Intersections of Leray Complexes and Regularity of Monomial Ideals

Gil Kalai* ${ }^{*}$ Roy Meshulam ${ }^{\dagger}$

Abstract

For a simplicial complex X and a field \mathbb{K}, let $\tilde{\mathrm{h}}_{i}(X)=\operatorname{dim} \tilde{\mathrm{H}}_{i}(X ; \mathbb{K})$.

 It is shown that if X, Y are complexes on the same vertex set, then for $k \geq 0$$$
\tilde{\mathrm{h}}_{k-1}(X \cap Y) \leq \sum_{\sigma \in Y} \sum_{i+j=k} \tilde{\mathrm{~h}}_{i-1}(X[\sigma]) \cdot \tilde{\mathrm{h}}_{j-1}(\operatorname{lk}(Y, \sigma)) .
$$

A simplicial complex X is d-Leray over \mathbb{K}, if $\tilde{\mathrm{H}}_{i}(Y ; \mathbb{K})=0$ for all induced subcomplexes $Y \subset X$ and $i \geq d$. Let $L_{\mathbb{K}}(X)$ denote the minimal d such that X is d-Leray over \mathbb{K}. The above theorem implies that if X, Y are simplicial complexes on the same vertex set then

$$
L_{\mathbb{K}}(X \cap Y) \leq L_{\mathbb{K}}(X)+L_{\mathbb{K}}(Y) .
$$

Reformulating this inequality in commutative algebra terms, we obtain the following result conjectured by Terai: If I, J are square-free monomial ideals in $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\operatorname{reg}(I+J) \leq \operatorname{reg}(I)+\operatorname{reg}(J)-1
$$

where $\operatorname{reg}(I)$ denotes the Castelnuovo-Mumford regularity of I.

Math Subject Classification. 13F55, 55U10.
Keywords and Phrases. Simplicial homology, Monomial ideals, Regularity.
*Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel, and Departments of Computer Science and Mathematics, Yale University. e-mail: kalai@math.huji.ac.il . Research supported by ISF, BSF and NSF grants.
${ }^{\dagger}$ Department of Mathematics, Technion, Haifa 32000, Israel, and Institute for Advanced Study, Princeton 08540. e-mail: meshulam@math.technion.ac.il . Research supported by the Israel Science Foundation and by a State of New Jersey grant.

1 Introduction

Let X be a simplicial complex on the vertex set V. The induced subcomplex on a subset of vertices $S \subset V$ is $X[S]=\{\sigma \in X: \sigma \subset S\}$. Let $\}$ be the void complex and let $\{\emptyset\}$ be the empty complex. Any non-void complex contains \emptyset as a unique (-1)-dimensional face. The star of a subset $A \subset V$ is $\operatorname{St}(X, A)=\{\tau \in X: \tau \cup A \in X\}$. The link of $A \subset V$ is $\operatorname{lk}(X, A)=$ $\{\tau \in \operatorname{St}(X, A): \tau \cap A=\emptyset\}$. If $A \notin X$ then $\operatorname{St}(X, A)=\operatorname{lk}(X, A)=\{ \}$. All homology groups considered below are with coefficients in a fixed field \mathbb{K} and we denote $\tilde{\mathrm{h}}_{i}(X)=\operatorname{dim}_{\mathbb{K}} \tilde{\mathrm{H}}_{i}(X)$. Note that $\tilde{\mathrm{h}}_{-1}(\{ \})=0 \neq 1=\tilde{\mathrm{h}}_{-1}(\{\emptyset\})$. Our main result is the following
Theorem 1.1. Let X, Y be finite simplicial complexes on the same vertex set. Then for $k \geq 0$

$$
\begin{equation*}
\tilde{\mathrm{h}}_{k-1}(X \cap Y) \leq \sum_{\sigma \in Y} \sum_{i+j=k} \tilde{\mathrm{~h}}_{i-1}(X[\sigma]) \cdot \tilde{\mathrm{h}}_{j-1}(\operatorname{lk}(Y, \sigma)) . \tag{1}
\end{equation*}
$$

We next discuss some applications of Theorem 1.1. A simplicial complex X is d-Leray over \mathbb{K} if $\tilde{\mathrm{H}}_{i}(Y)=0$ for all induced subcomplexes $Y \subset X$ and $i \geq d$. Let $\mathrm{L}_{\mathbb{K}}(X)$ denote the minimal d such that X is d-Leray over \mathbb{K}. Note that $\mathrm{L}_{\mathbb{K}}(X)=0$ iff X is a simplex. $\mathrm{L}_{\mathbb{K}}(X) \leq 1$ iff X is the clique complex of a chordal graph (see e.g. [11]).

