A Product Theorem in Free Groups

Alexander A. Razborov *

September 29, 2007

Abstract
If A is a finite subset of a free group with at least two non-
2
commuting elements then |A- A - A| > W. More generally,

the same conclusion holds in an arbitrary virtually free group, unless
A generates a virtually cyclic subgroup.

The central part of the proof of this result is carried on by es-
timating the number of collisions in multiple products A; - ... - Ag.
We include a few simple observations showing that in this “statisti-
cal” context the analogue of the fundamental Pliinnecke-Ruzsa theory
looks particularly simple and appealing.

1. Introduction

Let G be a group, and A be its finite subset. Assume that for some fixed

k> 2 |A-A-...- A| (where the product set A-A-...- A is defined as
k times k times

{be G| (Fay,...,ar € A)(b=ajay...a;)})is much smaller than |A[¥. What
can be said about the internal structure of A?

Questions of this (and similar) sort are known in arithmetic combinatorics
as inverse problems (most of the material briefly surveyed in this section can
be found in comprehensive monographs [13, 16]). Originally they were stud-
ied for G = Z (the case G = Z" is easily seen to be “essentially equivalent” to
this one). And one of the deepest and hardest results in the area is Freiman’s
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theorem [21] that provides a complete characterization of sets A C Z with
A+ A+...+ Al <O(|A)]).

For many applications, however, it is highly desirable to be able to in-
fer at least something intelligent about the structure of A from the weaker
assumption

A+ A+ .. + A< AT, (1)

k times

And for the case of abelian groups this is a widely open problem (perhaps,
the central problem in the whole area). This state of the art is particularly
embarrassing given the amount of useful information one can extract from
(1) with the help of powerful Plinnecke-Ruzsa theory. As one of the most
cited corollaries, let us just mention that the conditions (1) are equivalent
for all (fixed) k > 2, and, moreover, this equivalence still holds if some pluses
are replaced by minuses. Further, (1) follows from |A 4+ B| < |A[°(D|B| for
an arbitrary set B with |B| < |A|. Unfortunately, these powerful conclusions
tell us very little about the internal structure of A.

Somewhat surprisingly, inverse problems have turned out to be simpler for
more complicated algebraic structures. For example, sum-product estimates
in commutative rings by Bourgain, Katz and Tao [3] do give strong inverse
results in the range (1) if we append the analogous restriction |[A-A-...- A| <
| Ao for product sets.

In this paper we are interested in another class of algebraic structures
that has recently sparkled a considerable attention, the class of non-abelian
groups [7, 15, 4]. One of the reasons for this interest lies in the motivations
of the pioneering paper by Helfgott [7] that linked this kind of questions to
estimating the diameter of Cayley graphs in certain finite groups, and, via
this, to difficult open problems about explicit constructions of expanders.
But before reviewing these latest developments, it is worth mentioning that
for groups equipped with a length function very similar problems were stud-
ied long before, in quite a different context and in a different community.
Specifically, Rapid Decay Property [6, 8] implies that any set A satisfying
(1) (or, in fact, the weaker assumption |A - A] < A2~ can not be posi-
tioned within a small ball, and must necessarily contain elements of length
|A|®M). Among others, this property is known for free groups [6], groups of
polynomial growth and hyperbolic groups [8].

An easy example shows that the Plinnecke-Ruzsa theory does not literally
transfer to the non-abelian case: |A-A| can be small, whereas already |A-A-A|



is large. Tao [15] and Helfgott [7], however, proved that this theory catches
up already at the next level: say, the statements (1) become equivalent for
k = 3,4,... For this reason in the non-abelian case it does make sense to
concentrate on the study of sets A with small tripling (that is, k = 3),
as opposed to sets with small doubling in the abelian case. And Helfgott
[7] indeed proved a strong inverse result for tripling in the range (1) when
G = SLy(Z,). Chang [4] proved a similar theorem for G = SLy(C), and made
a very substantial step toward obtaining an analogous result for G = SL;(Z).

Chang’s former result (for SLy(C)) looks in fact rather intriguing since it
exhibits the following “threshold behaviour”. There exists a fized constant
§ > 0 such that the structural conclusion she gets from |A-A- A| < |A|'* is
exactly the same as the conclusion one gets from much stronger bound (1):
A generates a virtually abelian sub-group (this reduces the inverse problem
for SLy(C) to the same problem for abelian groups — the best we can hope
for without actually solving the latter!) This is very unusual for arithmetic
combinatorics where the conclusion usually depends on things like |A - A| or
|A - A - Al numerically and smoothly. Chang also remarked that the same
conclusion holds (via any known embedding of F), into SLy(C)) for free
groups F,,! asked for a purely combinatorial proof of this fact and for any
estimates of the threshold constant 9.

The main result of our paper provides an answer to her question, and we
show that in fact § = 1 (which is clearly optimal). More precisely, we prove
the following;:

Main Theorem. Let A be a finite subset of a free group F,, with at least
two non-commuting elements. Then

|A-A- Al > AP
~ (log Aot

More generally, the same conclusion holds for any finite subset A of an
arbitrary fixed virtually free group, unless the subgroup generated by A is
virtually cyclic. In particular, this is true for the modular group PSLy(Z),
as well as for SLy(Z) and GLy(Z), and this makes an improvement over [4,
Theorem 5.1] (the latter gave the bound |A - A - A| > |A[*™ for SLy(Z) and
for an unspecified constant 6 > 0.)

!Breuillard (personal communication) observed that this can be derived already from
the work of Helfgott [7]



Our proof is heavily based on the machinery of combinatorial group the-
ory, and, more specifically, its part known as the theory of (highly) periodic
words. It is worth noting that this theory lies in the heart of two of the
deepest (and extremally involved technically) achievements in that area: the
work on Burnside problem [17], and the work on equations in free groups
[11, 18, 19, 20] that has recently culminated in independent solutions of
Tarski’s problem given by Kharlampovich-Miasnikov [9, 10] and Sela [14].

Instead of lower bounds on the cardinalities of sum/product sets, it is of-
ten more convenient to go after upper bounds on the dual quantities? defined
like

c(4,B) ¥

{(a,b,a',b') € (Ax B)2|ab:a'b'}‘.

