤d1

(
f1(y)gi−1(y) + f0(y)gi(y)

)
zi



+ f0(y)gd0(y)zd0

By partitioning this sum by powers of z and focusing on the extreme points,

| Supp
(
g(y, z)f(y, z)

)
| ≥ | Supp

(
f1(y)gd1(y)

)
|+ | Supp

(
f0(y)gd0(y)

)
|

so that appealing to the induction hypothesis, as f0 and f1 are multilinear polynomials of sparsity
s0 and s1 respectively,

≥ s1 + s0 = s .

11Specifically, as the determinant and permanent are degree n multilinear polynomials, and thus so are their
translations, their monomials always involve ≤ n variables so no sparsity bound better than 2n can be obtained by
using 5.

41

We note that multilinearity is essential in the above lemma, even for univariates. This is seen
by noting that the 2-sparse polynomial xn − 1 is a multiple of xn−1 + ∙ ∙ ∙+ x+ 1.

Thus, the above not only gives a different proof of the non-sparsity of multiples of
∏
i(xi + 1)

(Theorem 6.10), but also establishes that non-zero multiples of
∏
i(xi + 1)− 1 are ≥ 2n − 1 sparse,

and non-zero multiples of the determinant or permanent are n! sparse, which is tight. Note further
that this lower bound proof is “monotone” in that it applies to any polynomial with the same
support, whereas the proof of Theorem 6.10 is seemingly not monotone as seen by contrasting
∏
i(xi + 1) and

∏
i(xi + 1)− 1.

6.5 Lower Bounds for Multiples by Leading/Trailing Diagonals

In the previous sections we obtained polynomials with hard multiples for various circuit classes by
appealing to the fact that lower bounds for these classes can be reduced to studying the number
of variables in leading or trailing monomials. Unfortunately this approach is restricted to circuit
classes where monomials (or translations of monomials) are hard to compute, which in particular
rules out this approach for roABPs. Thus, to develop polynomials with hard multiples for roABPs
we need to develop a different notion of a “leading part” of a polynomial. In this section, we
define such a notion called a leading diagonal, establish its basic properties, and obtain the desired
polynomials with hard multiples. The ideas of this section are a cleaner version the techniques used
in the PIT algorithm of Forbes and Shpilka [FS12] for commutative roABPs.

We begin with the definition.

Definition 6.1. Let f ∈ F[x1, . . . , xn, y1, . . . , yn] be non-zero. The leading diagonal of f , denoted
LD(f), is the leading coefficient of f(x ◦ z, y ◦ z) when this polynomial is considered in the ring
F[x, y][z1, . . . , zn], and where x ◦ z denotes the Hadamard product (x1z1, . . . , xn, zn). The trailing
diagonal of f is defined analogously. The zero polynomial has no leading or trailing diagonal.

As this notion has not explicitly appeared prior in the literature, we now establish several
straightforward properties. The first is that extremal diagonals are homomorphic with respect to
multiplication.

Lemma 6.12. Let f, g ∈ F[x1, . . . , xn, y1, . . . , yn] be non-zero. Then LD(fg) = LD(f) LD(g) and
TD(fg) = TD(f) TD(g).

Proof: As LD(f) = LCx,y|z(f(x◦z, y◦z)), where this leading coefficient is taken in the ring F[x, y][z],
this automatically follows from the fact that leading coefficients are homomorphic with respect to
multiplication (Theorem 3.9). The result for trailing diagonals is symmetric.

We now show how to relate the leading monomials of the coefficient space of f to the respective
monomials associated to the leading diagonal of f .

Proposition 6.13. Let f ∈ F[x1, . . . , xn, y1, . . . , yn]. For any b, if Coeff
x|yb

(LD(f)) 6= 0, then

LM
(
Coeff

x|yb
(LD(f))

)
= LM

(
Coeff

x|yb
(f)
)
.

The respective trailing statement also holds.

Proof: We prove the leading statement, the trailing version is symmetric. Let f =
∑
a,b αa,bx

ay b.
We can then expand f(x ◦ z, y ◦ z) as follows.

f(x ◦ z, y ◦ z) =
∑
c

(∑
a+b=c αa,bx

ayb
)
zc

42

choose c0 so that LCx,y|z(f) = Coeffx,y|zc0 (f), we get that

=
(∑
a+b=c0

αa,bx
ayb
)
zc0 +

∑
c≺c0

(∑
a+b=c αa,bx

ayb
)
zc ,

where LD(f) =
∑
a+b=c0

αa,bx
ay b and

∑
a+b=c αa,bx

ay b = 0 for c � c0. In particular, this means

that for any b we have that αa,b = 0 for a � c0 − b.
Thus we have that

LM
(
Coeff

x|yb
(LD(f))

)
= LM

(
Coeff

x|yb

(∑
a+b=c0

αa,bx
ayb
))

= LM
(
αc0−b,bx

c0−b
)

= xc0−b ,

as we assume this leading monomial exists, which is equivalent here to αc0−b,b 6= 0.
In comparison,

LM
(
Coeff

x|yb
(f)
)

= LM
(
Coeff

x|yb

(∑
a,b αa,bx

ayb
))

= LM
(∑
a αa,bx

a
)

= LM
(∑
a�c0−b

αa,bx
a + αc0−b,bx

c0−b +
∑
a≺c0−b

αa,bx
a
)

as αa,b = 0 for a � c0 − b,

= LM
(
αc0−b,bx

c0−b +
∑
a≺c0−b

αa,bx
a
)

= xc0−b ,

where in the last step we used that αc0−b,b 6= 0. This establishes the desired equality.

We now relate the extremal monomials of the coefficient space of f to the monomials of the
coefficient space of the extremal diagonals of f .

Corollary 6.14. Let f ∈ F[x1, . . . , xn, y1, . . . , yn]. Then

LM(Coeffx|y(f)) ⊇ LM(Coeffx|y(LD(f))) ,

and likewise for trailing monomials.

Proof: This follows as LM(Coeffx|y(LD(f))) is equal to {LM(Coeff
x|yb

(LD(f)))|Coeff
x|yb

(LD(f)) 6=

0}, but by Theorem 6.13 this set equals {LM(Coeff
x|yb

(f))|Coeff
x|yb

(LD(f)) 6= 0}, which is clearly

contained in LM(Coeffx|y(f)).

We now observe that the number of leading monomials of the coefficient space of a leading
diagonal is equal to its sparsity.

Lemma 6.15. Let f ∈ F[x1, . . . , xn, y1, . . . , yn]. For a polynomial g, let |g|0 denotes its sparsity.
Then

|LM(Coeffx|y(LD(f)))| = |LD(f)|0 ,

where the respective statement also holds for trailing monomials.

43

Proof: We prove the claim for the leading diagonal, the trailing statement is symmetric. As above,
let f =

∑
a,b αa,bx

ayb so that LD(f) =
∑
a+b=c0

αa,bx
ayb =

∑
b αc0−b,bx

c0−byb for some c0 ∈ Nn. Then

Coeff
x|yb

(LD(f)) = αc0−b,bx
c0−b. As the monomials xc0−b are linearly independent for distinct b, it

follows that dim Coeffx|y(LD(f)) = |{b|αc0−b,b 6= 0}|, which is equal the sparsity |LD(f)|0.