The class $\mathcal{L}_{\mathbb{K}}^{d}$ of d-Leray complexes over \mathbb{K} arises naturally in the context of Helly type theorems [3]. The Helly number $\mathrm{h}(\mathcal{F})$ of a finite family of sets \mathcal{F} is the minimal positive integer h such that if $\mathcal{K} \subset \mathcal{F}$ satisfies $\bigcap_{K \in \mathcal{K}^{\prime}} K \neq \emptyset$ for all $\mathcal{K}^{\prime} \subset \mathcal{K}$ of cardinality $\leq h$, then $\bigcap_{K \in \mathcal{K}} K \neq \emptyset$. The nerve $N(\mathcal{K})$ of a family of sets \mathcal{K}, is the simplicial complex whose vertex set is \mathcal{K} and whose simplices are all $\mathcal{K}^{\prime} \subset \mathcal{K}$ such that $\bigcap_{K \in \mathcal{K}^{\prime}} K \neq \emptyset$. It is easy to see that for any field \mathbb{K}

$$
\mathrm{h}(\mathcal{F}) \leq 1+\mathrm{L}_{\mathbb{K}}(N(\mathcal{F}))
$$

For example, if \mathcal{F} is a finite family of convex sets in \mathbb{R}^{d}, then by the Nerve Lemma (see e.g. [2]) $N(\mathcal{F})$ is d-Leray over \mathbb{K}, hence follows Helly's Theorem: $\mathrm{h}(\mathcal{F}) \leq d+1$. This argument actually proves the Topological Helly Theorem: If \mathcal{F} is a finite family of closed sets in \mathbb{R}^{d} such that the intersection of any subfamily of \mathcal{F} is either empty or contractible, then $\mathrm{h}(\mathcal{F}) \leq d+1$.

Nerves of families of convex sets however satisfy a stronger combinatorial property called d-collapsibility [11], that leads to some of the deeper extensions of Helly's Theorem. It is of considerable interest to understand which
combinatorial properties of nerves of families of convex sets in \mathbb{R}^{d} extend to arbitrary d-Leray complexes. For some recent work in this direction see $[1,6]$. One consequence of Theorem 1.1 is the following

Theorem 1.2. Let X_{1}, \ldots, X_{r} be simplicial complexes on the same finite vertex set. Then

$$
\begin{gather*}
\mathrm{L}_{\mathbb{K}}\left(\bigcap_{i=1}^{r} X_{i}\right) \leq \sum_{i=1}^{r} \mathrm{~L}_{\mathbb{K}}\left(X_{i}\right) \tag{2}\\
\mathrm{L}_{\mathbb{K}}\left(\bigcup_{i=1}^{r} X_{i}\right) \leq \sum_{i=1}^{r} \mathrm{~L}_{\mathbb{K}}\left(X_{i}\right)+r-1 . \tag{3}
\end{gather*}
$$

Example: Let V_{1}, \ldots, V_{r} be disjoint sets of cardinalities $\left|V_{i}\right|=a_{i}$, and let $V=\bigcup_{i=1}^{r} V_{i}$. Let $\Delta(A)$ denote the simplex on vertex set A, with boundary $\partial \Delta(A) \simeq S^{|A|-2}$. Consider the complexes

$$
X_{i}=\Delta\left(V_{1}\right) * \cdots * \Delta\left(V_{i-1}\right) * \partial \Delta\left(V_{i}\right) * \Delta\left(V_{i+1}\right) * \cdots * \Delta\left(V_{r}\right) .
$$

Then

$$
\bigcap_{i=1}^{r} X_{i}=\partial \Delta\left(V_{1}\right) * \cdots * \partial \Delta\left(V_{r}\right) \simeq S^{\sum_{i=1}^{r} a_{i}-r-1}
$$

and

$$
\bigcup_{i=1}^{r} X_{i}=\partial \Delta\left(V_{1} \cup \ldots \cup V_{r}\right) \simeq S^{\sum_{i=1}^{r} a_{i}-2}
$$