These collision numbers are related to the cardinalities of sum/product sets
via a simple Cauchy-Schwartz by

AP BI”

A-B|>
APl i By

but display much more analytical (and in many cases more convenient) be-
haviour than |A- B|. The Balog-Szemerédi-Gowers theorem shows how to go
in the opposite direction (from large c(A, B) to large subsets Ay C A, By C B
with small |Ag - By|) without losing too much. But we would also like to note
that one of the most striking recent applications of arithmetic combinatorics
[1, 2] actually needs upper bounds on collision numbers/probabilities rather
than lower bounds on the size of sum/product sets.

The most crucial part of our argument (contained in Section 5) also works
entirely in this framework (that we, following [1] once more, will call statisti-
cal) and essentially utilizes all its versatility. This has motivated us to wonder
how far we can get in the world in which all quantities like |A;- Ay-.. .- Ay| are
systematically replaced by their statistical counterparts c(Ay,..., Ax). We
contribute to this a few simple remarks showing that the statistical version
of Pliinnecke-Ruzsa theory looks particularly simple and appealing, without
ever mentioning cardinalities |A; - Ay - ...+ Ag|, Menger’s theorem or Ruzsa’s
covering lemma inherent to its “classical” versions.

2 Accordingly, they appeared in the literature under many different names, e.g. quadru-
ples [5] or additive energy [15, 16]. In order to stress our purely combinatorial treatment,
we prefer to follow the lead of [1] and call them collision numbers or, after appropriate
normalization, collision probabilities.



These remarks are given in the concluding Section 6, and all the preceding
part of the paper is entirely devoted to the proof of Main Theorem. In Section
2 we give the necessary background, mostly from combinatorial group theory.
In Section 3 we get rid of cancellations, and also show that when lower
bounding |A - B - C| in a free semi-group, we can assume w.l.o.g. that A is
a prefix chain, and C' is a suffix chain. In Section 4 we further reduce our
problem to the case when the triple (A, B,C) has “enough aperiodicity” in
it. And then in Section 5 comes the central part of our proof: we upper
bound the collision numbers ¢(A, B, C'), ruling out the only unpleasant case
with the help of “aperiodicity constraints” enforced in the previous Section
4.

2. Background

All the material in this section related to the combinatorial group theory can
be found e.g. in [12, 17].

We let [n] 2ot {1,2,...,n}.

Let F,, be the free group with the basis {z1,...,2,}. A word w in
the alphabet {z1, 21, ..., Zm, '} is reduced if for any i € [m], z; and ;!
never appear in w as adjacent letters. The elements of [}, are in one-to-one
correspondence with the set of reduced words, and we will always represent
them in this form. The unit element is the empty word, denoted by A. |w|
is the length of the word w.

The notation = stands for graphical (or letter-for-letter) equality: for
ULy ooy Upy VY, Vs € Foyy UgUg ... Uy = 10y ... s by definition means that
Uil . .. Uy = V1Vs... Vs In I}, and both words wius...u,, v1vy...v, are re-
duced. In the opposite direction, v = vw in F,, if and only if there exist
(uniquely defined) v/, ¢, w' € F, such that v = v'c, w = ¢~ 'w' and u = v'w'.
In this case we say that the word ¢ is the cancellation (or gets canceled) in
the product vw. If ¢ = v [c = w™'], then we say that v [w, respectively] gets
completely canceled in this product. And if ¢ = A, then we say that there is
no cancellation in vw, or that vw is reduced.

A word v is a subword of u, denoted v C u, if there exist words L, R such
that v = LvR. Any such representation is called an occurrence of v into u,
and L, R are called wings of this occurrence. If L = A [R = A] then we say
that u begins with v, or that v is a prefix of u [u ends with v/v is a suffic of
u, respectively]. A prefix or a suffix v of u is properif v # u. We let a < b



denote that a is a prefix of b. This is a partial ordering on the set of all
reduced words called the prefix order. Let a <* b be the dual suffiz order.

A reduced word w is cyclically reduced if w? (and, hence, also all higher
powers w®) is reduced. Two cyclically reduced words u,v are cyclic shifts of
each other, denoted u ~ v, if for some wq, wy we have

U = Wi Wa, U = Wolly. (2)

u ~ v if and only if cyclically reduced words u,v are conjugated (in the
ordinary sense) in F,,,, and ~ is an equivalence relation on the set of cyclically
reduced words. A cyclic word is an equivalence class of this relation. That
is, a cyclic word is a cyclically reduced word considered up to cyclic shifts.
Cyclic words are in one-to-one correspondence with conjugacy classes of Fj,.
u ~ v implies |u| = |v|, therefore the length of a cyclic word is well-defined.

A cyclically reduced word w is simple if it can not be represented in the
form w = v, s > 1 (thus, simple words are non-empty). Simple (cyclically
reduced) words will be also called periods® and denoted by capital letters
P Q. If P~ u and P is a period, then u is a period, too. Different cyclic
shifts of a period are also different as words. That is, if in (2) u (and, hence,
also v) is a period and both wy, ws are non-empty, then u # v. Cyclic words
consisting of periods will be called cyclic periods and denoted by the letters
p,q. Thus, cyclic periods are periods considered up to cyclic shifts. It is
worth noting that if we further identify p with p=', then these will be in
one-to-one correspondence with maximal cyclic subgroups of F}, considered
up to conjugacy.

Let P be a period. A reduced word w is P-periodic if w C P?® for some
s > 0 and |u| > 2|P|. We denote by Per(P) the set of all P-periodic words.
u is periodic if it is P-periodic for some period P and aperiodic otherwise.

Clearly, u is P-periodic if and only if it is representable in the form Q*Q)’,
where Q) ~ P, s > 2 and @)’ is a proper prefix of () (and we will see soon that
such a representation is unique). In particular, if P ~ @) and u is P-periodic
then it is also @)-periodic. Therefore, for every cyclic period p we have the
well-defined notion Per(p) of p-periodic words.

In order to go any further, we need the following simple but very funda-
mental Overlapping Lemmas (see e.g. [17, Section 1.2]).