Finally, we now lower bound the coefficient dimension of a polynomial by the sparsity of its
extremal diagonals.

Corollary 6.16. Let f ∈ F[x1, . . . , xn, y1, . . . , yn]. Then

dim Coeffx|y(f) ≥ |LD(f)|0, |TD(f)|0 ,

where for a polynomial g, |g|0 denotes its sparsity.

Proof: Combining Theorem 6.14 with Theorem 6.15 we get

dim Coeffx|y(f) ≥ dim Coeffx|y(LD(f)) ≥ |LD(f)|0, |TD(f)|0 .

6.6 Lower Bounds for Multiples for Read-Once and Read-Twice ABPs

Having developed the theory of leading diagonals in the previous section, we now turn to using this
theory to obtain explicit polynomials whose non-zero multiples all require large roABPs and read-
twice ABPs. As

∑∧∑
formulas and sparse polynomials have small roABPs, these polynomials

will also have multiples requiring large complexity in these models as well and thus qualitatively
reproving some of the above results in this section. However, we included the previous sections as
the hard polynomials there are simpler (being monomials or translations of monomials), and more
importantly we will need those results for the proofs below.

The proofs will use the characterization of roABPs by their coefficient dimension (Theorem 3.2),
the lower bound for coefficient dimension in terms of the sparsity of the extremal diagonals (The-
orem 6.16), and polynomials whose multiples are all non-sparse (Theorem 6.10).

Proposition 6.17. Let f(x, y) :=
∏n
i=1(xi+yi+αixiyi) ∈ F[x1, . . . , xn, y1, . . . , yn], for any αi ∈ F.

Then for any 0 6= g ∈ F[x, y],
dim Coeffx|y(g ∙ f) ≥ 2n .

In particular, all non-zero multiples of f require width at least 2n to be computed by a roABP in
any variable order where x ≺ y.

Proof: Observe that trailing diagonal of f is insensitive to the αi. That is, TD(xi+yi+αixiyi) = xi+
yi, so by multiplicativity of the trailing diagonal (Theorem 6.12) we have that TD(f) =

∏
i(xi+yi).

Thus, appealing to Theorem 6.16 and Theorem 6.10,

dim Coeffx|y(g ∙ f) ≥ |TD(g ∙ f)|0

= |TD(g) ∙ TD(f)|0

= |TD(g) ∙
∏

i

(xi + yi)|0

≥ 2n .

The claim about roABP width follows from Theorem 3.2.

44

Note that this lower bound works in the “monotone” setting, as we only used the zero/non-zero
pattern of the coefficients.

Corollary 6.18. Let f(x, y) :=
∏n
i=1(xi + yi + xiyi) ∈ F[x1, . . . , xn, y1, . . . , yn]. Then, any roABP

for g ∙ f , for any 0 6= g ∈ F[x, y], has width ≥ 2n.

Proof: The proof follows from combining Theorem 6.17 with Theorem 3.2.

To obtain a lower bound for read-twice ABPs we need the following theorem of Anderson et al.
[AFS+15].

Theorem 6.19 (Theorem 4.3 of [AFS+15]). Let f ∈ F[x1, . . . , xn] be a polynomial computed by
width-w read-k oblivious ABP. Then, there exist three disjoint subsets U t V tW = [n], such that

1. |U |, |V | ≥ n/kO(k),

2. |W | ≤ n/10, and

3. dim EvalxU |xV ,F(f) ≤ w2k, where we compute the dimension over the field F(xW), and by xU
(similarly, xV , xW) we mean the variables in x whose indices belong to U .

Corollary 6.20. Let f(x, z) :=
∏n
i,j=1(zi,j ∙(xi+xj+xixj)+(1−zi,j)) ∈ F[x1, . . . , xn, z1,1, . . . , zn,n].

Then, any read-2 oblivious ABP for g ∙ f , for any 0 6= g ∈ F[x, z], has width ≥ exp(n).

Proof: Consider a read-2 oblivious ABP for g ∙f of width w. Let us think of the variable z as being
part of the field. By Theorem 6.19 (for k = 2) we can partition to variable x to three sets xU , xV
and xW such that when we add xW to the field, dim EvalxU |xV ,F(f) ≤ w2k. To simplify notation
let us assume that |U | ≤ |V | and that U = {1, 3, 5, . . . , 2|U | − 1} and V = {2, 4, 6, . . . , 2|V |}. Then

we can express f as f =
∏|U |
i=1(z2i−1,2i(x2i−1 + x2i + x2i−1 ∙ x2i) + (1− z2i−1,2i)) ∙ f ′. In particular,

f ∙ g =
|U |∏

i=1

(z2i−1,2i(x2i−1 + x2i + x2i−1 ∙ x2i) + (1− z2i−1,2i)) ∙ g
′ ,

for some nonzero g′(x, z). From Theorem 6.17 (or, in fact, a small variation of it) we get that
dim CoeffxU |xV (g ∙ f) ≥ 2|U |. Combining with Theorem 6.18 we get w4 ≥ 2|U |, which implies
w = 2Ω(|U |) = 2Ω(n).

7 IPS Lower Bounds via Lower Bounds for Multiples

In this section we use the lower bounds for multiples of Section 6 to derive lower bounds for C-
IPS proofs for various restricted algebraic circuit classes C. While we consider most of the same
classes for which we proved linear-IPS lower bounds in Section 5, our simulation of IPS by linear-
IPS (Theorem 4.1) does not work for these restricted classes and thus we need further ideas to
obtain IPS lower bounds. Unfortunately, as discussed in the introduction (subsubsection 1.3.3),
this approach will necessarily give lower bounds for C-IPS where the axioms themselves are hard
to compute within C (but may be computable by general algebraic circuits).

45

7.1 IPS Lower Bounds for Depth-3 Powering Formulas

We begin by proving lower bounds for IPS proofs written as depth-3 powering formulas.

Proposition 7.1. Define f, g ∈ F[x1, . . . , xn] by f := x1 ∙ ∙ ∙ xn − 1 and g = x1 + ∙ ∙ ∙+ xn −m, for
m ∈ F. Then for m 6= n, the equations f, g, x2−x are unsatisfiable, and any

∑∧∑
-IPS refutation

must be of size exp(Ω(n)).

Proof: To see that the equations f, g, x2 − x are unsatisfiable note that in order to satisfy f , all
variables must be set to 1. This assignment however does not satisfy g.

