Intersections of Leray Complexes and
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Abstract
For a simplicial complex X and a field K, let E,(X ) = dim H, (X;K).
It is shown that if X,Y are complexes on the same vertex set, then
for k>0

b (X NY) <Y Y by a(X[o]) - by (Ik(Y, 0))
o€Y it+j=k

A simplicial complex X is d-Leray over K, if H;(Y;K) = 0 for
all induced subcomplexes Y C X and i > d. Let Lg(X) denote the
minimal d such that X is d-Leray over K. The above theorem implies
that if X,Y are simplicial complexes on the same vertex set then

Reformulating this inequality in commutative algebra terms, we ob-
tain the following result conjectured by Terai: If I, J are square-free
monomial ideals in S = K[z1,...,x,], then

reg(I + J) <reg(l) +reg(J) — 1

where reg(I) denotes the Castelnuovo-Mumford regularity of I.
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1 Introduction

Let X be a simplicial complex on the vertex set V. The induced subcomplex
on a subset of vertices S C V' is X[S] = {oc € X : 0 C S}. Let {} be the
void complex and let {0} be the empty compler. Any non-void complex
contains ) as a unique (—1)-dimensional face. The star of a subset A C V
is St(X,A) ={re X:7UA € X }. The linkof A C Vislk(X,A) =
{TeSt(X,A) :TNA=0}.1f A& X then St(X,A) = Ik(X,A4) = {}.
All homology groups considered below are with coefficients in a fixed field K
and we denote h;(X) = dimg H;(X). Note that h_;({}) = 0 # 1 = h_,({0}).

Our main result is the following

Theorem 1.1. Let XY be finite simplicial complexes on the same vertex
set. Then for k >0

hea (X NY) <D > g (X[o]) - hy_a(k(Y, 0)) (1)
€Y i+j=k

We next discuss some applications of Theorem 1.1. A simplicial complex
X is d-Leray over K if H;(Y) = 0 for all induced subcomplexes Y € X and
i > d. Let Lg(X) denote the minimal d such that X is d-Leray over K. Note
that Lg(X) = 0 iff X is a simplex. Lg(X) < 1iff X is the clique complex of
a chordal graph (see e.g. [11]).

The class L& of d-Leray complexes over K arises naturally in the context
of Helly type theorems [3]. The Helly number h(F) of a finite family of sets
F is the minimal positive integer h such that if X C F satisfies (o0 K # 0
for all K' C K of cardinality < h, then (o K # 0. The nerve N(K) of a
family of sets IC, is the simplicial complex whose vertex set is K and whose
simplices are all X' C K such that (o K # 0. It is easy to see that for
any field K

h(F) <14 Lg(N(F)).
For example, if F is a finite family of convex sets in R?, then by the Nerve
Lemma (see e.g. [2]) N(F) is d-Leray over K, hence follows Helly’s Theorem:
h(F) < d+1. This argument actually proves the Topological Helly Theorem:
If F is a finite family of closed sets in R? such that the intersection of any
subfamily of F is either empty or contractible, then h(F) < d + 1.

Nerves of families of convex sets however satisfy a stronger combinatorial
property called d-collapsibility [11], that leads to some of the deeper exten-
sions of Helly’s Theorem. It is of considerable interest to understand which

2



combinatorial properties of nerves of families of convex sets in R? extend to
arbitrary d-Leray complexes. For some recent work in this direction see [1, 6].
One consequence of Theorem 1.1 is the following

Theorem 1.2. Let Xq,..., X, be simplicial complexes on the same finite
vertex set. Then

() X) < 3 L(X) )

LK(U Xi) < ZLK(Xi) +r—1 . (3)
i=1 i=1
Example: Let Vi,...,V, be disjoint sets of cardinalities |V;| = a;, and let
V =U,_, Vi. Let A(A) denote the simplex on vertex set A, with boundary
OA(A) ~ SI4=2  Consider the complexes

Xi=AW) s« A(Viey) * OA(V;) « A(Vigq) * -« A(V,) .

Then .
ﬂXi = OA(V}) % - % OA(V},) o SZiiai—r—l
=1

and

UXi=0AWiu...uV,) ~ §xice?
=1

The only non-contractible induced subcomplex of X; is OA(V;), therefore
Lk (X;) = a;—1 . Similar considerations show that Lg(Uj_;X;) =>"._, a;—1
and Lg(N[_,X;) =>_._, a; — , so equality is attained in both (2) and (3).

