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AbstractIf A is a �nite subset of a free group with at least two non-commuting elements then jA � A � Aj � jAj2(log jAj)O(1) . More generally,the same conclusion holds in an arbitrary virtually free group, unlessA generates a virtually cyclic subgroup.The central part of the proof of this result is carried on by es-timating the number of collisions in multiple products A1 � : : : � Ak.We include a few simple observations showing that in this \statisti-cal" context the analogue of the fundamental Pl�unnecke-Ruzsa theorylooks particularly simple and appealing.
1. Introduction
Let G be a group, and A be its �nite subset. Assume that for some �xedk � 2, jA � A � : : : � A| {z }k times j (where the product set A � A � : : : � A| {z }k times is de�ned as
fb 2 G j (9a1; : : : ; ak 2 A)(b = a1a2 : : : ak)g) is much smaller than jAjk. Whatcan be said about the internal structure of A?Questions of this (and similar) sort are known in arithmetic combinatoricsas inverse problems (most of the material brie
y surveyed in this section canbe found in comprehensive monographs [13, 16]). Originally they were stud-ied for G = Z (the case G = Zn is easily seen to be \essentially equivalent" tothis one). And one of the deepest and hardest results in the area is Freiman's
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theorem [21] that provides a complete characterization of sets A � Z withjA+ A+ : : :+ Aj � O(jAj).For many applications, however, it is highly desirable to be able to in-fer at least something intelligent about the structure of A from the weakerassumption jA+ A+ : : :+ A| {z }k times j � jAj1+o(1): (1)
And for the case of abelian groups this is a widely open problem (perhaps,
the central problem in the whole area). This state of the art is particularlyembarrassing given the amount of useful information one can extract from(1) with the help of powerful Pl�unnecke-Ruzsa theory. As one of the mostcited corollaries, let us just mention that the conditions (1) are equivalentfor all (�xed) k � 2, and, moreover, this equivalence still holds if some plusesare replaced by minuses. Further, (1) follows from jA + Bj � jAjo(1)jBj foran arbitrary set B with jBj � jAj. Unfortunately, these powerful conclusionstell us very little about the internal structure of A.Somewhat surprisingly, inverse problems have turned out to be simpler formore complicated algebraic structures. For example, sum-product estimatesin commutative rings by Bourgain, Katz and Tao [3] do give strong inverseresults in the range (1) if we append the analogous restriction jA �A � : : : �Aj �jAj1+o(1) for product sets.In this paper we are interested in another class of algebraic structuresthat has recently sparkled a considerable attention, the class of non-abeliangroups [7, 15, 4]. One of the reasons for this interest lies in the motivationsof the pioneering paper by Helfgott [7] that linked this kind of questions toestimating the diameter of Cayley graphs in certain �nite groups, and, viathis, to di�cult open problems about explicit constructions of expanders.But before reviewing these latest developments, it is worth mentioning thatfor groups equipped with a length function very similar problems were stud-ied long before, in quite a di�erent context and in a di�erent community.Speci�cally, Rapid Decay Property [6, 8] implies that any set A satisfying(1) (or, in fact, the weaker assumption jA � Aj � A2�
(1)) can not be posi-tioned within a small ball, and must necessarily contain elements of lengthjAj
(1). Among others, this property is known for free groups [6], groups ofpolynomial growth and hyperbolic groups [8].An easy example shows that the Pl�unnecke-Ruzsa theory does not literallytransfer to the non-abelian case: jA�Aj can be small, whereas already jA�A�Aj
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is large. Tao [15] and Helfgott [7], however, proved that this theory catchesup already at the next level: say, the statements (1) become equivalent fork = 3; 4; : : : For this reason in the non-abelian case it does make sense toconcentrate on the study of sets A with small tripling (that is, k = 3),as opposed to sets with small doubling in the abelian case. And Helfgott[7] indeed proved a strong inverse result for tripling in the range (1) whenG = SL2(Zp). Chang [4] proved a similar theorem forG = SL2(C), and madea very substantial step toward obtaining an analogous result for G = SL3(Z).Chang's former result (for SL2(C)) looks in fact rather intriguing since itexhibits the following \threshold behaviour". There exists a �xed constant� > 0 such that the structural conclusion she gets from jA �A �Aj � jAj1+� is
exactly the same as the conclusion one gets from much stronger bound (1):A generates a virtually abelian sub-group (this reduces the inverse problemfor SL2(C) to the same problem for abelian groups { the best we can hopefor without actually solving the latter!) This is very unusual for arithmeticcombinatorics where the conclusion usually depends on things like jA �Aj orjA � A � Aj numerically and smoothly. Chang also remarked that the sameconclusion holds (via any known embedding of Fm into SL2(C)) for freegroups Fm,1 asked for a purely combinatorial proof of this fact and for anyestimates of the threshold constant �.

The main result of our paper provides an answer to her question, and weshow that in fact � = 1 (which is clearly optimal). More precisely, we provethe following:
Main Theorem. Let A be a �nite subset of a free group Fm with at least

two non-commuting elements. Then

jA � A � Aj � jAj2(log jAj)O(1) :
More generally, the same conclusion holds for any �nite subset A of anarbitrary �xed virtually free group, unless the subgroup generated by A isvirtually cyclic. In particular, this is true for the modular group PSL2(Z),as well as for SL2(Z) and GL2(Z), and this makes an improvement over [4,Theorem 5.1] (the latter gave the bound jA �A �Aj � jAj1+� for SL2(Z) andfor an unspeci�ed constant � > 0.)

1Breuillard (personal communication) observed that this can be derived already from
the work of Helfgott [7]
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Our proof is heavily based on the machinery of combinatorial group the-ory, and, more speci�cally, its part known as the theory of (highly) periodicwords. It is worth noting that this theory lies in the heart of two of thedeepest (and extremally involved technically) achievements in that area: thework on Burnside problem [17], and the work on equations in free groups[11, 18, 19, 20] that has recently culminated in independent solutions ofTarski's problem given by Kharlampovich-Miasnikov [9, 10] and Sela [14].
Instead of lower bounds on the cardinalities of sum/product sets, it is of-ten more convenient to go after upper bounds on the dual quantities2 de�nedlike

c(A;B) def= ���n(a; b; a0; b0) 2 (A�B)2 j ab = a0b0o��� :
These collision numbers are related to the cardinalities of sum/product setsvia a simple Cauchy-Schwartz by

jA �Bj � jAj2jBj2
c(A;B) ;