3This is a slight deviation from the notation of [17] where periods are not required to
be simple.



Lemma 2.1 (First Overlapping Lemma) Let P,Q be two periods, and
u, v, w be reduced words such that

wv = P'P*, vw = Q'Q’, (3)

where s,t > 0, P’ is a proper suffiz of P and Q' is a proper prefix of Q.
Assume further that
o] = [P[ + Q.

Then P ~ Q. Moreover, the two representations (3) are compatible in

phase in the following sense: if v = P"P*, where P" is a (possibly another)
suffiz of P, P = P®P", then QQ = P"P®).

Applying Lemma 2.1 in the case when the wings u, w are empty, we find
that Per(p) N Per(q) = ) for any two different cyclic periods p,q.* The left
period of u € Per(p) is defined as that particular P € p for which u =
P*P' (s > 2), and right periods are defined symmetrically. Then the second
part of Lemma 2.1 implies that left and right periods of periodic words are
uniquely defined. Also, if we know left and right periods of u € Per(p),
and also know |u| within additive error C - |p|, then u itself is completely
determined up to (2C +1) possibilities (this simple remark will play a crucial
role in Section 5).

Finally, let u = LvR be an occurrence of a p-periodic word v into a
(reduced) word u. Let us choose any mazimal occurrence u = L'0R’ of a
p-periodic word subsuming this one (that is, L' is a prefix of L, and R’ is a
suffix of R). Then Lemma 2.1 again implies that this occurrence is uniquely
defined, and we call it the mazimal p-periodic extension of the occurrence
u = LvR. Equivalently, the length of the common part of any two different
maximal occurrences of p-periodic words into the same word is less than 2|p|
(otherwise they could have been combined into one larger occurrence of a
p-periodic word by Lemma 2.1).

First Overlapping Lemma basically says that occurrences of sufficiently
periodic words can not overlap “accidentally”, and this is what one needs
for the problems where the periodical structure is given to us a priori (which
is the case e.g. for the Burnside problem). On the contrary, the Second
Overlapping Lemma tells us how to eztract such structure from any two oc-
currences of an arbitrary word, provided they are close enough. This lemma

“Note that |v| > 2|P| and |v| > 2|Q| imply |v] > |P| +|Q|.



lies in the heart of the research on equations in free groups cited in Introduc-
tion.

Lemma 2.2 (Second Overlapping Lemma) Let u = LvR, v = L'vR'
be two different occurrences of the same word v into u. Assume that

1
I = 121] < 5o,

Then v € Per(p) for some cyclic period p and, moreover, these two occur-
rences of v into u have the same maximal p-periodic extension.

If G is a group and Ay,..., Ay C G then

Al A Y b e G| Aan,. . a) € A x . x A)(b=aias...ay) )} .

Throughout the paper we use the asymptotic notation O,Q,@, Q quite
customary in Combinatorics and Theoretical Computer Science. Thus®,
f < O(g) [f > Qg)] means “there exists an absolute constant C' >
0 [e > 0] such that f < Cg [f > Ce, respectively] for all possi-
ble values of parameters assumed in f, ¢ explicitly or implicitly”. TIts
“soft” version f < 6(9) and f > Q(g) can be used when all param-
eters ny,...,n; to f,g are integer and given explicitly (or, at least, are
clear from the context). f(ny,...,n) < O(g(ny,....m)) [f(n1,...,m4) >
Q(g(ny, . ..,n;))] means that there exist absolute constants C, k > 0 [¢, k > 0]
such that Ynq,...,ni(f(ng,...,n) < C - logk(nl + ...+ n)gng, ..., n))
Vny, . .on(f(ny, .. ng) > eg(ng, ... ng)/ log"(ny 4 ... 4+ny)), respectively].

Thus, in this notation our main result looks as follows.

Theorem 2.3 Let A C Fy, be a finite subset of the free group F,, with at
least two non-commuting elements. Then |A- A - Al > Q(|A?).

Remark 1 In one place of our proof (namely, Lemma 3.5) constants as-
sumed in the asymptotic notation do become dependent on the number of
generators m. But this dependence can be eliminated by considering any
fixed embedding ¢ : F,, — F5, and applying Theorem 2.3 to ¢(A) (instead
of applying it to the original A C F,).

5Most people would have used here the equality sign, but we find the combination of
this notation with <, > particularly expressive and instructive.



In fact, our main Lemma 3.2 readily implies a more general result. Recall
that a group G is virtually free [virtually cyclic] if it contains a free [cyclic,
respectively| subgroup of finite index.

Theorem 2.4 Let G be any fized virtually free group and A C G be its finite

subset such that the subgroup generated by A is not virtually cyclic. Then
A~ A A > Q(AP).

In particular, it is well-known that the modular group PSLy(Z) ~ Zo*Zs
is virtually free (e.g. because its commutant is torsion-free, therefore it is a
free subgroup (of index 6) by the Kurosh subgroup theorem [12, Theorem
IV.1.10]). The same is true for SLy(Z) (every free subgroup of PSLs(Z) can
be lifted to SL4(Z)), as well as for GLo(Z). Therefore, Theorem 2.4 improves
upon [4, Theorem 5.1] (that, under the same assumptions, stated the bound
|A-A- Al > |A|I'* for SLy(Z) and for an unspecified constant § > 0).

3. Reduction: combinatorial part

This and the next two sections are entirely devoted to the proof of Theorems
2.3, 2.4. Our overall strategy is to analyze a potential counterexample by
exhibiting in it “sufficiently large” subsets with “sufficiently rich” structure
(accordingly, most of the proof is written in the distinct “top-down” style).
And, as stated, Theorem 2.3 turns out to be very inconvenient for this pur-
pose. Our first task is to replace it with a stronger (and much clumsier)
statement specifically designed with several types of reduction in mind.

Definition 3.1 For a finite subset A C F,,,, A(A) is the maximal possible
size of the intersection ANC', where C' runs over all cosets of maximal cyclic
subgroups® in F,.

Note that A is monotone (A(A) < A(B) if A C B) and invariant under
left and right shifts (A(A) = A(ud) = A(Au)).