Theorem 1.2 was first conjectured in a different but equivalent form by

Terai [8], in the context of monomial ideals . Let S = K[y, ..., x,] and let
M be a graded S-module. Let 3;;(M) = dimg Tor{ (K, M); be the graded
Betti numbers of M. The regularity of M is the minimal p = reg(M) such
that 3;;(M) vanish for j >i+p (see e.g. [4]).
For a simplicial complex X on [n] = {1,...,n} let Ix denote the ideal of
S generated by {[[,c,% : A € X}. The following fundamental result of
Hochster relates the Betti numbers of Ix to the topology of the induced
subcomplexes X.



Theorem 1.3 (Hochster [5]).

Biy(Ix) = Y dimg Hy ; »(X[W]) (4)

W=y

Hochster’s formula (4) implies that reg(lx) = Lx(X) + 1. The case r = 2
of Theorem 1.2 is therefore equivalent to the following result conjectured by
Terai [8].

Theorem 1.4. Let X andY be simplicial complezes on the same vertex set.
Then

reg(Ix + Iy) = reg(Ixny) < reg(lx) + reg(ly) — 1
reg(Ix N Iy) = reg(Ixyuy) < reg(lx) + reg(ly)

O

Theorem 1.4 can also be formulated in terms of projective dimension. Let

X*={r Cn]:[n] -7 ¢& X} denote the Alexander dual of X. Terai [7]
showed that

pd(S/1x) = reg(lx-) (5)
Using (5) it is straightforward to check that Theorem 1.4 is equivalent to

Theorem 1.5.
pd(Ix NIy) < pd(Ix) + pd(Iy)

O

In Section 2 we give a spectral sequence for the relative homology group
H.(Y, X NY), which directly implies Theorem 1.1. The proof of Theorem
1.2 is given in Section 3.

2 A Spectral Sequence for H.(Y, X NY)

Let K be a simplicial complex. The subdivision sd(K) is the order complex
of the set of the non-empty simplices of K ordered by inclusion. For ¢ € K
let Dk (o) denote the order complex of the interval [0, -] = {r € K : 7 D o}.



Dy (o) is called the dual cell of o. Let D (o) denote the order complex of

the interval (o,-] = {r € K : 7 2 o}. Note that Dg (o) is isomorphic to
sd(lk(K, o)) via the simplicial map T — 7 — 0. Since Dk (o) is contractible,
it follows that H;(Dg (0), Dk (o)) = H;_1 (Ik(K, 0)) for all i > 0. Write K (p)
for the family of p-dimensional simplices in K. The proof of Theorem 1.1
depends on the following

Proposition 2.1. Let X and Y be two complexes on the same verter set 'V,
such that dimY" = n. Then there exists a homology spectral sequence {E} }
converging to H. (Y, X NY') such that

= G n o)) @ H;_1(Ik(Y, o))

o'GY n p) 4,720
i+j=p+q

for 0<p<n,0<gq, and E;q = 0 otherwise.

Proof: In the sequel we identify abstract complexes with their geometric
realizations. Let A denote the simplex on V. For 0 < p < n let

K, = U Alo] x Dy (o) CY xsd(Y)
dimgaegn—p

and
L= |J Xlo|xDy(o) C(XNY)xsd(Y) .

oeY
dimo>n—p

Write K = K,,, L =L,. Let

T K — UA[U]:

oeY

denote the projection on the first coordinate. For a point z € Y, let 7 =
supp(z) denote the minimal simplex in Y containing z. The fiber 77!(z) =
{z} x Dy(7) is a cone, hence 7 is a homotopy equivalence. Similarly, the
restriction
mr:L— |JX[o]=XNnY
oY

is a homotopy equivalence. Let F, = C,(K,, L,) be the group of cellular
chains of the pair (K, L,). The filtration 0 C Fy C --- C F, = C,(K, L)
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gives rise to a homology spectral sequence {E"} converging to H,(K, L) =
H.(Y,X NY). We compute E' by excision and the Kiinneth formula:

E;q = HP+Q(FP/FP—1) = Hp+q(Kp, Lp U Kp—l) =~

Hytq( U Alo] x Dy(o), U X|[o] x Dy(c) U Alo] x Dy(a)) =

o€Y (n—p) c€Y (n—p)
@ H,14(Alo] x Dy(0),X[o] x Dy(0) U Alo] x Dy(a)) =~
o€Y (n—p)