but display much more analytical (and in many cases more convenient) be-haviour than jA �Bj. The Balog-Szemer�edi-Gowers theorem shows how to goin the opposite direction (from large c(A;B) to large subsets A0 � A; B0 � Bwith small jA0 �B0j) without losing too much. But we would also like to notethat one of the most striking recent applications of arithmetic combinatorics[1, 2] actually needs upper bounds on collision numbers/probabilities ratherthan lower bounds on the size of sum/product sets.The most crucial part of our argument (contained in Section 5) also worksentirely in this framework (that we, following [1] once more, will call statisti-
cal) and essentially utilizes all its versatility. This has motivated us to wonderhow far we can get in the world in which all quantities like jA1 �A2 �: : :�Akj are
systematically replaced by their statistical counterparts c(A1; : : : ; Ak). Wecontribute to this a few simple remarks showing that the statistical versionof Pl�unnecke-Ruzsa theory looks particularly simple and appealing, withoutever mentioning cardinalities jA1 �A2 � : : : �Akj, Menger's theorem or Ruzsa'scovering lemma inherent to its \classical" versions.

2Accordingly, they appeared in the literature under many di�erent names, e.g. quadru-
ples [5] or additive energy [15, 16]. In order to stress our purely combinatorial treatment,
we prefer to follow the lead of [1] and call them collision numbers or, after appropriate
normalization, collision probabilities.
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These remarks are given in the concluding Section 6, and all the precedingpart of the paper is entirely devoted to the proof of Main Theorem. In Section2 we give the necessary background, mostly from combinatorial group theory.In Section 3 we get rid of cancellations, and also show that when lowerbounding jA � B � Cj in a free semi-group, we can assume w.l.o.g. that A isa pre�x chain, and C is a su�x chain. In Section 4 we further reduce ourproblem to the case when the triple (A;B;C) has \enough aperiodicity" init. And then in Section 5 comes the central part of our proof: we upperbound the collision numbers c(A;B;C), ruling out the only unpleasant casewith the help of \aperiodicity constraints" enforced in the previous Section4.
2. Background
All the material in this section related to the combinatorial group theory canbe found e.g. in [12, 17].We let [n] def= f1; 2; : : : ; ng.Let Fm be the free group with the basis fx1; : : : ; xmg. A word w inthe alphabet fx1; x�11 ; : : : ; xm; x�1m g is reduced if for any i 2 [m], xi and x�1inever appear in w as adjacent letters. The elements of Fm are in one-to-onecorrespondence with the set of reduced words, and we will always representthem in this form. The unit element is the empty word, denoted by �. jwjis the length of the word w.The notation P stands for graphical (or letter-for-letter) equality: foru1; : : : ; ur; v1; : : : ; vs 2 Fm, u1u2 : : : ur P v1v2 : : : vs by de�nition means thatu1u2 : : : ur = v1v2 : : : vs in Fm and both words u1u2 : : : ur; v1v2 : : : vs are re-duced. In the opposite direction, u = vw in Fm if and only if there exist(uniquely de�ned) v0; c; w0 2 Fm such that v P v0c; w P c�1w0 and u P v0w0.In this case we say that the word c is the cancellation (or gets canceled) inthe product vw. If c = v [c = w�1], then we say that v [w, respectively] gets
completely canceled in this product. And if c = �, then we say that there is
no cancellation in vw, or that vw is reduced.A word v is a subword of u, denoted v � u, if there exist words L;R suchthat u P LvR. Any such representation is called an occurrence of v into u,and L;R are called wings of this occurrence. If L = � [R = �] then we saythat u begins with v, or that v is a pre�x of u [u ends with v/v is a su�x ofu, respectively]. A pre�x or a su�x v of u is proper if v 6= u. We let a � b
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denote that a is a pre�x of b. This is a partial ordering on the set of allreduced words called the pre�x order. Let a �� b be the dual su�x order.A reduced word w is cyclically reduced if w2 (and, hence, also all higherpowers ws) is reduced. Two cyclically reduced words u; v are cyclic shifts ofeach other, denoted u � v, if for some w1; w2 we have
u P w1w2; v P w2w1: (2)

u � v if and only if cyclically reduced words u; v are conjugated (in theordinary sense) in Fm, and � is an equivalence relation on the set of cyclicallyreduced words. A cyclic word is an equivalence class of this relation. Thatis, a cyclic word is a cyclically reduced word considered up to cyclic shifts.Cyclic words are in one-to-one correspondence with conjugacy classes of Fm.u � v implies juj = jvj, therefore the length of a cyclic word is well-de�ned.A cyclically reduced word w is simple if it can not be represented in theform w P vs; s > 1 (thus, simple words are non-empty). Simple (cyclicallyreduced) words will be also called periods3 and denoted by capital lettersP;Q. If P � u and P is a period, then u is a period, too. Di�erent cyclicshifts of a period are also di�erent as words. That is, if in (2) u (and, hence,also v) is a period and both w1; w2 are non-empty, then u 6= v. Cyclic wordsconsisting of periods will be called cyclic periods and denoted by the letters
p; q. Thus, cyclic periods are periods considered up to cyclic shifts. It isworth noting that if we further identify p with p�1, then these will be inone-to-one correspondence with maximal cyclic subgroups of Fm consideredup to conjugacy.Let P be a period. A reduced word u is P -periodic if u � P s for somes > 0 and juj � 2jP j. We denote by Per(P ) the set of all P -periodic words.u is periodic if it is P -periodic for some period P and aperiodic otherwise.Clearly, u is P -periodic if and only if it is representable in the form QsQ0,where Q � P; s � 2 and Q0 is a proper pre�x of Q (and we will see soon thatsuch a representation is unique). In particular, if P � Q and u is P -periodicthen it is also Q-periodic. Therefore, for every cyclic period p we have thewell-de�ned notion Per(p) of p-periodic words.

In order to go any further, we need the following simple but very funda-mental Overlapping Lemmas (see e.g. [17, Section 1.2]).
3This is a slight deviation from the notation of [17] where periods are not required to

be simple.
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Lemma 2.1 (First Overlapping Lemma) Let P;Q be two periods, andu; v; w be reduced words such that

uv P P 0P s; vw P QtQ0; (3)
where s; t � 0, P 0 is a proper su�x of P and Q0 is a proper pre�x of Q.
Assume further that jvj � jP j+ jQj:
Then P � Q. Moreover, the two representations (3) are compatible in
phase in the following sense: if v P P 00P s0, where P 00 is a (possibly another)
su�x of P , P P P (3)P 00, then Q P P 00P (3).