We now move to proving the lower bound. By definition, an IPS refutation gives rise to a
computation of the form

1 = C(f, g,B1, . . . , Bn, x)

where C is a
∑∧∑

formula. In particular, C computes a polynomial of the form

C(f, g,B1, . . . , Bn, x) =
s∑

i=1



αi,1 ∙ f + αi,2 ∙ g +
n∑

j=1

βi,jBj +
n∑

t=1

γt ∙ xt





di

,

where the α, β, γ are constants in the field. As g is a linear polynomial and and the Bj are quadratic
we can rewrite C as

C(f, g,B1, . . . , Bn, x) =
s∑

i=1

(αi ∙
n∏

i=1

xi +Qi)
di ,

where Qi are quadratic polynomials. Thus, 1 =
∑s
i=1(αi ∙

∏n
i=1 xi + Qi)di . We now observe that

this implies that there exists some nonzero polynomial h such that

h(x) ∙
n∏

i=1

xi = 1−
s∑

i=1

Qdii . (3)

Indeed, to prove that h is nonzero it is enough to notice that if h was zero then the equality
1 = C(f, g,B1, . . . , Bn, x) would not depend on f and thus replacing it with, say 0, would make
the set of initial polynomials satisfiable, thus contradicting the fact that we have a refutation.

4 implies that the leading monomial of the RHS in (3) contains at most O(log s) many variables.
This implies s = exp(n), which is what we wanted to prove.

7.2 IPS Lower Bounds for roABPs

We now prove lower bounds for roABP-IPS. The argument is similar to the previous section and
is based on Theorem 6.20. Let f = 1 +

∏
i,j(zi,j(xi + xj − xixj) + (1− zi,j)). It is easy to see that

over the boolean cube f is never zero, this is it never satisfiable.

Proposition 7.2. Let f = 1 +
∏
i,j(zi,j(xi + xj − xixj) + (1 − zi,j)). Then, the polynomial set

{f, x2 − x} is not satisfiable, and any roABP-IPS refutation must be of width exp(Ω(n)).

Proof: Let C(x, z, y, v) be a roABP of width w so that C(x, 0, 0) = 0 and C(x, z, f, x2
1−x1, . . . , z

2
n,n−

zn,n) = 1. Let C ′(x, z, v) , C(x, z, 0, v). Clearly C ′ is a roABP, and its width is at most w. It is
also immediate that

C(x, z, y, v) = C ′(x, z, v) + y ∙ C ′′(x, z, v) ,

for some polynomial g(x, z, v). Substituting the boolean axioms to the variables v and f to y we
get

1 = C(x, z, f, x2
1 − x1, . . . , z

2
n,n − zn,n) = C ′(x, z, x2

1 − x1, . . . , z
2
n,n − zn,n) + f ∙ g′ ,

46

for some polynomial g′(x, z). Note that g′ 6= 0 as otherwise we will get a contradiction by setting
all variables to zero using C(x, 0, 0) = 0. By rearranging we get that f ∙ g′ = 1 − C ′(x, z, x2

1 −
x1, . . . , z

2
n,n− zn,n). We now observe that as C ′ is read-once in the variables x, z, what we get after

substituting the boolean axioms to v is a read-2 oblivious ABP in the variables x, z. Corollary 6.20
implies that w = exp(n) as claimed.

8 The Relative Strength of IPS Fragments

Here we further study the relative strength of the IPS fragments considered in previous sections,
comparing them to several related propositional proof systems studied in proof complexity litera-
ture. We have already seen that our fragments of IPS (excluding depth-3 powering formulas IPS)
sit strictly above the Nullstellensatz refutation system (measured by sparsity). Here we show that
our fragments are polynomially simulated by semantic tree-like versions of the Polynomial Calculus
in which proof-lines are written with either roABP or multilinear formulas, respectively, as con-
sidered in [RT08, Tza11]. We further observe that both roABP-IPS and multilinear-formulas-IPS
have exponential speedups over PC, from which we derive new separations between tree-like PC
over multilinear-formulas and roABPs, and PC (measured by sparsity). We discuss the relations
between fragments of IPS to Frege systems, as well as to the non-commutative-IPS proof system
that efficiently simulates Frege.

We start by a brief formal summary of basic notions from propositional proof complexity.

8.1 Basic Concepts in Propositional Proof Complexity

A propositional proof system, sometimes called a Cook-Reckhow proof system following the definition
given in [CR79], is simply a polynomial-time function f from a set of finite strings over some given
alphabet onto the set of propositional tautologies. Thus, f(x) = y means that the string x is
the proof of the tautology y. Note that since f is onto, all tautologies and only tautologies have
proofs (and thus the proof system is complete and sound). The idea behind this definition is that a
purported proof x may be much longer then the tautology y it proves, but given the proof it should
be possible to efficiently check (efficient with respect to the proof length) that the proof is indeed
a correct proof of the tautology.

This definition of a Cook-Reckhow proof system encompasses most standard proof systems for
propositional tautologies, such as resolution and Frege proofs. We can also relax the verification
of propositional proofs to be efficient in probabilistic polynomial-time, namely the proof system f
above is now assumed only to be in BPP. This relaxation is relevant to fragments of IPS, and it
was already considered before in several works in proof complexity (cf. [Pit97,RT08,GP14]).

Considering a BPP verifiable propositional proof system is frequent when dealing with algebraic
proof systems, in which verification of proofs naturally depends on a polynomial identity testing
(PIT) algorithm for arithmetic circuits. For general arithmetic circuits only a BPP (in fact, coRP)
efficient PIT is currently known [Zip79, Sch80]). But for certain restricted circuit classes, such as
roABPs [RS05] (and trivially, ΣΠ formulas) there is a deterministic polynomial time PIT algorithm.

8.1.1 Simulations

For the purpose of comparing the relative complexity of different proof systems we have the concept
of a simulation. Concrete examples of simulation results where given in this work above. Formally,
we say that a propositional proof system P polynomially simulates another propositional proof
system Q if there is a polynomial-time computable function f that maps Q-proofs to P -proofs of

47

the same tautologies (if P and Q use different representations for tautologies, we fix a (polynomial)
translation from one representation to the other). In case f is computable in time t(n) (for n the
input-size), we say that P t(n)-simulates Q. We say that P and Q are polynomially equivalent in
case P polynomially simulates Q and Q polynomially simulates P . If P polynomially simulates Q
but Q does not polynomially simulates P we say that P is strictly stronger than Q (equivalently,
that Q is strictly weaker than P), and we also say that P is separated from Q.

8.2 Relations with Polynomial Calculus

Most propositional proof systems considered in proof complexity are so-called sequential proof
systems, sometimes also termed dynamic proof system to contrast them from “static” ones. In
sequential proof systems, a proof is a sequence of formulas, each derived by a set of finite derivation
rules from previous formulas. Each formula in a proof-sequence is referred to as a proof-line.

The Polynomial Calculus (introduced by Clegg et al. [CEI96]) and its variants, are sequential
proof systems for finite collections of polynomial equations having no 0-1 solutions over a given
field.12

Definition 8.1 (Polynomial Calculus (PC)). Let F be a field and let F = {f1, . . . , fm} be a
collection of multivariate polynomials from F[x1, . . . , xn]. A PC proof from Q of a polynomial g is
a finite sequence π = (p1, ..., p`) of multivariate polynomials from F[x1, . . . , xn], where p` = g and
for every 1 ≤ i ≤ `, either pi = fj for some j ∈ [m], or pi is a Boolean axiom xi ∙ (1− xi) for some
i ∈ [n], or pi was deduced from pj , pk , for j, k < i, by one of the following inference rules:

(i) product rule: from p, derive g ∙ p, for g any polynomial in F[x1, . . . , xn];
(ii) addition rule: from p, derive ap+ bq, for a, b ∈ F.