Lemma 3.2 (Main Lemma) Let A, B,C C F,, be finite subsets, and as-
sume that
AL, |C| < O(|B]).

6Since this class of subgroups is invariant under conjugacy, it does not matter whether
we consider left or right cosets in this definition.



Then one of the following two is true.
a) [4-B-C|>Q(4A]-|C));
b) A(B) = Q(|B]).

For the benefit of the reader who may feel uncomfortable with that much
of asymptotic notation, we provide a translation of this statement to the €/4-
language (and in all analogous places below the translation is quite similar).

Lemma 3.3 (Main Lemma, ¢/0-version) For every D > 0 there exist
€, K > 0 such that the following is true. For all finite A, B,C C F,, with

yhA\l,d!C\ < D -|B|, either |A-B-C| > em o A(B) > - |B
oLas.

Proof of Theorems 2.3, 2.4 from Lemma 3.2. Since every virtually
cyclic subgroup of a free group is cyclic, Theorem 2.4 implies Theorem 2.3,
and we only have to prove the former.

Let G be a virtually free group, and F' < G be a free subgroup of finite
index; w.l.o.g. we can assume that F' is normal. Let A C G be finite; repre-
sent it as A =U,cp (uAy,), where U is an arbitrary set of representatives for
cosets of F' and A, C F. Choose that u € U for which |A,| is maximal (thus,
| A, > Q(]A])), and note that (uA,)(ud,)(uAd,) = v?(u "t Au) Ay (uAu ).
We apply Lemma 3.2 with A := v*A,u, B := A,, C = uA,u~'. If the
conclusion a) holds, we are done. If A(A,) > Q(|A.]) > Q(|A]), there exists
a maximal cyclic subgroup C' < F and v € F such that |A,N(vC)| > Q(|A]).
Denoting w = uwv, we conclude that |AN (wC)| > Q(|A|). Let N < G be the
normalizer of C.

If w ¢ N, we are done: since C' and (wCw™') are different maximal
cyclic subgroups in F', they have empty intersection. Therefore, all products
c1ea (c1,60 € (wC)) are pairwise distinct and |A-A-A] > |A- Al > |AN
(wC)> > Q(IA]?).

Assume w € N. Since NN F = (C, C has a finite index in N and,
therefore, N is virtually cyclic. Since A does not generate a virtually cyclic
subgroup, A ¢ N; fix arbitrarily @ € A\ N. And now we are done by the
same argument as above, applied to the product (wC)a(wC').m

Remark 2 The statement of Lemma 3.2 allows the following three types of
reductions that we are going to use.

10



e Let u,v € F,,, Ag def Aut, By & By and Cy 4 »=1C. Then the
validity of Lemma 3.2 for the triple (Ao, By, C) implies its validity for
the original (A, B, C).

e The same conclusion holds if Ay C A, By C B,Cy C C are arbitrary
subsets with the only restriction [Ag| > Q(|A[), |Bo| > Q(|B]), |Co| >
Q).

e Assume that A = A, U ... U A, and C = C; U ... U Cy, are
decompositions of A and C' into disjoint unions of subsets, and further
assume that all {40c sets A;BC; (i € [(4], j € [{c]) are pairwise
disjoint. Then the validity of Lemma 3.2 for all triples (A4;, B, C})
implies its validity for (A4, B, C).

In the reduction of the last type we of course require the uniform depen-
dence of assumed constants (that is, ¢, K on D in the notation of Lemma
3.3).

After this preparatory work, we begin the real proof with getting rid of
cancellations.

Lemma 3.4 For any finite A C F,,, there exists u € F,, such that for any
letter y € {x1,27",...,&m,x,'} at least L|A] words in Au™" do not end
with y.

Proof. Let us call u € F,, populated if it is a suffix of at least ﬁM\ words
in A. A is populated whereas sufficiently long words are not. Choose the
longest populated word u; we claim that it has the required property.
Indeed, every one of the words yu (y € {x,27",...,2m, 7'}, u does
not begin with y~!) is not populated and therefore may appear as a suffix
in < .-|A] words from A. Hence u is a suffix of at most 3|A| words in A
(and on the other hand, it is a suffix of at least - |A| words since u itself is
populated). It only remains to note that if « is not a suffix of @ € A, then
au~ ' ends with the same letter as u !, and if it is its suffix, then au ' ends

with a different letter, unless it is empty.m

Lemma 3.5 For any finite A, B,C C F,,, with |B| > 2 there ezist u,v € F,
and Ay C Au™!, By C uBv, Cy C v 'C such that |Ag| > Q(|4]), |Bo| >
Q(|B]), |Co| > QC)) and all products abc (a € Ag, b € By, ¢ € Cy) are
reduced.

11



Proof. Apply Lemma 3.4 to A, and apply its dual version to C; let u,v be
the resulting elements. Removing from uBv the empty word (if it is there),
we find a subset By C uBv with |By| > = (|B| — 1) such that all words in
By begin with the same letter y and end with the same letter z. Finally, let
Ay C Au! consist of all those words that do not end with y !, and similarly
for Co C v 1C. |Ag| > Q(|A]) and |Cy| > 2(]C]) hold by Lemma 3.4.m

From this point on, cancellations will never appear again, and the reader
may freely assume that we are working in a free semi-group. Note that if
abc = a'b'd’ is a collision in the product A - B - C, then a,a’ are comparable
in the prefix order and ¢, ¢ are comparable in the suffix order. This suggests
that the most difficult case should be when the elements of A form a prefix
chain (defined as a set of words mutually comparable in the prefix order), and
C forms a suffiz chain. The following lemma makes this intuition precise.

Definition 3.6 Two prefix [suffix] chains Ay, Ay are incomparable if any two
a; € Ay, ag € Ay are incomparable in the prefix [suffix, respectively] order.

In particular, incomparable prefix/suffix chains are necessarily disjoint.
Also, two prefix chains A;, Ay are incomparable if and only if their minimal
elements are incomparable.

Lemma 3.7 Fvery finite set of words A contains a collection Ay,...,A; C A
of mutually incomparable prefix chains such that

ALU- U A = YDA > Q(A]), (4)

=1

and a similar statement holds for suffix chains.