Applying Lemma 2.1 in the case when the wings u;w are empty, we �ndthat Per(p) \ Per(q) = ; for any two di�erent cyclic periods p; q.4 The left
period of u 2 Per(p) is de�ned as that particular P 2 p for which u PP sP 0 (s � 2), and right periods are de�ned symmetrically. Then the secondpart of Lemma 2.1 implies that left and right periods of periodic words are
uniquely de�ned. Also, if we know left and right periods of u 2 Per(p),and also know juj within additive error C � jpj, then u itself is completelydetermined up to (2C+1) possibilities (this simple remark will play a crucialrole in Section 5).Finally, let u P LvR be an occurrence of a p-periodic word v into a(reduced) word u. Let us choose any maximal occurrence u P L0v̂R0 of a
p-periodic word subsuming this one (that is, L0 is a pre�x of L, and R0 is asu�x of R). Then Lemma 2.1 again implies that this occurrence is uniquelyde�ned, and we call it the maximal p-periodic extension of the occurrenceu P LvR. Equivalently, the length of the common part of any two di�erentmaximal occurrences of p-periodic words into the same word is less than 2jpj(otherwise they could have been combined into one larger occurrence of a
p-periodic word by Lemma 2.1).

First Overlapping Lemma basically says that occurrences of su�cientlyperiodic words can not overlap \accidentally", and this is what one needsfor the problems where the periodical structure is given to us a priori (whichis the case e.g. for the Burnside problem). On the contrary, the SecondOverlapping Lemma tells us how to extract such structure from any two oc-currences of an arbitrary word, provided they are close enough. This lemma
4Note that jvj � 2jP j and jvj � 2jQj imply jvj � jP j+ jQj.
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lies in the heart of the research on equations in free groups cited in Introduc-tion.
Lemma 2.2 (Second Overlapping Lemma) Let u P LvR; u P L0vR0
be two di�erent occurrences of the same word v into u. Assume that

jjL0j � jLjj � 13 jvj:
Then v 2 Per(p) for some cyclic period p and, moreover, these two occur-
rences of v into u have the same maximal p-periodic extension.

If G is a group and A1; : : : ; Ak � G then
A1 � : : : � Ak def= fb 2 G j (9(a1; : : : ; ak) 2 A1 � : : :� Ak)(b = a1a2 : : : ak)g :
Throughout the paper we use the asymptotic notation O;
; eO; e
 quitecustomary in Combinatorics and Theoretical Computer Science. Thus5,f � O(g) [f � 
(g)] means \there exists an absolute constant C >0 [� > 0] such that f � Cg [f � C�, respectively] for all possi-ble values of parameters assumed in f; g explicitly or implicitly". Its\soft" version f � eO(g) and f � e
(g) can be used when all param-eters n1; : : : ; nt to f; g are integer and given explicitly (or, at least, areclear from the context). f(n1; : : : ; nt) � eO(g(n1; : : : ; nt)) [f(n1; : : : ; nt) �e
(g(n1; : : : ; nt))] means that there exist absolute constants C; k > 0 [�; k > 0]such that 8n1; : : : ; nt(f(n1; : : : ; nt) � C � logk(n1 + : : : + nt)g(n1; : : : ; nt))[8n1; : : : ; nt(f(n1; : : : ; nt) � �g(n1; : : : ; nt)= logk(n1+ : : :+nt)), respectively].Thus, in this notation our main result looks as follows.

Theorem 2.3 Let A � Fm be a �nite subset of the free group Fm with at
least two non-commuting elements. Then jA � A � Aj � e
(jAj2).
Remark 1 In one place of our proof (namely, Lemma 3.5) constants as-sumed in the asymptotic notation do become dependent on the number ofgenerators m. But this dependence can be eliminated by considering any�xed embedding � : Fm �! F2, and applying Theorem 2.3 to �(A) (insteadof applying it to the original A � Fm).

5Most people would have used here the equality sign, but we �nd the combination of
this notation with �;� particularly expressive and instructive.
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In fact, our main Lemma 3.2 readily implies a more general result. Recallthat a group G is virtually free [virtually cyclic] if it contains a free [cyclic,respectively] subgroup of �nite index.
Theorem 2.4 Let G be any �xed virtually free group and A � G be its �nite
subset such that the subgroup generated by A is not virtually cyclic. ThenjA � A � Aj � e
(jAj2).

In particular, it is well-known that the modular group PSL2(Z) � Z2�Z3is virtually free (e.g. because its commutant is torsion-free, therefore it is afree subgroup (of index 6) by the Kurosh subgroup theorem [12, TheoremIV.1.10]). The same is true for SL2(Z) (every free subgroup of PSL2(Z) canbe lifted to SL2(Z)), as well as for GL2(Z). Therefore, Theorem 2.4 improvesupon [4, Theorem 5.1] (that, under the same assumptions, stated the boundjA � A � Aj � jAj1+� for SL2(Z) and for an unspeci�ed constant � > 0).
3. Reduction: combinatorial part
This and the next two sections are entirely devoted to the proof of Theorems2.3, 2.4. Our overall strategy is to analyze a potential counterexample byexhibiting in it \su�ciently large" subsets with \su�ciently rich" structure(accordingly, most of the proof is written in the distinct \top-down" style).And, as stated, Theorem 2.3 turns out to be very inconvenient for this pur-pose. Our �rst task is to replace it with a stronger (and much clumsier)statement speci�cally designed with several types of reduction in mind.
De�nition 3.1 For a �nite subset A � Fm, �(A) is the maximal possiblesize of the intersection A\C, where C runs over all cosets of maximal cyclicsubgroups6 in Fm.

Note that � is monotone (�(A) � �(B) if A � B) and invariant underleft and right shifts (�(A) = �(uA) = �(Au)).
Lemma 3.2 (Main Lemma) Let A;B;C � Fm be �nite subsets, and as-
sume that jAj; jCj � O(jBj):

6Since this class of subgroups is invariant under conjugacy, it does not matter whether
we consider left or right cosets in this de�nition.
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Then one of the following two is true.

a) jA �B � Cj � e
(jAj � jCj);
b) �(B) � 
(jBj).
For the bene�t of the reader who may feel uncomfortable with that muchof asymptotic notation, we provide a translation of this statement to the �=�-language (and in all analogous places below the translation is quite similar).