A PC refutation of F is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable
equation standing for false) from F . The degree of a PC-proof is the maximal degree of a polynomial
in the proof. The size of a PC proof π is the total number of monomials (with nonzero coefficients)
in all the proof-lines, denoted |π|.

We say that a PC proof is a tree-like proof if the underlying proof-structure is a tree, or in
other words, if every proof-line can be used at most once as the premise of an inference rule.

Note: It is important to notice that the product rule for PC we use in Definition 8.1 is slightly
different from the standard product rule [CEI96] which assumes that g is a variable. For PC proofs
in which polynomials are written as sums of monomials or as algebraic formulas, both definitions
are polynomially equivalent to each other (cf. [RT08]); this is because we can polynomially simulate
a product by g, by a straightforward induction on the formula size of g. However, if we consider
tree-like PC proofs, we cannot in general polynomially simulate the rule “from f derive f ∙ g”
using the rule “from f derive xi ∙ f”, since in a tree-like PC proof the latter rule would amount to
multiplying f by all the monomials in g, one by one. Because we are going to consider tree-like
PC proofs, we therefore define PC with the more general rule “from f derive f ∙ g”.

Notice also that the size of PC proofs in Definition 8.1 can be defined equivalently (up to a
factor of n) as the total formula size of all proof-lines, where polynomials are written as sums of
monomials and equivalently as ΣΠ formulas (Definition 1.2). We will consider in what follows PC
proofs in which proof-lines are taken from different algebraic circuit classes.

Clegg et al. [CEI96] proved that every PC proof of the subset sum principle
∑n
i=1 xi = m (for

m > n) over the reals cannot have subexponential size (namely, it must contain exponentially many
monomials). Thus, by Theorem 4.8 and Theorem 4.9:

12Formally, each different field yields a different algebraic proof system.

48

Corollary 8.1. PC (over the reals) does not polynomially simulate neither roABP-IPSLIN nor
multilinear-formulas-IPSLIN.

We leave it open whether either roABP-IPSLIN or multilinear-formulas-IPSLIN polynomially
simulate PC.

8.3 Relations with PC over roABPs

Tzameret [Tza11] considered the strength of polynomial calculus where polynomials are written
as roABPs. This work focused on ordered formulas and defined the system OFPC, standing for
ordered formulas PC. Ordered formulas is the formula class corresponding to roABPs, similar to
the way that non-commutative formulas correspond to non-commutative ABPs. More precisely,
an ordered formula is a non-commutative formula in which every node computes a polynomial
such that the multiplication order of variables in each monomial respects a fixed total order on
the variables (e.g., ascending order x1 < x2 < . . . < xn). Nevertheless, as discussed in [Tza11] all
results in that paper also hold for roABPs.

Definition 8.2 (PC over roABP). PC over roABPs is the semantic version of PC where proof-size
is defined to be the total roABPs size of the polynomials in the proof (for some fixed total order on
variables).

Note that we say that PC over roABP is semantic to mean that a polynomial p in a proof can
be written as any roABP that computes that polynomial. Though the proof system is semantic in
this sense, it still polynomially verifiable (i.e., it is a Cook-Reckhow proof system), because roABPs
have an efficient PIT algorithm (due to [RS05]; see [Tza11] for details).

The following is an easy observation:

Corollary 8.2. Tree-like PC over roABP polynomially simulates roABP-IPSLIN.

Proof: Let P =
∑m
i=1 pi(x) ∙ fi(x) = q(x) be an roABP-IPSLIN proof of the polynomial q from the

initial polynomials f1, . . . , fm ∈ F[x1, . . . , xn]. Our desired tree-like PC over roABPs proof of q
simply adds one by one the products of the initial polynomials fi by pi, using the product and
addition rules of PC.

From Theorem 8.1 we can conclude the following:

Corollary 8.3. Tree-like PC over roABPs has an exponential speed-up over PC (over the reals).

Previously, only a speed-up between (dag-like) PC over roABPs and PC was known [Tza11].

8.4 Relations with Non-Commutative-IPS and Frege

Li et al. [LTW15] studied C-IPS for C the set of non-commutative formulas. They showed that C-
IPS, using non-commutative polynomials over finite fields or the rational numbers, and adding the
commutator xixj − xjxi for any pair of variables as an axiom (for the sake of completeness), poly-
nomially simulates Frege propositional proofs. They also showed that Frege can quasipolynomially
simulate C-IPS over GF (2). Since the class of non-commutative ABPs (Definition 1.5) is at least
as strong as non-commutative formulas, non-commutative-ABP-IPS (Definition 8.3) polynomially
simulates Frege proofs as well.

49

Definition 8.3 (Non-commutative IPS). Let F be a field. Assume that f1(x) = f2(x) = ∙ ∙ ∙ =
fm(x) = 0 is a system of non-commutative polynomial equations from the ring of non-commutative
polynomials denoted F〈x1, . . . , xn〉, and suppose that the following set of equations (axioms) are
included in the fi(x)’s: (i) xi ∙ (1 − xi) , for all 1 ≤ i ≤ n ; (ii) xi ∙ xj − xj ∙ xi , for all
1 ≤ i < j ≤ n . Suppose that the fi(x)’s have no common 0-1 solutions.13 A non-commutative-IPS
refutation that the system of fi(x)’s is unsatisfiable is a non-commutative polynomial F(x, y) in the
variables x1, . . . , xn and y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:

1. F(x1, . . . , xn, 0) = 0

2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

We can assume that non-commutative-IPS refutations are written as a non-commutative-ABPs
(namely, an ABP as in Definition 1.5, in which the order of multiplication along a path in the ABP
corresponds to non-commutative multiplication; note that a non-commutative ABP may not be a
read once ABP, since the multiplication of variables can be done in every possible order). In this
case, the size of a non-commutative IPS refutation is the minimal size of a non-commutative-ABP
computing the non-commutative-IPS refutation.

We have the following:

Corollary 8.4. Non-commutative-ABP-IPS polynomially simulates roABP-IPS (and hence, also
roABP-IPSLIN).

Proof: This is almost immediate from the definitions. We observe that there is no need to use the
commutator axioms xixj − xjxi in roABP-IPS.

Indeed, notice that the polynomial computed by an roABP, considered as a non-commutative-
ABP, is a non-commutative polynomial in which the product in every monomial respects the same
total order on variables. Thus, every roABP-IPS refutation is also a non-commutative ABP-IPS
(since there is no need to use the commutator axioms, as all products are ordered according to the
same fixed total order on variables).

This shows that getting rid of the ‘read-once’ restriction in the roABP-IPSLIN lower bound
(Theorem 7.2) is very close to proving super-polynomial Frege lower bounds.