The only non-contractible induced subcomplex of X_{i} is $\partial \Delta\left(V_{i}\right)$, therefore $\mathrm{L}_{\mathbb{K}}\left(X_{i}\right)=a_{i}-1$. Similar considerations show that $\mathrm{L}_{\mathbb{K}}\left(\cup_{i=1}^{r} X_{i}\right)=\sum_{i=1}^{r} a_{i}-1$ and $\mathrm{L}_{\mathbb{K}}\left(\cap_{i=1}^{r} X_{i}\right)=\sum_{i=1}^{r} a_{i}-r$, so equality is attained in both (2) and (3).

Theorem 1.2 was first conjectured in a different but equivalent form by Terai [8], in the context of monomial ideals . Let $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and let M be a graded S-module. Let $\beta_{i j}(M)=\operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S}(\mathbb{K}, M)_{j}$ be the graded Betti numbers of M. The regularity of M is the minimal $\rho=\operatorname{reg}(M)$ such that $\beta_{i j}(M)$ vanish for $j>i+\rho$ (see e.g. [4]).
For a simplicial complex X on $[n]=\{1, \ldots, n\}$ let I_{X} denote the ideal of S generated by $\left\{\prod_{i \in A} x_{i}: A \notin X\right\}$. The following fundamental result of Hochster relates the Betti numbers of I_{X} to the topology of the induced subcomplexes X.

Theorem 1.3 (Hochster [5]).

$$
\begin{equation*}
\beta_{i j}\left(I_{X}\right)=\sum_{|W|=j} \operatorname{dim}_{\mathbb{K}} \tilde{\mathrm{H}}_{j-i-2}(X[W]) \tag{4}
\end{equation*}
$$

Hochster's formula (4) implies that $\operatorname{reg}\left(I_{X}\right)=\mathrm{L}_{\mathbb{K}}(X)+1$. The case $r=2$ of Theorem 1.2 is therefore equivalent to the following result conjectured by Terai [8].

Theorem 1.4. Let X and Y be simplicial complexes on the same vertex set. Then

$$
\begin{gathered}
\operatorname{reg}\left(I_{X}+I_{Y}\right)=\operatorname{reg}\left(I_{X \cap Y}\right) \leq \operatorname{reg}\left(I_{X}\right)+\operatorname{reg}\left(I_{Y}\right)-1 \\
\operatorname{reg}\left(I_{X} \cap I_{Y}\right)=\operatorname{reg}\left(I_{X \cup Y}\right) \leq \operatorname{reg}\left(I_{X}\right)+\operatorname{reg}\left(I_{Y}\right) .
\end{gathered}
$$

Theorem 1.4 can also be formulated in terms of projective dimension. Let $X^{*}=\{\tau \subset[n]:[n]-\tau \notin X\}$ denote the Alexander dual of X. Terai [7] showed that

$$
\begin{equation*}
\operatorname{pd}\left(S / I_{X}\right)=\operatorname{reg}\left(I_{X^{*}}\right) \tag{5}
\end{equation*}
$$

Using (5) it is straightforward to check that Theorem 1.4 is equivalent to

Theorem 1.5.

$$
\begin{gathered}
\operatorname{pd}\left(I_{X} \cap I_{Y}\right) \leq \operatorname{pd}\left(I_{X}\right)+\operatorname{pd}\left(I_{Y}\right) \\
\operatorname{pd}\left(I_{X}+I_{Y}\right) \leq \operatorname{pd}\left(I_{X}\right)+\operatorname{pd}\left(I_{Y}\right)+1
\end{gathered}
$$

In Section 2 we give a spectral sequence for the relative homology group $\mathrm{H}_{*}(Y, X \cap Y)$, which directly implies Theorem 1.1. The proof of Theorem 1.2 is given in Section 3.