Lemma 3.3 (Main Lemma, �=�-version) For every D > 0 there exist�;K > 0 such that the following is true. For all �nite A;B;C � Fm withjAj; jCj � D � jBj, either jA � B � Cj � � � jAj�jCjlogK(jAj+jBj+jCj) or �(B) � � � jBj
holds.

Proof of Theorems 2.3, 2.4 from Lemma 3.2. Since every virtuallycyclic subgroup of a free group is cyclic, Theorem 2.4 implies Theorem 2.3,and we only have to prove the former.Let G be a virtually free group, and F � G be a free subgroup of �niteindex; w.l.o.g. we can assume that F is normal. Let A � G be �nite; repre-sent it as A = :Su2U (uAu), where U is an arbitrary set of representatives forcosets of F and Au � F . Choose that u 2 U for which jAuj is maximal (thus,jAuj � 
(jAj)), and note that (uAu)(uAu)(uAu) = u2(u�1Auu)Au(uAuu�1)u.We apply Lemma 3.2 with A := u�1Auu; B := Au; C := uAuu�1. If theconclusion a) holds, we are done. If �(Au) � 
(jAuj) � 
(jAj), there existsa maximal cyclic subgroup C � F and v 2 F such that jAu\(vC)j � 
(jAj).Denoting w = uv, we conclude that jA\ (wC)j � 
(jAj). Let N � G be thenormalizer of C.If w 62 N , we are done: since C and (wCw�1) are di�erent maximalcyclic subgroups in F , they have empty intersection. Therefore, all productsc1c2 (c1; c2 2 (wC)) are pairwise distinct and jA � A � Aj � jA � Aj � jA \(wC)j2 � 
(jAj2).Assume w 2 N . Since N \ F = C, C has a �nite index in N and,therefore, N is virtually cyclic. Since A does not generate a virtually cyclicsubgroup, A 6� N ; �x arbitrarily a 2 A n N . And now we are done by thesame argument as above, applied to the product (wC)a(wC).
Remark 2 The statement of Lemma 3.2 allows the following three types ofreductions that we are going to use.
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� Let u; v 2 Fm, A0 def= Au�1; B0 def= uBv and C0 def= v�1C. Then thevalidity of Lemma 3.2 for the triple (A0; B0; C0) implies its validity forthe original (A;B;C).
� The same conclusion holds if A0 � A; B0 � B;C0 � C are arbitrarysubsets with the only restriction jA0j � e
(jAj); jB0j � 
(jBj); jC0j �e
(jCj).
� Assume that A = A1 :[ : : : :[ A`A and C = C1 :[ : : : :[ C`C aredecompositions of A and C into disjoint unions of subsets, and furtherassume that all `A`C sets AiBCj (i 2 [`A]; j 2 [`C ]) are pairwisedisjoint. Then the validity of Lemma 3.2 for all triples (Ai; B; Cj)implies its validity for (A;B;C).
In the reduction of the last type we of course require the uniform depen-dence of assumed constants (that is, �;K on D in the notation of Lemma3.3).
After this preparatory work, we begin the real proof with getting rid ofcancellations.

Lemma 3.4 For any �nite A � Fm, there exists u 2 Fm such that for any
letter y 2 fx1; x�11 ; : : : ; xm; x�1m g at least 14m jAj words in Au�1 do not end
with y.
Proof. Let us call u 2 Fm populated if it is a su�x of at least 14jmj jAj wordsin A. � is populated whereas su�ciently long words are not. Choose thelongest populated word u; we claim that it has the required property.Indeed, every one of the words yu (y 2 fx1; x�11 ; : : : ; xm; x�1m g, u doesnot begin with y�1) is not populated and therefore may appear as a su�xin � 14m jAj words from A. Hence u is a su�x of at most 12 jAj words in A(and on the other hand, it is a su�x of at least 14m jAj words since u itself ispopulated). It only remains to note that if u is not a su�x of a 2 A, thenau�1 ends with the same letter as u�1, and if it is its su�x, then au�1 endswith a di�erent letter, unless it is empty.
Lemma 3.5 For any �nite A;B;C � Fm with jBj � 2 there exist u; v 2 Fm
and A0 � Au�1; B0 � uBv; C0 � v�1C such that jA0j � 
(jAj); jB0j �
(jBj); jC0j � 
(jCj) and all products abc (a 2 A0; b 2 B0; c 2 C0) are
reduced.
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Proof. Apply Lemma 3.4 to A, and apply its dual version to C; let u; v bethe resulting elements. Removing from uBv the empty word (if it is there),we �nd a subset B0 � uBv with jB0j � 14m2 (jBj � 1) such that all words inB0 begin with the same letter y and end with the same letter z. Finally, letA0 � Au�1 consist of all those words that do not end with y�1, and similarlyfor C0 � v�1C. jA0j � 
(jAj) and jC0j � 
(jCj) hold by Lemma 3.4.
From this point on, cancellations will never appear again, and the readermay freely assume that we are working in a free semi-group. Note that ifabc P a0b0c0 is a collision in the product A � B � C, then a; a0 are comparablein the pre�x order and c; c0 are comparable in the su�x order. This suggeststhat the most di�cult case should be when the elements of A form a pre�x

chain (de�ned as a set of words mutually comparable in the pre�x order), andC forms a su�x chain. The following lemma makes this intuition precise.
De�nition 3.6 Two pre�x [su�x] chains A1; A2 are incomparable if any twoa1 2 A1; a2 2 A2 are incomparable in the pre�x [su�x, respectively] order.

In particular, incomparable pre�x/su�x chains are necessarily disjoint.Also, two pre�x chains A1; A2 are incomparable if and only if their minimalelements are incomparable.
Lemma 3.7 Every �nite set of words A contains a collection A1; : : : ; A` � A
of mutually incomparable pre�x chains such that

jA1 [ : : : [ A`j = X̀
i=1 jAij � e
(jAj); (4)

and a similar statement holds for su�x chains.

Proof. Consider the restriction of the pre�x order � onto A. For a 2 A,let h(a) be its height de�ned as the maximal possible length of a pre�x chainhaving a as its minimal element (and entirely contained in A). All elementsof the same height h are mutually incomparable; let `h be their number.Then
jAj = jAjX

h=1 `h;and also for every h there exist `h mutually incomparable pre�x chains oflength h each (for every element a of height h include an arbitrarily chosenpre�x chain of height h with the minimal element a).
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Thus, if t is the maximal possible value of jA1 [ : : : [ A`j in (4), thent � h`h for each h, which implies
jAj � t � jAjX

h=1 1h � O(t log jAj)
and, therefore, t � e
(jAj).