8.5 Relations with PC over Multilinear Formulas

We recall the concept of multilinear proofs introduced by Raz and Tzameret in [RT08], denoted fMC
(formula multilinear calculus). Essentially, fMC is a semantic variant of PC in which proof-lines
are written as multilinear formulas (instead of by sparse representation). However, to guarantee
that every PC proof-line is indeed a multilinear polynomial one needs to add new formal variables
xi, that will stand for the “negation of xi”. Formally, to make xi equal to the negation of xi we
add the axiom xi + xi − 1, for each (“original”) variable xi (and so xi is 0 iff xi is 1).

Definition 8.4 (PC over multilinear formulas (fMC) [RT08]). Fix a field F and let F :=
{f1, . . . , fm} be a collection of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n]. Call the set
of polynomials consisting of xi + xi − 1 and xi ∙ xi for 1 ≤ i ≤ n , the Boolean axioms of fMC. An
fMC proof from F of a polynomial g is a sequence π = (p1, ..., p`) of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n] , such that p` = g, and for each i ∈ [`], either pi = fj for some j ∈ [m],
or pi is a Boolean axiom of fMC, or pi was deduced by one of the following inference rules using
pj , pk for j, k < i:

13One can check that the fi(x)’s have no common 0-1 solutions in F iff they do not have a common 0-1 solution in
every F-algebra.

50

(i) Product rule: from p deduce q ∙ p , for some polynomial q ∈ F[x1, . . . , xn, x̄1, . . . , x̄n] such that
p ∙ q is multilinear;

(ii) Addition rule: from p, q deduce α ∙ p+ β ∙ q, for some α, β ∈ F.

All the polynomials in an fMC proof are written as multilinear formulas. An fMC refutation
of F is a proof of 1 from F . The size of an fMC proof π is defined as the total sum of all the
formula sizes in π and is denoted by |π|.

Note, once more, that the fMC system is a semantic proof system, namely in every proof-
line computing the multilinear polynomial f we can choose to write any multilinear formula that
computes f .

[RT08] showed that fMC is strictly stronger than PC (as well as PC with resolution, denoted
PCR), and can refute efficiently the pigeonhole principle and the graph Tseitin’s formulas, among
other principles. Here we show that tree-like fMC polynomially simulates multilinear-formula-
IPSLIN (for the language of unsatisfiable systems of low degree polynomials). Since a proof in
multilinear-formulas-IPSLIN may be a sum of polynomials that are not necessarily multilinear we
need to simulate the proof using the negative variable x in fMC.

Theorem 8.5. Let C be the class of multilinear formulas and let F be an unsatisfiable system of
multilinear polynomials of degree at most d. If there is a C-IPSLIN refutation of F with size s,
then there exists a poly(2d, s) tree-like fMC refutation of F . In particular, when d = O(log s) the
tree-like fMC refutation is polynomial in s.

Note that standard polynomial translations of unsatisfiable 3CNFs, as well as the subset-sum
principle (and their extensions) considered in previous sections, are all multilinear and of constant
degree.

Proof: Let P =
∑m
i=1 pi(x) ∙ fi(x) +

∑n
i=1 hi(x) ∙ (x2

i − xi) = 1 be a multilinear-formula-IPSLIN

refutation from the initial polynomials f1, . . . , fm ∈ F[x1, . . . , xn] (for the sake of convenience we
assume the Boolean axioms are not included in the fi’s. We also assume for simplicity that all p′is
are nonzero). We will use the following claim:

Claim 8.6. For every i ∈ [m] and every set I ⊆ [n] with |I| = d, pi =
∑
J⊆I(pJ ∙

∏
j∈J xj), where

each summand in this sum is multilinear and can be computed by a multilinear formula of size at
most poly(2d, s).

Proof of claim. This is proved by “factoring out” from pi all the monomials determined by the
indices in I. This is done by using the (interpolation) formula g(xj) = xj ∙ (g(1) − g(0)) − g(0),
inductively on the size of I.

The tree-like fMC refutation is constructed as follows. Recall that in fMC we have the “negative”
variables xi that equal 1 − xi using the Boolean axioms xi + xi − 1, as well as the other Boolean
axioms xixi. We denote the set of negative variables by x. Recall also the fMC is a semantic proof
system, and so any multilinear polynomial can be written in any desired way.

Let p′i(x) be pi(x) in which every occurrence of the variables x1, . . . , xn is substituted by (1 −
x1), . . . , (1 − xn), respectively (we shall sometimes suppress the explicit mention of the variables
x and x in what follows). We start the proof with p′i ∙ fi, for all i ∈ [m] (note that indeed these
products are multilinear).

Since the degree of the multilinear polynomial fi is at most d, we can write fi as a sum of 2O(d)

monomials. Thus, p′i ∙ fi =
∑
k(p
′
i ∙Mk), where Mk are the monomials in fi.

51

For a monomial M , denote by IM ⊆ [n] the indices of the variables in M . By the claim above
(when we substitute each variable xi by (1 − xi)), for any I ⊆ [n] there exists P ′Js such that
p′i =

∑
J⊆I

∏
j∈J(1− xj) ∙ p

′
J , where each summand is multilinear over the variables x, and can be

computed by a multilinear formula of size at most poly(2d, s). We thus get

p′i(x) ∙ fi(x) =
∑

k

(p′i ∙Mk) =
∑

k

Mk ∙
∑

J⊆IMk

∏

j∈J

(1− xj) ∙ p
′
J (4)

(the p′J ’s depend of course on Mk).
Since fMC is a semantic proof system, we can actually write p′i ∙ fi as the right hand side of (4).

Note that in the right hand side of (4) there may be variables xj in Mk that appear as (1− xj) in
∏
j∈J(1 − xj) (but not in p′J). Using the axioms xi ∙ xi we can derive (for each k that appears in

(4))
ml(Mk ∙

∏

j∈J

xj)−Mk ∙
∏

j∈J

(1− xj) ,

with a tree-like fMC proof of size poly(deg(Mk), d). Thus, using substitutions in
∑
kMk ∙∑

J⊆I
∏
j∈J(1 − xj) ∙ p

′
J in (4) we can derive, with a linear size tree-like fMC proof (linear in

the size of the term in which we substitute),

∑

k

∑

J⊆I

ml
(

Mk ∙
∏

j∈J
xj

)

∙ p′J .

By using the axiom xi + xi − 1 we can substitute in the last term every occurrence of (1 − xi) by
xi in p′J . This also is doable with a tree-like fMC proof of polynomial-size in the formula in which
we substitute. Notice that by construction the variables in Mk ∙

∏
j∈J xj are disjoint from those in

pJ . We thus derive

∑

k

∑

J⊆I

ml
(

Mk ∙
∏

j∈J
xj

)

∙ pJ(x) =
∑

k

∑

J⊆I

ml
(

Mk ∙
∏

j∈J
xj ∙ pJ (x)

)

= ml (pi(x) ∙ fi(x)) .