Proof. Consider the restriction of the prefix order < onto A. For a € A,
let h(a) be its height defined as the maximal possible length of a prefix chain
having a as its minimal element (and entirely contained in A). All elements
of the same height A are mutually incomparable; let ¢, be their number.

Then
|A]

‘A’ — Z gh;
h=1

and also for every h there exist ¢, mutually incomparable prefix chains of
length h each (for every element a of height A include an arbitrarily chosen
prefix chain of height h with the minimal element a).

12



Thus, if ¢ is the maximal possible value of |4; U ... U A| in (4), then
t > hty, for each h, which implies

Al 4
A<t - < O(tlog]A])

h=1
and, therefore, ¢ > Q(|A).m

Now, by Lemma 3.5 we may assume in Lemma 3.2 that all products
abc (a € A,b € B,c € C) are reduced. By Lemma 3.7 we may also assume
that A [C] can be decomposed as a union of mutually incomparable prefix
[suffix, respectively] chains; say, A = A, U...U A;,, C =C1 U... UCy,.
But if ¢ # 4" € [¢4] then A;BC and Ay BC are disjoint (since A; and Ay are
incomparable in the prefix order), and similarly for j # j' € [{c]. Which
means that we can apply the reduction of the third type from Remark 2.

Summarizing what we have achieved so far, in Lemma 3.2 we can assume
w.l.o.g. that all products abe (a € A,b € B,c € C) are reduced, and that,
moreover, A is a prefix chain, and C is a suffix chain.

4. Reduction: finding aperiodicity

At this point we bring into the analysis periodic words, and the rest of the
proof is split into two almost independent parts. Namely (thinking in terms
of a hypothetical counterexample to Lemma 3.2), we want to show that:

e if |A- B-C| is small, there is enough “periodical structure” in A, B, C;

e if A(B) is small then some large subsets Ay, By, Cy display enough
“aperiodicity” in them,

and these two conclusions will contradict each other. Of these two, the first
task is much more difficult, interesting and natural to start with. But for
technical reasons we have to begin with the second.

Definition 4.1 Let a,b € F,,, and assume that the product ab is reduced.
We say that ab is left reqular if b is periodic, and a ends with P?, where P is
the left period of b (equivalently, b € Per(p) for some cyclic period p, and its
maximal p-periodic extension in ab has length > |b|+2|p|). ab is left singular

13



in all other cases. Right reqular and right singular products bc are defined by
Symmetry.

Definition 4.2 Let P be a period, and A C F,,, be a finite set. We define
Ay p as the maximal possible size of the intersection A N C, where C' runs
over all sets of the form

{LP'|t >0} (L€ Fyp, LP reduced).

A, p(A) is defined by symmetry.
Clearly, Ay p(A), A, p(A) < A(A).

Lemma 4.3 Let A, B,C C F,, be finite sets, and assume that all products
abc (a € A, b€ B, ¢ € () are reduced. Then either

A(B) = Q(|B]), (5)

or there exist Ay C A, By C B, Cy C C with |A¢| > Q(|A]), |Bo| >
Q(|B]), |Col = QC|) such that at least one of the following three is true.

a) At least £|Ao||Bo| products ab (a € Ay, b € By) are left singular.
b) At least £|Bol||Co| products be (b € By, ¢ € Cy) are right singular.

c) For every period P which is the left period of at least one periodic
word in By, Ay p(Ao) < O(1), and the dual conclusion holds for right
periods.

Proof. Either at least half of all words in B are aperiodic, or at least half
of them is periodic. In the first case both a), b) hold trivially. Removing
from B all aperiodic words in the second case, we may assume w.l.o.g. that

all words in B are periodic.

Consider now any individual cyclic period p for which B, BN Per(p)

is non-empty. If there exists P € p that appears as either the left period in
at least half of all words from B, or the right period in at least half of them,
remove from B, all words violating this. Repeating this procedure once more
if necessary, we will find B, C B, with |B,| > Q(B,) and such that one of
the following is true.

14



a) Every period P € p appears as the left period in < %|B"J| words from
B!.
p

b) Every period P € p appears as the right period in < %|B;| words from
B!.
p

c) All words in B, have the same left and right periods.

Let B' Uy B, At the expense of decreasing |B'| by at most a factor
of three, we may assume that one and the same of these three alternatives
holds for every cyclic period p for which B, is non-empty.

Alternatives a) and b) (along with Proposition 2.1) immediately apply
the corresponding conclusions in the statement of Lemma 4.3 (with Ay :=
A, By := B', Cy := C) since then in (say) case a), for every a € A and every
cyclic period p there would be at most < £|Bj}| words b € Bj, for which ab is
left regular. So, we are left with the case when for every p, all words in By,
have the same left and right periods. Note that in this case B, is a subset of
the coset { P'P'P" |t € Z} of a cyclic subgroup and, therefore,

B, < |A(B)]. (6)

Let {p1,...,pa} be the enumeration of all cyclic periods p for which B, #
() in the order of non-decreasing length:

p1| < Ipa] < ... < pal. (7)

Choose the minimal ¢ for which Y¢_, |B;.| > 3|B'| (thus, Yl 1B,,| <
HB). Y, |B;.| > 3|B'| then |Bj, | > 1|B'|, and hence (6) implies (5).

Otherwise, 7, |B;.| > 3|B'|, and we first try out the set U{_,,, B, as
By. If at least |A||By| products ab (a € A, b € By) are left singular, or at
least 5|Bo||C| products be (b € By, ¢ € C) are right singular, we are done.

Otherwise, there exist fized by, b, € U2, +1 By, such that for at least half
of all a € A the product aby is left regular, and for at least half of all ¢ € C,
b.c is right regular. We remove from A and C' all elements violating these
properties, and let Ay, Cy be the result of this removal. Set also

1
By ¥ |J B,,.

1=1
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We finally claim that Ay, By, Cy satisfy the alternative ¢) in Lemma 4.3, and,
by symmetry, it is sufficient to check this only on the left side.