Now, by Lemma 3.5 we may assume in Lemma 3.2 that all productsabc (a 2 A; b 2 B; c 2 C) are reduced. By Lemma 3.7 we may also assumethat A [C] can be decomposed as a union of mutually incomparable pre�x[su�x, respectively] chains; say, A = A1 :[ : : : :[ A`A , C = C1 :[ : : : :[ C`C .But if i 6= i0 2 [`A] then AiBC and Ai0BC are disjoint (since Ai and Ai0 areincomparable in the pre�x order), and similarly for j 6= j0 2 [`C ]. Whichmeans that we can apply the reduction of the third type from Remark 2.
Summarizing what we have achieved so far, in Lemma 3.2 we can assume

w.l.o.g. that all products abc (a 2 A; b 2 B; c 2 C) are reduced, and that,
moreover, A is a pre�x chain, and C is a su�x chain.

4. Reduction: �nding aperiodicity
At this point we bring into the analysis periodic words, and the rest of theproof is split into two almost independent parts. Namely (thinking in termsof a hypothetical counterexample to Lemma 3.2), we want to show that:

� if jA �B �Cj is small, there is enough \periodical structure" in A;B;C;
� if �(B) is small then some large subsets A0; B0; C0 display enough\aperiodicity" in them,

and these two conclusions will contradict each other. Of these two, the �rsttask is much more di�cult, interesting and natural to start with. But fortechnical reasons we have to begin with the second.
De�nition 4.1 Let a; b 2 Fm, and assume that the product ab is reduced.We say that ab is left regular if b is periodic, and a ends with P 2, where P isthe left period of b (equivalently, b 2 Per(p) for some cyclic period p, and itsmaximal p-periodic extension in ab has length � jbj+2jpj). ab is left singular
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in all other cases. Right regular and right singular products bc are de�ned bysymmetry.
De�nition 4.2 Let P be a period, and A � Fm be a �nite set. We de�ne�`;P as the maximal possible size of the intersection A \ C, where C runsover all sets of the formnLP t j t � 0o (L 2 Fm; LP reduced):
�r;P (A) is de�ned by symmetry.

Clearly, �`;P (A);�r;P (A) � �(A).
Lemma 4.3 Let A;B;C � Fm be �nite sets, and assume that all productsabc (a 2 A; b 2 B; c 2 C) are reduced. Then either

�(B) � 
(jBj); (5)
or there exist A0 � A; B0 � B; C0 � C with jA0j � 
(jAj); jB0j �
(jBj); jC0j � 
(jCj) such that at least one of the following three is true.

a) At least 12 jA0jjB0j products ab (a 2 A0; b 2 B0) are left singular.

b) At least 12 jB0jjC0j products bc (b 2 B0; c 2 C0) are right singular.

c) For every period P which is the left period of at least one periodic
word in B0, �`;P (A0) � O(1), and the dual conclusion holds for right
periods.

Proof. Either at least half of all words in B are aperiodic, or at least halfof them is periodic. In the �rst case both a), b) hold trivially. Removingfrom B all aperiodic words in the second case, we may assume w.l.o.g. thatall words in B are periodic.Consider now any individual cyclic period p for which Bp
def= B \ Per(p)is non-empty. If there exists P 2 p that appears as either the left period inat least half of all words from Bp or the right period in at least half of them,remove from Bp all words violating this. Repeating this procedure once moreif necessary, we will �nd B0

p � Bp with jB0
pj � 
(Bp) and such that one ofthe following is true.
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a) Every period P 2 p appears as the left period in � 12 jB0
pj words fromB0

p.
b) Every period P 2 p appears as the right period in � 12 jB0

pj words fromB0
p.

c) All words in B0
p have the same left and right periods.

Let B0 def= S
pB0

p. At the expense of decreasing jB0j by at most a factorof three, we may assume that one and the same of these three alternativesholds for every cyclic period p for which B0
p is non-empty.Alternatives a) and b) (along with Proposition 2.1) immediately applythe corresponding conclusions in the statement of Lemma 4.3 (with A0 :=A; B0 := B0; C0 := C) since then in (say) case a), for every a 2 A and everycyclic period p there would be at most � 12 jB0

pj words b 2 B0
p for which ab isleft regular. So, we are left with the case when for every p, all words in B0

phave the same left and right periods. Note that in this case B0
p is a subset ofthe coset fP 0P tP 00 j t 2 Zg of a cyclic subgroup and, therefore,

jB0
pj � j�(B)j: (6)

Let fp1; : : : ; pdg be the enumeration of all cyclic periods p for which B0
p 6=; in the order of non-decreasing length:

jp1j � jp2j � : : : � jpdj: (7)
Choose the minimal ` for which Pì=1 jB0

pi j � 13 jB0j (thus, P`�1i=1 jB0
pi j <13 jB0j). If Pì=1 jB0

pi j � 23 jB0j then jB0
p` j � 13 jB0j, and hence (6) implies (5).Otherwise, Pdi=`+1 jB0

pi j � 13 jB0j, and we �rst try out the set Sdi=`+1B0
pi asB0. If at least 12 jAjjB0j products ab (a 2 A; b 2 B0) are left singular, or atleast 12 jB0jjCj products bc (b 2 B0; c 2 C) are right singular, we are done.Otherwise, there exist �xed b`; br 2 Sdi=`+1B0

pi such that for at least halfof all a 2 A the product ab` is left regular, and for at least half of all c 2 C,brc is right regular. We remove from A and C all elements violating theseproperties, and let A0; C0 be the result of this removal. Set also
B0 def= [̀

i=1Bpi :
15



We �nally claim that A0; B0; C0 satisfy the alternative c) in Lemma 4.3, and,by symmetry, it is su�cient to check this only on the left side.Indeed, all words in A0 end with Q2, where Q is the left period of b` (andhence Q 2 pj for some j � `+1). If a period P appears as the left period ofsome word in B0 then P 2 pi for some i � `. In particular, P 6� Q and, by(7), jP j � jQj: (8)
According to De�nition 4.2, consider any �xed wing L such that LP isreduced. If LP t 2 A0 then LP t ends with Q2. The word Q2, however, is not

pi-periodic, therefore, due to (8), it can not be a subword of P s for any s.Which means that P t is a su�x of Q2. Moreover, if t � 2 then the maximal
pi-periodic extension of P t in LP t is a proper su�x of Q2 and, therefore, hasthe same length as its maximal pi-periodic extension in Q2. In particular,
this extension does not depend on t. This implies that there can be at mostone value t � 2 for which LP t ends with Q2. Which shows that �`;P (A0) � 3and completes the proof of Lemma 4.3.