Since the multilinearization of the Boolean axioms x2
i − xi is 0, we get

ml(P) = ml

(
m∑

i=1

pi(x) ∙ fi(x)

)

+ ml

(
n∑

i=1

hi(x) ∙ (x2
i − xi)

)

= ml

(
m∑

i=1

pi(x) ∙ fi(x)

)

= 1 .

Now, the tree-like fMC refutation of f1(x), . . . , fm(x) will simply add one by one the proof-lines
ml (pi(x) ∙ fi(x)) that we have derived above, until we reach the polynomial 1, concluding the
refutation.

Note that the total size of the tree-like fMC refutation is poly(2d, s), as each proof-line was of
this size-order, and each of the derivations used only poly(2d, s) many proof-lines.

From Theorem 8.1 we conclude:

Corollary 8.7. Tree-like fMC has an exponential speed-up over PC (over the reals).

Previously, an exponential speed-up over PC was known only for (dag-like) fMC.

52

9 Open Problems

Open Problem 9.1. Can the lower bounds on roABP-IPSLIN and multilinear-formulas-IPSLIN

from Theorem 5.13 be extended to (tree-like or dag-like) PC over roABPs or PC over multilinear
formulas fMC, respectively (Section 8)?

Acknowledgments

We would like to thank Rafael Oliviera for telling us of Theorem 6.11, as well as Mrinal Kumar and
Ramprasad Saptharishi for conversations [FKS15] clarifying the roles of functional lower bounds in
this work. We would also like to thank Joshua Grochow for helpful discussions regarding this work.

References
[AFS+15] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Identity

testing and lower bounds for read-k oblivious algebraic branching programs. Electronic Colloquium on
Computational Complexity (ECCC), 22:184, 2015.

[AGKS14] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP and sum
of set-multilinear circuits. arXiv, 1406.7535, 2014.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th Inter-
national Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2005), pages 92–105, 2005.

[AR01] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus: Non-binomial
case. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS
2001), pages 190–199, 2001.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-depth-Δ
formulas. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC 2013),
pages 321–330, 2013. Full version at arXiv:1209.2333.

[AvMV11] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Derandomizing polynomial identity testing
for multilinear constant-read formulae. In Proceedings of the 26th Annual IEEE Conference on Compu-
tational Complexity (CCC 2011), pages 273–282, 2011. Full version in the Electronic Colloquium on
Computational Complexity (ECCC), Technical Report TR10-188.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between degrees
for the polynomial calculus modulo distinct primes. JCSS, 62(2):267–289, 2001. Preliminary version in
the 14th Annual IEEE Conference on Computational Complexity (CCC 1999).

[BIK+96a] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3), 73(1):1–26, 1996.
Preliminary version in the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1994).

[BIK+96b] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov, and Jǐŕı
Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with modular counting.
Computational Complexity, 6(3):256–298, 1996.

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to find
proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC 1996), pages 174–183, 1996.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer, New York, third edition, 2007. An introduction to computational algebraic
geometry and commutative algebra.

[CR74a] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus (pre-
liminary version). In Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC
1974), pages 135–148, 1974. For corrections see Cook-Reckhow [CR74b].

53

http://dx.doi.org/10.1145/800119.803893
http://dx.doi.org/10.1145/800119.803893
http://dx.doi.org/10.1007/978-0-387-35651-8
http://dx.doi.org/10.1145/237814.237860
http://dx.doi.org/10.1145/237814.237860
http://dx.doi.org/10.1007/BF01294258
http://dx.doi.org/10.1112/plms/s3-73.1.1
http://dx.doi.org/10.1112/plms/s3-73.1.1
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1006/jcss.2000.1726
http://eccc.hpi-web.de/report/2010/188/
http://eccc.hpi-web.de/report/2010/188/
http://dx.doi.org/10.1109/CCC.2011.18
http://dx.doi.org/10.1109/CCC.2011.18
http://arxiv.org/abs/1209.2333
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1109/SFCS.2001.959893
http://dx.doi.org/10.1109/SFCS.2001.959893
http://dx.doi.org/10.1007/11590156_6
http://arxiv.org/abs/1406.7535
http://arxiv.org/abs/1406.7535
http://eccc.hpi-web.de/report/2015/184/
http://eccc.hpi-web.de/report/2015/184/

[CR74b] Stephen A. Cook and Robert A. Reckhow. Corrections for “On the lengths of proofs in the propositional
calculus (preliminary version)”. SIGACT News, 6(3):15–22, July 1974.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symb.
Log., 44(1):36–50, 1979. This is a journal-version of Cook-Reckhow [CR74a] and Reckhow [Rec76].

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded depth
arithmetic circuits. SICOMP, 39(4):1279–1293, 2009. Preliminary version in the 40th Annual ACM
Symposium on Theory of Computing (STOC 2008).

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics Magazine, 67(1):59–61,
1994.

[FKS15] Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional lower bounds for arithmetic
circuits and boolean circuit complexity. Manuscript, 2015.

[For14] Michael A. Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching Programs .
PhD thesis, Massachusetts Institute of Technology, June 2014.

[For15] Michael A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015) , 2015.

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and compressed
sensing. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012),
pages 163–172, 2012. Full version at arXiv:1111.0663.

[FS13a] Michael A. Forbes and Amir Shpilka. Explicit Noether Normalization for simultaneous conjugation via
polynomial identity testing. In Proceedings of the 17th International Workshop on Randomization and
Computation (RANDOM 2013), pages 527–542, 2013. Full version at arXiv:1303.0084.

[FS13b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-commutative and
read-once oblivious algebraic branching programs. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2013), pages 243–252, 2013. Full version at arXiv:1209.2408.

[FSG13] Michal A. Forbes, Amir Shpilka, and Ankit Gupta. Personal Communication to Gupta, Kamath, Kayal,
Saptharishi [GKKS13], 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear read-once
algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing (STOC 2014), pages 867–875, 2014. Full version at arXiv:1309.5668.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic circuits. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pages 577–582,
1998.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A chasm
at depth three. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2013), pages 578–587, 2013. Full version in the Electronic Colloquium on Computational
Complexity (ECCC), Technical Report TR13-026.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm at
depth four. JACM, 61(6):33:1–33:16, December 2014. Preliminary version in the 28th Annual IEEE
Conference on Computational Complexity (CCC 2013).

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity testing for
sum of read once ABPs. In Proceedings of the 30th Annual Computational Complexity Conference (CCC
2015), 2015. Full version at arXiv:1411.7341.

[GP14] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial identity
testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2014), pages 110–119, 2014. Full version at arXiv:abs/1404.3820.

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds for depth 3 arithmetic circuits
in algebras of functions over finite fields. Appl. Algebra Eng. Commun. Comput., 10(6):465–487, 2000.
Preliminary version in the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1998).

[Gri98] Dima Grigoriev. Tseitin’s tautologies and lower bounds for Nullstellensatz proofs. In Proceedings of the
39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998) , pages 648–652, 1998.