Indeed, all words in A end with Q?, where @ is the left period of b, (and
hence @) € p; for some j > ¢+ 1). If a period P appears as the left period of
some word in By then P € p; for some ¢ < /. In particular, P + () and, by
(7),

Pl < QI (8)

According to Definition 4.2, consider any fixed wing L such that LP is
reduced. If LP! € Ay then LP! ends with Q2. The word Q?, however, is not
p;-periodic, therefore, due to (8), it can not be a subword of P* for any s.
Which means that P! is a suffix of ?>. Moreover, if ¢+ > 2 then the maximal
p;-periodic extension of P! in LP! is a proper suffix of Q% and, therefore, has
the same length as its maximal p;-periodic extension in @Q?. In particular,
this extension does not depend on t. This implies that there can be at most
one value t > 2 for which LP* ends with Q?. Which shows that Ay p(A4p) < 3
and completes the proof of Lemma 4.3.m

To summarize, so far we have reduced Lemma 3.2 to its partial case
described as follows (the alternative b) in the statement of Lemma 3.2 has
already been used up in (5), and we do not need to carry it any longer).

Lemma 4.4 Let A, B,C C F,, be finite sets such that
AL, |C| < O(|B]).

Assume that all products abc (a € A, b € B, ¢ € C) are reduced, that A is a
prefiz chain, and that C s a suffix chain. Moreover, assume that one of the
following three is true.

a) At least 1| A||B| products ab (a € A, b € B) are left singular.
b) At least 1| B||C| products be (b € B, ¢ € C) are right singular.

c) For every period P which is the left period of at least one periodic
word in B, Ayp(A) < O(1), and the symmetric conclusion holds for
the right periods.

Then B
|A-B-C|>Q(A|-|C]).
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5. Finding periodicity with collision numbers

In this section we prove Lemma 4.4, thereby completing the proof of our
main result.

Fix A, B,C C F,, satisfying all the premises of Lemma 4.4. Define T" C

A x B x C as follows. If one of the alternatives a), b) holds, T' consists of

those triplets (a, b, ¢) for which either ab is left singular or be is right singular.

In the remaining case ¢), we simply let T := A x B x C. Note that in any
case

7] = Q(A] - [B] - |C]). (9)

We define the collision number cp(A, B,C') as

CT(Aa B7 C) déf

{((a, b,c),(a,V,c)) € T?| abe = a'b'c’}

For u € F,,, let
n(u) € | {(a,b,c) € T|abc=u}|.
Then by Cauchy-Schwartz and (9),

CT(A7BJC) —UEAZB.CTL(U) 2 ’ABC‘ (uEAZB.C ( )> (10)

_ TP (1APBPICP
|A-B-C| T A-B-C| )

Thus, in order to complete our proof, we only have to show that
cr(4, B,C) < O(|A||BI?|C)). (11)

Our next task is to set stage for the Second Overlapping Lemma 2.2, and
for this we need one more reduction (this time in terms of collision numbers).
But now the reduction is slightly more subtle than those based on Remark 2
seen in previous sections. For this reason we prefer to change the gears, and
we first formulate the statement we are reducing to.

Lemma 5.1 Let A, B,C C F,, be finite sets such that

Al [C] < O(1B]). (12)
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Assume that all products abe (a € A, b € B, ¢ € C) are reduced, that A
s a prefix chain of even length, and that C' is a suffix chain of even length:
A={ay,...,00m,}, C={c1,...,cong}, where a; < az < ... < ag,, and
1 < ey <F o< g, Let T C Ax B xC be such that either (A, B,C)
satisfies property c) in the statement of Lemma 4.4, or for every (a,b,c) € T
either ab is left singular or be is right singular. Then

)
{((a;,b,¢;), (an,b',c;r)) € 12 | a;be; = aybejr,
|{ja] }| N {1727- . '7nC}| - 1}
< O(JA[|IBP|C)).

Thus, the only difference in the conclusion from (11) is that we addition-
ally require that the “middle” prefix a,, of as,, separates i from ¢’, and the
same holds for 7, j'.

Proof of (11) from Lemma 5.1. Let (A, B,C) satisfy the assumptions
of Lemma 4.4, and let T" be defined as in the beginning of this section.
Assume for simplicity that |A| and |C| are powers of 2, and represent A
and C similarly to the statement of Lemma 5.1: A = {ay,...,a,,}, C =
{e1,...,Cne }y where a; < ay < ... < ap, and ¢ <* ¢z <* ... <* ¢,,. For
d <logy,na, d* <log,nc and integers a, v, let

AL Lae AlLif2Y) = o)
C M eo| i) =q).

For any fixed values of d,d*, a, v we can apply Lemma 5.1 to the triple
(A%, B,C%) letting T := T'N (AL x B x C¢"). Summing up the right-hand
sides of the resulting estimates (13), we get

Q
U
*
lIg:

O (ZZ IAZ||B|2|C$*|> =0 (Z |A||BIQ|CI> < O(|A||BP’|C)),
d,d* oy d,d*

as d,d* take on only logarithmically many values.
On the other hand, the sets in the left-hand sides of (13) give a partition
of all those tuples ((a;,b,c¢;), (ay,b',¢;r)) € T? for which a;bc; = ayb'cy and
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i # 14, j #j'. Namely, such a tuple is counted in that (A%, B,CY") where d
is the most significant bit in which binary representations of ¢ and i’ differ, d*
is defined in the same way from j, 5’ and a = [i/2¢|(= [i'/2¢]), v = [j/2% |.

And there are at most 2| A||B|?|C| tuples ((a;, b, ¢;), (ay, V', ¢;)) with a;bc; =
ayb'cjy for which either i =4' or j = j'.m

Now we prove Lemma 5.1, and at this point we have to break the sym-
metry by assuming (w.l.o.g) that

ICT <A (14)

For two words a,a’ comparable in the prefix order, we let §(a, a’) denote
their difference (that is, @ = a’d(a,a’) or ¢’ = ad(a,d’), depending on which
of the two is longer). Let P be the set of all those cyclic periods p for which
there exists an occurrence

G,y = Lyuy IRy (15)

of a p-periodical word uy in as,, which is “non-trivially cut” by a,, in the
following sense:

an, = Lyv, v is a prefix of u, with |v| > 2[p| and |d(v,u,)| > 2|p|.  (16)

It follows that for any fixed p, maximal p-periodic extensions of all such
occurrences coincide, and we choose (15) to be this maximal (and uniquely
defined) occurrence.