2 A Spectral Sequence for $\mathrm{H}_{*}(Y, X \cap Y)$

Let K be a simplicial complex. The subdivision $\operatorname{sd}(K)$ is the order complex of the set of the non-empty simplices of K ordered by inclusion. For $\sigma \in K$ let $D_{K}(\sigma)$ denote the order complex of the interval $[\sigma, \cdot]=\{\tau \in K: \tau \supset \sigma\}$.
$D_{K}(\sigma)$ is called the dual cell of σ. Let $D_{K}(\sigma)$ denote the order complex of the interval $(\sigma, \cdot]=\{\tau \in K: \tau \supsetneqq \sigma\}$. Note that $\dot{D}_{K}(\sigma)$ is isomorphic to $\operatorname{sd}(\operatorname{lk}(K, \sigma))$ via the simplicial map $\tau \rightarrow \tau-\sigma$. Since $D_{K}(\sigma)$ is contractible, it follows that $\mathrm{H}_{i}\left(D_{K}(\sigma), \dot{D}_{K}(\sigma)\right) \cong \tilde{\mathrm{H}}_{i-1}(\mathrm{lk}(K, \sigma))$ for all $i \geq 0$. Write $K(p)$ for the family of p-dimensional simplices in K. The proof of Theorem 1.1 depends on the following

Proposition 2.1. Let X and Y be two complexes on the same vertex set V, such that $\operatorname{dim} Y=n$. Then there exists a homology spectral sequence $\left\{E_{p, q}^{r}\right\}$ converging to $\mathrm{H}_{*}(Y, X \cap Y)$ such that

$$
E_{p, q}^{1}=\bigoplus_{\sigma \in Y(n-p)} \bigoplus_{\substack{i, j \geq 0 \\ i+j=p+q}} \tilde{\mathrm{H}}_{i-1}(X[\sigma]) \otimes \tilde{\mathrm{H}}_{j-1}(\mathrm{lk}(Y, \sigma))
$$

for $0 \leq p \leq n, 0 \leq q$, and $E_{p, q}^{1}=0$ otherwise.
Proof: In the sequel we identify abstract complexes with their geometric realizations. Let Δ denote the simplex on V. For $0 \leq p \leq n$ let

$$
K_{p}=\bigcup_{\substack{\sigma \in Y \\ \operatorname{dim} \sigma \geq n-p}} \Delta[\sigma] \times D_{Y}(\sigma) \subset Y \times \operatorname{sd}(Y)
$$

and

$$
L_{p}=\bigcup_{\substack{\sigma \in Y \\ \operatorname{dim} \sigma \geq n-p}} X[\sigma] \times D_{Y}(\sigma) \subset(X \cap Y) \times \operatorname{sd}(Y)
$$

Write $K=K_{n}, L=L_{n}$. Let

$$
\pi: K \rightarrow \bigcup_{\sigma \in Y} \Delta[\sigma]=Y
$$

denote the projection on the first coordinate. For a point $z \in Y$, let $\tau=$ $\operatorname{supp}(z)$ denote the minimal simplex in Y containing z. The fiber $\pi^{-1}(z)=$ $\{z\} \times D_{Y}(\tau)$ is a cone, hence π is a homotopy equivalence. Similarly, the restriction

$$
\pi_{\mid L}: L \rightarrow \bigcup_{\sigma \in Y} X[\sigma]=X \cap Y
$$

is a homotopy equivalence. Let $F_{p}=C_{*}\left(K_{p}, L_{p}\right)$ be the group of cellular chains of the pair $\left(K_{p}, L_{p}\right)$. The filtration $0 \subset F_{0} \subset \cdots \subset F_{n}=C_{*}(K, L)$
gives rise to a homology spectral sequence $\left\{E^{r}\right\}$ converging to $\mathrm{H}_{*}(K, L) \cong$ $\mathrm{H}_{*}(Y, X \cap Y)$. We compute E^{1} by excision and the Künneth formula:

$$
\begin{gathered}
E_{p, q}^{1}=\mathrm{H}_{p+q}\left(F_{p} / F_{p-1}\right) \cong \mathrm{H}_{p+q}\left(K_{p}, L_{p} \cup K_{p-1}\right) \cong \\
\mathrm{H}_{p+q}\left(\bigcup_{\sigma \in Y(n-p)} \Delta[\sigma] \times D_{Y}(\sigma), \bigcup_{\sigma \in Y(n-p)} X[\sigma] \times D_{Y}(\sigma) \cup \Delta[\sigma] \times \dot{D}_{Y}(\sigma)\right) \cong
\end{gathered}
$$