54

http://dx.doi.org/10.1109/SFCS.1998.743515
http://dx.doi.org/10.1007/s002009900021
http://dx.doi.org/10.1007/s002009900021
http://arxiv.org/abs/abs/1404.3820
http://dx.doi.org/10.1109/FOCS.2014.20
http://dx.doi.org/10.1109/FOCS.2014.20
http://arxiv.org/abs/1411.7341
http://dx.doi.org/10.1145/2629541
http://dx.doi.org/10.1145/2629541
http://eccc.hpi-web.de/report/2013/026/
http://eccc.hpi-web.de/report/2013/026/
http://dx.doi.org/10.1109/FOCS.2013.68
http://dx.doi.org/10.1109/FOCS.2013.68
http://dx.doi.org/10.1145/276698.276872
http://arxiv.org/abs/1309.5668
http://doi.acm.org/10.1145/2591796.2591816
http://doi.acm.org/10.1145/2591796.2591816
http://arxiv.org/abs/1209.2408
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1303.0084
http://dx.doi.org/10.1007/978-3-642-40328-6_37
http://dx.doi.org/10.1007/978-3-642-40328-6_37
http://arxiv.org/abs/1111.0663
http://dx.doi.org/10.1145/2213977.2213995
http://dx.doi.org/10.1145/2213977.2213995
http://hdl.handle.net/1721.1/89843
http://www.jstor.org/stable/2690560
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1145/1008311.1008313
http://dx.doi.org/10.1145/1008311.1008313

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute (extended abstract).
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC 1980), pages 262–
272, 1980.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus and the
gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[IW97] Russell Impagliazzo and Avi Wigderson. P=BPP if E requires exponential circuits: Derandomizing the
XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 1997),
pages 220–229, 1997.

[Kal89] Erich L. Kaltofen. Factorization of polynomials given by straight-line programs. In Silvio Micali, editor,
Randomness and Computation, volume 5 of Advances in Computing Research, pages 375–412. JAI Press,
Inc., Greenwich, CT, USA, 1989.

[Kay08] Neeraj Kayal. Personal Communication to Saxena [Sax08], 2008.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials. Elec-
tronic Colloquium on Computational Complexity (ECCC), 19(81), 2012.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. Preliminary version in the 35th

Annual ACM Symposium on Theory of Computing (STOC 2003).

[Kra95] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory , volume 60 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pages 216–
223, 2001.

[KS15] Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for homogeneous depth-5 circuits
over finite fields. arXiv, 1507.00177, 2015.

[LTW15] Fu Li, Iddo Tzameret, and Zhengyu Wang. Non-commutative formulas and Frege lower bounds: a new
characterization of propositional proofs. In Proceedings of the 30th Computational Complexity Conference
(CCC), June 17-19, 2015, 2015.

[MRS14] Meena Mahajan, B.V. Raghavendra Rao, and Karteek Sreenivasaiah. Building above read-once polyno-
mials: Identity testing and hardness of representation. In cocoon2014, volume 8591 of LNCS, pages 1–12,
2014.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC 1991), pages 410–418, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167, 1994.
Preliminary version in the 29th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1988).

[NW96] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Compu-
tational Complexity, 6(3):217–234, 1996. Preliminary version in the 36th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 1995).

[Oli15a] Rafael Oliveira. Personal Communication, 2015.

[Oli15b] Rafael Oliveira. Factors of low individual degree polynomials. In Proceedings of the 30th Annual Compu-
tational Complexity Conference (CCC 2015), volume 33 of LIPIcs, pages 198–216, 2015.

[OSV15] Rafael Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential size hitting sets for bounded depth
multilinear formulas. In Proceedings of the 30th Annual Computational Complexity Conference (CCC
2015), volume 33 of LIPIcs, pages 304–322, 2015. Full version at arXiv:1411.7492.

[Pit97] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive complexity and finite models
(Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 215–
244. Amer. Math. Soc., Providence, RI, 1997.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. The
Journal of Symbolic Logic, 62(3):981–998, Sept. 1997.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity, 7(4):291–
324, 1998.

55

http://dx.doi.org/10.1007/s000370050013
http://arxiv.org/abs/1411.7492
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.304
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.304
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.198
http://dx.doi.org/10.1007/BF01294256
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/978-3-319-08783-2_1
http://dx.doi.org/10.1007/978-3-319-08783-2_1
http://arxiv.org/abs/1507.00177
http://arxiv.org/abs/1507.00177
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1017/CBO9780511529948
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://eccc.hpi-web.de/report/2012/081
http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.1145/800141.804674

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(6):121–135, 2006.
Preliminary version in the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2004).

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM,
56(2), 2009. Preliminary version in the 36th Annual ACM Symposium on Theory of Computing (STOC
2004).

[Rec76] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, University of
Toronto, 1976.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. Com-
put. Complex., 14(1):1–19, April 2005. Preliminary version in the 19th Annual IEEE Conference on
Computational Complexity (CCC 2004).

[RT08] Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Computational Complexity, 17(3):407–
457, 2008.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Computational
Complexity, 17(4):515–535, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear circuits.
Computational Complexity, 18(2):171–207, 2009. Preliminary version in the 23rd Annual IEEE Conference
on Computational Complexity (CCC 2008).

[Sap12] Ramprasad Saptharishi, 2012. Personal communication to Forbes-Shpilka [FS13b].

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP 2008) , pages 60–71, 2008. Preliminary
version in the Electronic Colloquium on Computational Complexity (ECCC), Technical Report TR07-124.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–
717, October 1980. Preliminary version in the International Symposium on Symbolic and Algebraic
Computation (EUROSAM 1979).

[Shp02] Amir Shpilka. Affine projections of symmetric polynomials. JCSS, 65(4):639–659, 2002. Preliminary
version in the 16th Annual IEEE Conference on Computational Complexity (CCC 2001).

[Str73] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:184–202, 1973.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Syst. Sci., 62(2):236–266, 2001. Preliminary version in the 31st Annual ACM Symposium on
Theory of Computing (STOC 1999).

[SV09] Amir Shpilka and Ilya Volkovich. Improved polynomial identity testing for read-once formulas. In
Proceedings of the 13th International Workshop on Randomization and Computation (RANDOM 2009) ,
volume 5687 of LNCS, pages 700–713, 2009. Full version in the Electronic Colloquium on Computational
Complexity (ECCC), Technical Report TR10-011.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero. Com-
putational Complexity, 10(1):1–27, 2001. Preliminary version in the 14th Annual IEEE Conference on
Computational Complexity (CCC 1999).

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[Tza11] Iddo Tzameret. Algebraic proofs over noncommutative formulas. Information and Computation,
209(10):1269–1292, 2011.

[Vol15a] Ilya Volkovich. Computations beyond exponentiation gates and applications. Electronic Colloquium on
Computational Complexity (ECCC), 22:42, 2015.

[Vol15b] Ilya Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums of univari-
ate polynomials. In Proceedings of the 19th International Workshop on Randomization and Computation
(RANDOM 2015), volume 40 of LIPIcs, pages 943–958, 2015. Preliminary version in the Electronic
Colloquium on Computational Complexity (ECCC), Technical Report TR14-168.