Next, let A, be the set of all a; € A for which we, like in (16), still have
a; = Lyv, where v is a prefix of u, with |v| > 2|p| and |0(v, uy)| > 2|p|, but
now we also additionally require that |d(a;, an, )| > 2|p|. This new condition
implies in particular that a,, & A,. In fact, it implies that for a; € A, the
word d(a;, an, ) is p-periodic; therefore, A, N Ay for every two different cyclic
periods p, q.

After this set-up, we begin proving the bound (13). First we drop from
circulation the condition |{7,7'} N {1,2,...,nc}| = 1, and simplify the dual
one by insisting that i < n4 <. That is, we will prove (13) in the form

|{((al~,b, Cj), (CLZ‘/, bl, le)) c T2 ‘ aiij = CLilbIle,
i <ma, i >ng+ 1Y (17)
< O(|A[|BP?|C)).
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We do it by case analysis according to the structural properties of a tuple
((ai, b, ¢j), (@i, ', cjr)) contributing to the left-hand side. In every of the
four cases our strategy will be the same: we will show that four out of six
elements of the tuple ((a;, b,¢;), (ay, ¥, cj)) already determine it up to O(1)
possibilities. But the exact choice of these four entries will depend on the
case.

Case 1. There is no cyclic period p such that {a;,ar} C A,.

Let us call such pairs (a;, a;) singular. First we claim that every fixed d € F,
can be realized in the form 0(a;, ay) for at most 12 singular pairs (a;, ay).

Indeed, any such realization a; = a;d defines the occurrence ay,, =
a;dd(a;, asy, ) of d into asy,,, and, moreover, |a,,| — |d| < |a;| < |a,,|. Sup-
pose for the sake of contradiction that d possesses > 13 realizations. Then, by
the pigeon-hole principle, we could choose five of them d = §(a;,, airl) =...=
6(aiy,ae) (i1 < ... <is) such that [|a,| — |a;,|| < |d|/3 for all a, 8 € [5].
Therefore, we could apply Lemma 2.2 and conclude that d € Per(p) for some
cyclic period p and, moreover, all five selected occurrences of d into ag,,
would be contained in the same maximal occurrence of a p-periodic word in
don,- Further, they would be compatible in phase (in the sense of Lemma
2.1), that is all |[a;, | — |as,|| would be multiples of [p|. Which would readily
imply that this maximal occurrence would necessarily be the occurrence (15),
and that {a;,a; } C Ay, a contradiction.

Now we only have to observe that a;bc; = ay¥'c; implies 0(a;,ay) =
8(bcj,Vcyr), that is b, ¢j, V', ¢y determine d(a;, a;). Therefore, they also de-
termine a;, ay up to < 12 possibilities, and hence the contribution of Case 1
to (17) is estimated as O(|B|?|C|?) which is O(|A||B|?|C|) by (14).

Case 2. {a;,ay} C A, for some cyclic period p and |b] < 2p|.

In this case we claim that the tuple can be retrieved (again, up to O(1)
possibilities) from a;, ¢;, ay, V. Indeed, since a;, ay € Ay, we have |§(a;, ai)| =
|0(ai, an,)| + |0(air, an,)| > 4|p|. This implies that |ay| — |a;b] > 2|p| and
hence 0(a;b, ay) is p-periodic. Its left period is completely determined by ¢;
(as 6(a;b, ar) < ¢j), and its right period is determined by a; (as 6(a;b, ay) <*
ay). Finally, since |b] < 2|p|, we can estimate its length as |ay| — |a;| —
2lp| < |6(ab, ai)| < |ay| — |ai|. Thus, given a;,c;, ay, there are at most 3
possibilities for §(a;b,a;), and once we know it, we also know b and then
¢y = d(a;bej, agl').

Thus, Case 2 contributes at most O(]A]?|B||C]) which is O(|A||BJ*|C|)
by (12).
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Case 3. {a;,ay} C A, for some cyclic period p, |b] > 2|p| but either
b & Per(p) or b € Per(p) and the product bc; is right singular.
This time the tuple is determined by b, ay, b, ¢; (as always, up to O(1) pos-
sibilities). Indeed, from these four entries we know u = alb/c; = a;bc;, as
well as the occurrence

U= Gy, 0y, ai)(Vej) (18)

of the p-periodic word d(ay, ,,ay) into it. The prefix v of b of length 2|p| is
a prefix of 0(a;,ay) and thus p-periodic; let b = vw and R def we;. Now
consider its (yet unknown!) occurrence

u = qUR (19)

into u. These two occurrences of p-periodic words into u possess a common
(also unknown) p-periodic extension u = a;0(a;, a;)(b'cj). Therefore, the
mazimal p-periodic extension u = @;0 R’ of (19) is the same as the maximal p-
periodic extension of the known occurrence (18), and hence is also determined
by (ay, V', cy). Further, if 91 is the maximal p-periodic extension of the prefix
v in the word bc;, then it should have the same right wing R': bc; = v R’
And the assumptions of Case 3 imply that |01] (and hence also |c;| since b
and R are already known) is determined within accuracy 2|p| by the word b
only. Namely, it can not exceed by more than 2|p| the length of the maximal
p-periodic extension of v in b. Therefore, |a;| and then 6(a;, a,,) are also
determined within that accuracy. But the left and right periods of the latter
words are known (it is a suffix of a,,, and has v as its prefix), hence this
word (and then a;) is determined up to O(1) possibilities.