B D H(AP.X[) ©H(Dy(0). Dy(0)) =

c€Y (n—p) i+j=p+q
b = o)) ® H;_1(k(Y, o)) .
c€Y (n—p) i+j=p+q

O

Remark: The derivation of the above spectral sequence may be viewed as
a simple application of the method of simplicial resolutions. See Vassiliev’s
papers [9, 10] for a description of this technique, and for far reaching appli-
cations to plane arrangements and to spaces of Hermitian operators.

Proof of Theorem 1.1: By Proposition 2.1

hy 1 (XNY) <hp (V) + (Y, X NY) <

bt (V) + ) dim E)

p+q=k

o+ Y Y R L (K(Y.0)) <

0£ocY it+j=k
dimo>n—k

> hi h; 1 (Ik(Y,0)) .

oeY i+j=k



3 Intersection of Leray Complexes

We first recall a well-known characterization of d-Leray complexes. For
completeness we include a proof.

Proposition 3.1. For a simplicial complex X, the following conditions are
equivalent:

(i) X is d-Leray over K.
(i) H;(Ik(X,0)) =0 for every o € X and i > d.

It will be convenient to prove a slightly more general result. Let k,m >
0. We say that a simplicial complex X on V satisfies condition P(k,m) if
H;(Ik(X[A], B)) =0 for all BC A C V such that |A] > |V| -k, |B| < m.

Claim 3.2. Ifk > 0 and m > 1 then conditions P(k,m) and P(k+1,m—1)
are equivalent.

Proof: Suppose BC ACV and By C A; C V satisfy B= B, U{v} , A=
Ay U{v} for some v € Ay, and let

Zy = 1k(X[A1), B1) . Z» = St(k(X[A], B)),v) .

Then
WU Zy =1k(X[A],By) , ZiNZy=1k(X[A], B)

and by Mayer-Vietoris there is an exact sequence
o — Hp (k(XT[A], By)) — H;(Ik(X[4], B)) —

H;(Ik(X[A1], By)) — H;(k(X[A], By)) — ... . (6)

Pk,m)=P(k+1,m—1): Suppose X satisfies P(k,m) and let By C
Ay C V such that |[V|—|A;| =k+1and |B| <m—1. Choose av € V — A
and let A = Ay U{v}, B = By U{v}. Let i > d, then by the assumption
on X, both the second and the fourth terms in (6) vanish. It follows that
H; (Ik(X[A], B1)) = 0 as required.

Pk+1,m—-1)=P(k,m): Suppose X satisfies P(k+ 1,m — 1) and let
B C A C V such that |V| - |A] <k and |B| = m. Choose a v € B and let
Ay =A—wv, By =B —wv. Let ¢« > d, then by the assumption on X, both the
first and the third terms in (6) vanish. It follows that H, (Ik(X[A], B)) = 0
as required.



O

Proof of Proposition 3.1: Let X be a complex on n vertices. Then (i) is
equivalent to P(n,0), while (ii) is equivalent to P(0,n). On the other hand,
P(n,0) and P(0,n) are equivalent by Claim 3.2.

O

Proof of Theorem 1.2: By induction it suffices to consider the r = 2
case. Let X,Y be complexes on V with Lg(X) = a , Lg(Y) = b, and let
k > a4+ b. Then for any ¢ € Y and for any i, j such that i + j = k, either
i > a hence h;_1(X|[o]) = 0, or j > b which by Proposition 3.1 implies that
h;_1(k(Y,0)) = 0. By Theorem 1.1 it then follows that hy_(X NY) = 0.
Therefore

Lg(XNY) < ?Q&(LK(X[S]) + Le(Y[5]) = Le(X) + Le(Y) . (7)

Next, let k& > Lg(X) + Lx(Y) + 1. Then by (7) and the Mayer-Vietoris
sequence

— Hpy(X) @ Hy(Y) - Hy(XUY) - Hy_ (X NY) —
it follows that H,(X UY) = 0. Hence

Lg(XUY) < rSnCa‘:»/c(LK(X[S]) + Lx(Y[S]) + 1) = Lg(X) + Lg(Y) + 1.

O
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