To summarize, so far we have reduced Lemma 3.2 to its partial casedescribed as follows (the alternative b) in the statement of Lemma 3.2 hasalready been used up in (5), and we do not need to carry it any longer).
Lemma 4.4 Let A;B;C � Fm be �nite sets such that

jAj; jCj � O(jBj):
Assume that all products abc (a 2 A; b 2 B; c 2 C) are reduced, that A is a
pre�x chain, and that C is a su�x chain. Moreover, assume that one of the
following three is true.

a) At least 12 jAjjBj products ab (a 2 A; b 2 B) are left singular.

b) At least 12 jBjjCj products bc (b 2 B; c 2 C) are right singular.

c) For every period P which is the left period of at least one periodic
word in B, �`;P (A) � O(1), and the symmetric conclusion holds for
the right periods.

Then jA �B � Cj � e
(jAj � jCj):
16



5. Finding periodicity with collision numbers
In this section we prove Lemma 4.4, thereby completing the proof of ourmain result.

Fix A;B;C � Fm satisfying all the premises of Lemma 4.4. De�ne T �A � B � C as follows. If one of the alternatives a), b) holds, T consists ofthose triplets (a; b; c) for which either ab is left singular or bc is right singular.In the remaining case c), we simply let T := A � B � C. Note that in anycase jT j � 
(jAj � jBj � jCj): (9)
We de�ne the collision number cT (A;B;C) as

cT (A;B;C) def= ���n((a; b; c); (a0; b0; c0)) 2 T 2 j abc P a0b0c0o��� :
For u 2 Fm, let n(u) def= j f(a; b; c) 2 T j abc P ug j:
Then by Cauchy-Schwartz and (9),

cT (A;B;C) = X
u2A�B�C n(u)2 � 1jA �B � Cj

 X
u2A�B�C n(u)

!2
= jT j2jA �B � Cj � 
 jAj2jBj2jCj2jA �B � Cj

! :

9>>>>>>>>>=>>>>>>>>>;
(10)

Thus, in order to complete our proof, we only have to show that
cT (A;B;C) � eO(jAjjBj2jCj): (11)

Our next task is to set stage for the Second Overlapping Lemma 2.2, andfor this we need one more reduction (this time in terms of collision numbers).But now the reduction is slightly more subtle than those based on Remark 2seen in previous sections. For this reason we prefer to change the gears, andwe �rst formulate the statement we are reducing to.
Lemma 5.1 Let A;B;C � Fm be �nite sets such that

jAj; jCj � O(jBj): (12)
17



Assume that all products abc (a 2 A; b 2 B; c 2 C) are reduced, that A
is a pre�x chain of even length, and that C is a su�x chain of even length:A = fa1; : : : ; a2nAg; C = fc1; : : : ; c2nCg, where a1 < a2 < : : : < a2nA andc1 <� c2 <� : : : <� c2nC . Let T � A � B � C be such that either (A;B;C)
satis�es property c) in the statement of Lemma 4.4, or for every (a; b; c) 2 T
either ab is left singular or bc is right singular. Then

jf((ai; b; cj); (ai0 ; b0; cj0)) 2 T 2 j aibcj P ai0bcj0 ;jfi; i0g \ f1; 2; : : : ; nAgj = 1;jfj; j0gj \ f1; 2; : : : ; nCgj = 1g� O(jAjjBj2jCj):

9>>>>>>>>>=>>>>>>>>>;
(13)

Thus, the only di�erence in the conclusion from (11) is that we addition-ally require that the \middle" pre�x anA of a2nA separates i from i0, and thesame holds for j; j0.
Proof of (11) from Lemma 5.1. Let (A;B;C) satisfy the assumptionsof Lemma 4.4, and let T be de�ned as in the beginning of this section.Assume for simplicity that jAj and jCj are powers of 2, and represent Aand C similarly to the statement of Lemma 5.1: A = fa1; : : : ; anAg; C =fc1; : : : ; cnCg, where a1 < a2 < : : : < anA and c1 <� c2 <� : : : <� cnC . Ford � log2 nA; d� � log2 nC and integers �; 
, let

Ad� def= nai 2 A ��� bi=2dc = �o ;
Cd�
 def= ncj 2 C ��� bj=2d�c = 
o :

For any �xed values of d; d�; �; 
 we can apply Lemma 5.1 to the triple(Ad�; B; Cd�
 ) letting T := T \ (Ad� � B � Cd�
 ). Summing up the right-handsides of the resulting estimates (13), we get
O
0@Xd;d�

X
�;
 jAd�jjBj2jCd�
 j

1A = O
0@Xd;d� jAjjBj2jCj

1A � eO(jAjjBj2jCj);
as d; d� take on only logarithmically many values.On the other hand, the sets in the left-hand sides of (13) give a partitionof all those tuples ((ai; b; cj); (ai0 ; b0; cj0)) 2 T 2 for which aibcj P ai0b0cj0 and
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i 6= i0; j 6= j0. Namely, such a tuple is counted in that (Ad�; B; Cd�
 ) where dis the most signi�cant bit in which binary representations of i and i0 di�er, d�is de�ned in the same way from j; j0 and � = bi=2dc(= bi0=2dc); 
 = bj=2d�c.And there are at most 2jAjjBj2jCj tuples ((ai; b; cj); (ai0 ; b0; cj0)) with aibcj Pai0b0cj0 for which either i = i0 or j = j0.
Now we prove Lemma 5.1, and at this point we have to break the sym-metry by assuming (w.l.o.g) that

jCj � jAj: (14)
For two words a; a0 comparable in the pre�x order, we let �(a; a0) denotetheir di�erence (that is, a P a0�(a; a0) or a0 P a�(a; a0), depending on whichof the two is longer). Let P be the set of all those cyclic periods p for whichthere exists an occurrence a2nA P LpupRp (15)

of a p-periodical word up in a2nA which is \non-trivially cut" by anA in thefollowing sense:
anA P Lpv; v is a pre�x of up with jvj � 2jpj and j�(v; up)j � 2jpj: (16)