Case 4. {a;,a;} C A, for some cyclic period p, b € Per(p) and the
product bc; is right regular.
In this final case we also claim that the information can be retrieved from
b,ai, b, cy (but for entirely different reasons). Namely, recalling the defini-
tion (15), the word 6(Ly, a;)b is p-periodic and [6(Ly, a;)| > 2|p|. Hence, the
product a;b is left regular. Since (a;, b, ¢;) € T', this implies (recall the state-
ment of Lemma 5.1) that (A, B, C') must necessarily satisfy property c) in the
statement of Lemma 4.4. In particular, Ay p(A) < O(1), where P is the left
period of b. Let Lj be the prefix of Lyu, in (15) with [Ly| < |Lj| < [Ly| + [p]
and such that the left period of §(Lj, Lyuy) is equal to P. Then a; must
necessarily have the form L;Pt for some integer t. And now the condition
Ay p(A) < O(1) again pinpoints it down to O(1) possibilities.
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We have shown that every one of four logically possible cases contributes
at most O(|A||BJ?|C|) to the left-hand side of (17). This completes the proof
of Lemma 5.1, (11), Lemmas 4.4, 3.2 and Theorems 2.3, 2.4.

6. Statistical version of Plunnecke-Ruzsa in-

equalities
In this section G' will be an abelian group. For its finite subsets Ay,..., Ag,
define the collision number c(Ay, ..., Ag) as

def
c(Ar, - A) = H(ar, - ar) (ay, . ap)) € (A x o x Ay )|
am+...ta=a+...+a.}]
These qualities were extensively used in additive combinatorics, mostly for
the case £k = 2. In the previous section we saw their application (in the

non-abelian case) for £ = 3. And here we observe how extremally natural
and appealing the Pliinnecke-Ruzsa theory looks in this setting.

By “the setting” we mean the following. By Cauchy-Schwartz (cf. (10)),

|AL? .. JAg)?
A, A >
C( 1, 9 k)_|A1'...'Ak|7
so we have the lower bound
|AL]? .. | Agl?
Ay A > ————— 20
41 k"c(Al,...,Ak) (20)
And assuming we are willing to accept the right-hand side as a “good enough”
substitute for |A; - ... Ag|, we can infer Plinnecke-Ruzsa inequalities as

follows.

Lemma 6.1

C(Bl, Ca ,Bk,A)Q
C(Bl,...,Bk,A,A)z .
Bl - ([Baf - - [Be[)?

Proof. For b= (by,...,by) € By x+--x By, let n(b) be the number of tuples
(b',a,a’) such that by + ...+ by +a =0, + ...+ b} + a'; thus,

c(By, ..., By, A) =S n(b).

b
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On the other hand, for any fixed b, every couple of tuples (69, ay, a}), (6@, as, d))

=

contributing to n(b) as

b+ tbptar = 0+ b+ dl
bi+.otbytay = b+ b +d

also contributes to ¢(By, ..., B, A, A) as
b b+ dl 4as =0 0+ +an.

And every such contribution is counted at most |By|-...-|Bg| times (as this
is an upper bound on the number of tuples b for which b; + ...+ b, takes on
the prescribed value " + ... + b,(cl) + a} — ay). Which implies

1 -,

c(Bi,...,Bp, A A) > S n(b)?,
(B e 2 T B zb: )

and make our lemma the result of yet another application of Cauchy-Schwartz.m

Lemma 6.2
C(B, Al; R ,Ak)

C(Ala"'aAk) Z ‘B’Q

Proof. Applying the union bound to all possible choices of b, b',
C(BJ Ala s 7Ak) < |‘B|2 ) dEaCz'{Cd(Ab s 7Ak)7
where cq(A1, ..., Ag) is the “shifted” version of ¢(Ay,..., Ag):
Cd(Ala S >Ak:) = H((ab R Cbk); (alla e 7a;c)) = (Al Xoeee X Ak)Q‘
a1+ ...+a+d=a;+...+a.}|

But
C(Al,...,Ak) ZCd(Al,...,Ak) (21)

is easy (and well-known). Namely, if n(e) is the number of representations
of e € G in the form a; + ... + a;, then

c(A,..., A) = > n(e)?

ca(Ar, ..., Ap) = D> nle)n(e+d),



and since the vectors (n(e)|e € G),(n(e+d)|e € G) have the same /o
norm, (21) follows by Cauchy-Schwartz.m

Theorem 6.3

c(B, A)Qk_1
c(\iA, j:Al' e ifg) > B[ A%
k times
Proof. c(A,..., Ay) is clearly invariant under negating components, so we
may assume that all signs are actually plus signs. Applying Lemma 6.1 to
By :=B, By:=...:= B, := A, we find
1
c(B,A,...,A) > W-C(B,A,...,A) (k> 2).
k times k—1

By induction on £,

c(B, A
C(Bﬂ A? e 7A) 2 |B|(2k—1_1)|A|2k_2k *
k times

Applying Lemma 6.2 finishes the proof.m

In order to interpret this result, recall that the standard doubling constant
K p given by
|A- B| = Kap|B|

in our framework corresponds, via (20), to
c(A, B) = ea|AP|B| (ean = K1)

In this notation Theorem 6.3 can be re-written as

o AP
c(£A,....+A) > 5 )
— = |B

k times

which (again, via (20)) corresponds exactly to the “classical” conclusion |+
A+ A+, A <KP|BI

The material in this section can be readily generalized to convolutions of
discrete probability measures (replacing uniform distributions on A, ..., Ay).
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Namely, the collision probability cp(p) of a discrete probability measure p is
defined as ot
cp(p) = Pla = a’],

where a,a’ are two random variables picked independently at random ac-
cording to pu. We also let

ef
loo(p) = max p({a})
a€Sup(u)
(thus, the min-entropy H*(u) is equal to —logy oo (2)). If A is the support

of p then clearly
1
loo(p) = cp(p) = T

For probability measures p1,...,u; on an abelian group G, we denote by
1+ ...+ pi their convolution, that is the measure corresponding to the
random variable a; + ... 4+ ag, where aq,...,a are picked uniformly at
random according to the measures i, ..., f.

And in this notation the proof of Theorem 6.3 can be easily generalized
to give the inequality

ok—1

1
m.cp(#ﬂiui...i;ﬁ)z (M-cp(wn))

k times

for any two discrete probability measures y,n on G.

A further generalization is apparently possible in the continuous setting
of Tao [15]. Tt is not clear, however, whether any interesting analogue of this
exists in the non-abelian case.
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