[vzGK85] Joachim von zur Gathen and Erich L. Kaltofen. Factoring sparse multivariate polynomials. JCSS,
31(2):265–287, 1985. Preliminary version in the 24th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 1983).

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation (EUROSAM 1979) , pages 216–226. Springer-Verlag,
1979.

56

http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://eccc.hpi-web.de/report/2014/168/
http://eccc.hpi-web.de/report/2014/168/
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.943
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.943
http://eccc.hpi-web.de/report/2015/042
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1007/PL00001609
http://eccc.hpi-web.de/report/2010/011/
http://eccc.hpi-web.de/report/2010/011/
http://dx.doi.org/10.1007/978-3-642-03685-9_52
http://dx.doi.org/10.1006/jcss.2000.1730
http://dx.doi.org/10.1515/crll.1973.264.184
http://dx.doi.org/10.1016/S0022-0000(02)00021-1
http://dx.doi.org/10.1145/322217.322225
http://eccc.hpi-web.de/report/2007/124/
http://dx.doi.org/10.1007/978-3-540-70575-8_6
http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/s00037-008-0254-0
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1145/1502793.1502797
http://dx.doi.org/10.4086/toc.2006.v002a006

A Explicit Multilinear Polynomial Satisfying a Functional Equa-
tion

In Subsection 5.1 we showed that any polynomial that agrees with function x 7→ 1/(
∑
i
xi−β) on the

boolean cube must have degree ≥ n. However, as there is a unique multilinear polynomial obeying
this functional equation it is natural to ask for an explicit description of this polynomial, which we
now give.

Proposition A.1. Let n ≥ 1 and F be a field with char(F) > n. Suppose that β ∈ F \ {0, . . . , n}.
Let f ∈ F[x1, . . . , xn] be the unique multilinear polynomial such that

f(x) =
1

∑
i xi − β

,

for x ∈ {0, 1}n. Then

f(x) = −
∑

S⊆[n]

(|S|)!
∏|S|
k=0(β − k)

∏

i∈S

xi .

Proof: It follows from the uniqueness of the evaluations of multilinear polynomials over the boolean
cube that

f(x) =
∑

T⊆[n]

f(1T)
∏

i∈T

xi
∏

i/∈T

(1− xi)

where 1T ∈ {0, 1}n is the indicator vector of the set T , so that

=
∑

T⊆[n]

1
|T | − β

∏

i∈T

xi
∏

i/∈T

(1− xi) .

Using this, let us determine the coefficient of
∏
i∈S xi in f(x), for S ⊆ [n] with |S| = m. First

observe that setting xi = 0 for i /∈ S preserves this coefficient, so that

Coeff∏
i∈S
xi

(
f(x)

)
= Coeff∏

i∈S
xi

(
f(x|S , 0)

)

= Coeff∏
i∈S
xi




∑

T⊆[n]

1
|T | − β

∏

i∈T

xi
∏

i/∈T

(1− xi)





∣
∣
∣
∣
∣
∣
xi←0,i∈S

and thus those sets T with T 6⊆ S are zeroed out,

= Coeff∏
i∈S
xi




∑

T⊆S

1
|T | − β

∏

i∈T

xi
∏

i∈S\T

(1− xi)





=
∑

T⊆S

1
|T | − β

Coeff∏
i∈S
xi




∏

i∈T

xi
∏

i∈S\T

(1− xi)





=
∑

T⊆S

1
|T | − β

(−1)m−|T |

=
m∑

k=0

(
m

k

)
1
k − β

(−1)m−k

57

= −
m!

∏m
k=0(β − k)

= −
(|S|)!

∏|S|
k=0(β − k)

,

where the last step uses the below subclaim.

Sub claim A.2.
m∑

k=0

(
m

k

)
1
k − β

(−1)m−k = −
m!

∏m
k=0(β − k)

.

Sub-Proof: Clearing denominators,

m∏

j=0

(j − β) ∙
m∑

k=0

(
m

k

)
1
k − β

(−1)m−k =
m∑

k=0

(
m

k

)

(−1)m−k
∏

j 6=k

(j − β)

Note that the right hand side is a degree < m polynomial in β, so it is determined by its value on
` ∈ {0, . . . ,m}. Note that on these values,

m∑

k=0

(
m

k

)

(−1)m−k
∏

j 6=k

(j − `) =

(
m

`

)

(−1)m−`
∏

0≤j<`

(j − `) ∙
∏

`<j≤m

(j − `)

=

(
m

`

)

(−1)m−` ∙ (−1)``! ∙ (m− `)!

= (−1)mm! .

Thus
∑m
k=0

(m
k

)
(−1)m−k

∏
j 6=k(j − β) = (−1)mm! for all β, and thus dividing by

∏m
k=0(k − β) and

clearing −1’s yields the claim. �

This then gives the claim.

58

	Contents
	Introduction
	Algebraic Proof Systems
	Algebraic Circuit Classes
	Low Depth Classes
	Oblivious Algebraic Branching Programs
	Multilinear Formulas

	Our Results and Techniques
	Upper Bounds for Proofs within Subclasses of IPS
	Linear-IPS Lower Bounds via Functional Lower Bounds
	Lower Bounds for Multiples

	Organization

	Notation
	Algebraic Complexity Theory Background
	Polynomial Identity Testing
	Coefficient Dimension and roABPs
	Evaluation Dimension
	Multilinear Polynomials and Multilinear Formulas
	Depth-3 Powering Formulas
	Monomial Orders

	Upper Bounds for Linear-IPS
	Simulating IPS Proofs with Linear-IPS
	Multilinearizing roABP-IPS-LIN
	Multilinear-Formula-IPS
	Refutations of the Subset-Sum Axiom

	Lower Bounds for Linear-IPS via Functional Lower Bounds
	Degree of a Polynomial
	Sparse polynomials
	Coefficient Dimension in a Fixed Partition
	Coefficient Dimension in any Variable Partition

	Lower Bounds for Multiples of Polynomials
	Connections to Hardness versus Randomness and Factoring Circuits
	Lower Bounds for Multiples via PIT
	Lower Bounds for Multiples via Leading/Trailing Monomials
	Depth-3 Powering Formulas
	Sums of Powers of Low-Degree Polynomials
	Sparse Polynomials

	Lower Bounds for Multiples of Sparse Multilinear Polynomials
	Lower Bounds for Multiples by Leading/Trailing Diagonals
	Lower Bounds for Multiples for Read-Once and Read-Twice ABPs

	IPS Lower Bounds via Lower Bounds for Multiples
	IPS Lower Bounds for Depth-3 Powering Formulas
	IPS Lower Bounds for roABPs

	The Relative Strength of IPS Fragments
	Basic Concepts in Propositional Proof Complexity
	Simulations

	Relations with Polynomial Calculus
	Relations with PC over roABPs
	Relations with Non-Commutative-IPS and Frege
	Relations with PC over Multilinear Formulas

	Open Problems
	References
	Explicit Multilinear Polynomial Satisfying a Functional Equation