It follows that for any �xed p, maximal p-periodic extensions of all suchoccurrences coincide, and we choose (15) to be this maximal (and uniquelyde�ned) occurrence.Next, let Ap be the set of all ai 2 A for which we, like in (16), still haveai P Lpv, where v is a pre�x of up with jvj � 2jpj and j�(v; up)j � 2jpj, butnow we also additionally require that j�(ai; anA)j � 2jpj. This new conditionimplies in particular that anA 62 Ap. In fact, it implies that for ai 2 Ap theword �(ai; anA) is p-periodic; therefore, Ap \Aq for every two di�erent cyclic
periods p; q.After this set-up, we begin proving the bound (13). First we drop fromcirculation the condition jfj; j0g \ f1; 2; : : : ; nCgj = 1, and simplify the dualone by insisting that i � nA < i0. That is, we will prove (13) in the form

jf((ai; b; cj); (ai0 ; b0; cj0)) 2 T 2 j aibcj P ai0b0cj0 ;i � nA; i0 � nA + 1gj� O(jAjjBj2jCj):

9>>>>>>=>>>>>>;
(17)
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We do it by case analysis according to the structural properties of a tuple((ai; b; cj); (ai0 ; b0; cj0)) contributing to the left-hand side. In every of thefour cases our strategy will be the same: we will show that four out of sixelements of the tuple ((ai; b; cj); (ai0 ; b0; cj0)) already determine it up to O(1)possibilities. But the exact choice of these four entries will depend on thecase.
Case 1. There is no cyclic period p such that fai; ai0g � Ap.Let us call such pairs (ai; ai0) singular. First we claim that every �xed d 2 Fmcan be realized in the form �(ai; ai0) for at most 12 singular pairs (ai; ai0).Indeed, any such realization ai0 P aid de�nes the occurrence a2nA Paid�(ai0 ; a2nA) of d into a2nA , and, moreover, janAj � jdj � jaij � janAj. Sup-pose for the sake of contradiction that d possesses � 13 realizations. Then, bythe pigeon-hole principle, we could choose �ve of them d = �(ai1 ; ai01) = : : : =�(ai5 ; ai05) (i1 � : : : � i5) such that jjai�j � jai� jj � jdj=3 for all �; � 2 [5].Therefore, we could apply Lemma 2.2 and conclude that d 2 Per(p) for somecyclic period p and, moreover, all �ve selected occurrences of d into a2nAwould be contained in the same maximal occurrence of a p-periodic word ina2nA . Further, they would be compatible in phase (in the sense of Lemma2.1), that is all jjai�j � jai� jj would be multiples of jpj. Which would readilyimply that this maximal occurrence would necessarily be the occurrence (15),and that fai3 ; ai03g � Ap, a contradiction.Now we only have to observe that aibcj P ai0b0cj0 implies �(ai; ai0) =�(bcj; b0cj0), that is b; cj; b0; cj0 determine �(ai; ai0). Therefore, they also de-termine ai; ai0 up to � 12 possibilities, and hence the contribution of Case 1to (17) is estimated as O(jBj2jCj2) which is O(jAjjBj2jCj) by (14).
Case 2. fai; ai0g � Ap for some cyclic period p and jbj � 2jpj.In this case we claim that the tuple can be retrieved (again, up to O(1)possibilities) from ai; cj; ai0 ; b0. Indeed, since ai; ai0 2 Ap, we have j�(ai; ai0)j =j�(ai; anA)j + j�(ai0 ; anA)j � 4jpj. This implies that jai0j � jaibj � 2jpj andhence �(aib; ai0) is p-periodic. Its left period is completely determined by cj(as �(aib; ai0) � cj), and its right period is determined by ai0 (as �(aib; ai0) ��ai0). Finally, since jbj � 2jpj, we can estimate its length as jai0 j � jaij �2jpj � j�(aib; ai0)j � jai0 j � jaij. Thus, given ai; cj; ai0 , there are at most 3possibilities for �(aib; ai0), and once we know it, we also know b and thenc0j = �(aibcj; ai0b0).Thus, Case 2 contributes at most O(jAj2jBjjCj) which is O(jAjjBj2jCj)by (12).
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Case 3. fai; ai0g � Ap for some cyclic period p, jbj � 2jpj but eitherb 62 Per(p) or b 2 Per(p) and the product bcj is right singular.This time the tuple is determined by b; ai0 ; b0; cj0 (as always, up to O(1) pos-sibilities). Indeed, from these four entries we know u = a0ib0cj0 P aibcj, aswell as the occurrence
u P anA�(anA ; ai0)(b0cj0) (18)

of the p-periodic word �(anA ; ai0) into it. The pre�x v of b of length 2jpj isa pre�x of �(ai; ai0) and thus p-periodic; let b P vw and R def= wcj. Nowconsider its (yet unknown!) occurrence
u P aivR (19)

into u. These two occurrences of p-periodic words into u possess a common(also unknown) p-periodic extension u P ai�(ai; ai0)(b0cj0). Therefore, the
maximal p-periodic extension u P ~aiv̂R0 of (19) is the same as the maximal p-periodic extension of the known occurrence (18), and hence is also determined
by (ai0 ; b0; cj0). Further, if v̂1 is the maximal p-periodic extension of the pre�xv in the word bcj, then it should have the same right wing R0: bcj P v̂1R0.And the assumptions of Case 3 imply that jv̂1j (and hence also jcjj since band R0 are already known) is determined within accuracy 2jpj by the word b
only. Namely, it can not exceed by more than 2jpj the length of the maximal
p-periodic extension of v in b. Therefore, jaij and then �(ai; anA) are alsodetermined within that accuracy. But the left and right periods of the latterwords are known (it is a su�x of anA , and has v as its pre�x), hence thisword (and then ai) is determined up to O(1) possibilities.

Case 4. fai; ai0g � Ap for some cyclic period p, b 2 Per(p) and the
product bcj is right regular.In this �nal case we also claim that the information can be retrieved fromb; ai0 ; b0; cj0 (but for entirely di�erent reasons). Namely, recalling the de�ni-tion (15), the word �(Lp; ai)b is p-periodic and j�(Lp; ai)j � 2jpj. Hence, theproduct aib is left regular. Since (ai; b; cj) 2 T , this implies (recall the state-ment of Lemma 5.1) that (A;B;C) must necessarily satisfy property c) in thestatement of Lemma 4.4. In particular, �`;P (A) � O(1), where P is the leftperiod of b. Let L0

p be the pre�x of Lpup in (15) with jLpj � jL0
pj � jLpj+ jpjand such that the left period of �(L0

p; Lpup) is equal to P . Then ai mustnecessarily have the form L0
pP t for some integer t. And now the condition�`;P (A) � O(1) again pinpoints it down to O(1) possibilities.
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We have shown that every one of four logically possible cases contributesat most O(jAjjBj2jCj) to the left-hand side of (17). This completes the proofof Lemma 5.1, (11), Lemmas 4.4, 3.2 and Theorems 2.3, 2.4.
6. Statistical version of Pl�unnecke-Ruzsa in-

equalities
In this section G will be an abelian group. For its �nite subsets A1; : : : ; Ak,de�ne the collision number c(A1; : : : ; Ak) as

c(A1; : : : ; Ak) def= jf((a1; : : : ; ak); (a01; : : : ; a0k)) 2 (A1 � � � � � Ak)2ja1 + : : :+ ak = a01 + : : :+ a0kgj:These qualities were extensively used in additive combinatorics, mostly forthe case k = 2. In the previous section we saw their application (in thenon-abelian case) for k = 3. And here we observe how extremally naturaland appealing the Pl�unnecke-Ruzsa theory looks in this setting.By \the setting" we mean the following. By Cauchy-Schwartz (cf. (10)),
c(A1; : : : ; Ak) � jA1j2 : : : jAkj2jA1 � : : : � Akj ;so we have the lower bound
jA1 � : : : � Akj � jA1j2 : : : jAkj2

c(A1; : : : ; Ak) : (20)
And assuming we are willing to accept the right-hand side as a \good enough"substitute for jA1 � : : : � Akj, we can infer Pl�unnecke-Ruzsa inequalities asfollows.
Lemma 6.1

c(B1; : : : ; Bk; A;A) � c(B1; : : : ; Bk; A)2jB1j � (jB2j � : : : � jBkj)2 :
Proof. For ~b = (b1; : : : ; bk) 2 B1�� � ��Bk, let n(~b) be the number of tuples(~b0; a; a0) such that b1 + : : :+ bk + a = b01 + : : :+ b0k + a0; thus,

c(B1; : : : ; Bk; A) =X
~b n(~b):
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On the other hand, for any �xed~b, every couple of tuples (~b(1); a1; a01); (~b(2); a2; a02)contributing to n(~b) as
b1 + : : :+ bk + a1 = b(1)1 + : : :+ b(1)k + a01b1 + : : :+ bk + a2 = b(2)1 + : : :+ b(2)k + a02

also contributes to c(B1; : : : ; Bk; A;A) as
b(1)1 + : : :+ b(1)k + a01 + a2 = b(2)1 + : : :+ b(2)k + a02 + a1:

And every such contribution is counted at most jB2j � : : : � jBkj times (as thisis an upper bound on the number of tuples ~b for which b1 + : : :+ bk takes onthe prescribed value b(1)1 + : : :+ b(1)k + a01 � a1). Which implies
c(B1; : : : ; Bk; A;A) � 1jB2j � : : : � jBkj �X~b n(~b)2;

and make our lemma the result of yet another application of Cauchy-Schwartz.
Lemma 6.2

c(A1; : : : ; Ak) � c(B;A1; : : : ; Ak)jBj2 :
Proof. Applying the union bound to all possible choices of b; b0,

c(B;A1; : : : ; Ak) � jBj2 �maxd2G cd(A1; : : : ; Ak);
where cd(A1; : : : ; Ak) is the \shifted" version of c(A1; : : : ; Ak):

cd(A1; : : : ; Ak) def= jf((a1; : : : ; ak); (a01; : : : ; a0k)) 2 (A1 � � � � � Ak)2ja1 + : : :+ ak + d = a01 + : : :+ a0kgj:
But

c(A1; : : : ; Ak) � cd(A1; : : : ; Ak) (21)
is easy (and well-known). Namely, if n(e) is the number of representationsof e 2 G in the form a1 + : : :+ ak, then

c(A1; : : : ; Ak) = X
e n(e)2

cd(A1; : : : ; Ak) = X
e n(e)n(e+ d);
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and since the vectors (n(e) j e 2 G) ; (n(e+ d) j e 2 G) have the same `2norm, (21) follows by Cauchy-Schwartz.
Theorem 6.3

c(�A;�A; : : : ;�A| {z }k times

) � c(B;A)2k�1
jBj(2k�1+1)jAj2k�2k :

Proof. c(A1; : : : ; Ak) is clearly invariant under negating components, so wemay assume that all signs are actually plus signs. Applying Lemma 6.1 toB1 := B; B2 := : : : := Bk := A, we �nd
c(B;A; : : : ; A| {z }k times ) � 1jBj � jAj2(k�2) � c(B;A; : : : ; A| {z }k�1 ) (k � 2):

By induction on k,
c(B;A; : : : ; A| {z }k times ) � c(B;A)2k�1

jBj(2k�1�1)jAj2k�2k :
Applying Lemma 6.2 �nishes the proof.

In order to interpret this result, recall that the standard doubling constantKA;B given by jA �Bj = KA;BjBjin our framework corresponds, via (20), to
c(A;B) = �A;BjAj2jBj (�A;B = K�1A;B):

In this notation Theorem 6.3 can be re-written as
c(�A; : : : ;�A| {z }k times ) � �2k�1A;B � jAj2kjBj ;

which (again, via (20)) corresponds exactly to the \classical" conclusion j �A� A� : : :� Aj � KO(1)A;B jBj.
The material in this section can be readily generalized to convolutions ofdiscrete probability measures (replacing uniform distributions onA1; : : : ; Ak).
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Namely, the collision probability cp(�) of a discrete probability measure � isde�ned as
cp(�) def= P[a = a0] ;

where a;a0 are two random variables picked independently at random ac-cording to �. We also let
`1(�) def= maxa2Sup(�)�(fag)

(thus, the min-entropy H1(�) is equal to � log2 `1(�)). If A is the supportof � then clearly `1(�) � cp(�) � 1jAj :For probability measures �1; : : : ; �k on an abelian group G, we denote by�1 + : : : + �k their convolution, that is the measure corresponding to therandom variable a1 + : : : + ak, where a1; : : : ;ak are picked uniformly atrandom according to the measures �1; : : : ; �k.And in this notation the proof of Theorem 6.3 can be easily generalizedto give the inequality
1`1(�) � cp(��� �� : : :� �| {z }k times ) �  1`1(�) � cp(�+ �)!2k�1

for any two discrete probability measures �; � on G.A further generalization is apparently possible in the continuous settingof Tao [15]. It is not clear, however, whether any interesting analogue of thisexists in the non-abelian case.
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