$$
\bigoplus_{\sigma \in Y(n-p)} \mathrm{H}_{p+q}\left(\Delta[\sigma] \times D_{Y}(\sigma), X[\sigma] \times D_{Y}(\sigma) \cup \Delta[\sigma] \times \dot{D}_{Y}(\sigma)\right) \cong
$$

$$
\bigoplus_{\sigma \in Y(n-p)} \bigoplus_{i+j=p+q} \mathrm{H}_{i}(\Delta[\sigma], X[\sigma]) \otimes \mathrm{H}_{j}\left(D_{Y}(\sigma), \dot{D}_{Y}(\sigma)\right) \cong
$$

$$
\bigoplus_{\sigma \in Y(n-p)} \bigoplus_{i+j=p+q} \tilde{\mathrm{H}}_{i-1}(X[\sigma]) \otimes \tilde{\mathrm{H}}_{j-1}(\operatorname{lk}(Y, \sigma))
$$

Remark: The derivation of the above spectral sequence may be viewed as a simple application of the method of simplicial resolutions. See Vassiliev's papers $[9,10]$ for a description of this technique, and for far reaching applications to plane arrangements and to spaces of Hermitian operators.

Proof of Theorem 1.1: By Proposition 2.1

$$
\begin{gathered}
\tilde{\mathrm{h}}_{k-1}(X \cap Y) \leq \tilde{\mathrm{h}}_{k-1}(Y)+\mathrm{h}_{k}(Y, X \cap Y) \leq \\
\tilde{\mathrm{h}}_{k-1}(Y)+\sum_{p+q=k} \operatorname{dim} E_{p, q}^{1}= \\
\tilde{\mathrm{h}}_{k-1}(Y)+\sum_{\substack{\emptyset \neq \sigma \in Y \\
\operatorname{dim} \sigma \geq n-k}} \sum_{i+j=k} \tilde{\mathrm{~h}}_{i-1}(X[\sigma]) \cdot \tilde{\mathrm{h}}_{j-1}(\operatorname{lk}(Y, \sigma)) \leq \\
\sum_{\sigma \in Y} \sum_{i+j=k} \tilde{\mathrm{~h}}_{i-1}(X[\sigma]) \cdot \tilde{\mathrm{h}}_{j-1}(\operatorname{lk}(Y, \sigma)) .
\end{gathered}
$$

3 Intersection of Leray Complexes

We first recall a well-known characterization of d-Leray complexes. For completeness we include a proof.

Proposition 3.1. For a simplicial complex X, the following conditions are equivalent:
(i) X is d-Leray over \mathbb{K}.
(ii) $\tilde{\mathrm{H}}_{i}(\mathrm{lk}(X, \sigma))=0$ for every $\sigma \in X$ and $i \geq d$.

It will be convenient to prove a slightly more general result. Let $k, m \geq$ 0 . We say that a simplicial complex X on V satisfies condition $P(k, m)$ if $\tilde{\mathrm{H}}_{i}(\operatorname{lk}(X[A], B))=0$ for all $B \subset A \subset V$ such that $|A| \geq|V|-k,|B| \leq m$.
Claim 3.2. If $k \geq 0$ and $m \geq 1$ then conditions $P(k, m)$ and $P(k+1, m-1)$ are equivalent.

Proof: Suppose $B \subset A \subset V$ and $B_{1} \subset A_{1} \subset V$ satisfy $B=B_{1} \cup\{v\}, A=$ $A_{1} \cup\{v\}$ for some $v \notin A_{1}$, and let

$$
Z_{1}=\operatorname{lk}\left(X\left[A_{1}\right], B_{1}\right) \quad, \quad Z_{2}=\operatorname{St}\left(\operatorname{lk}\left(X[A], B_{1}\right), v\right)
$$

Then

$$
Z_{1} \cup Z_{2}=\operatorname{lk}\left(X[A], B_{1}\right) \quad, \quad Z_{1} \cap Z_{2}=\operatorname{lk}(X[A], B)
$$

and by Mayer-Vietoris there is an exact sequence

$$
\begin{align*}
& \ldots \rightarrow \tilde{\mathrm{H}}_{i+1}\left(\operatorname{lk}\left(X[A], B_{1}\right)\right) \rightarrow \tilde{\mathrm{H}}_{i}(\operatorname{lk}(X[A], B)) \rightarrow \\
& \tilde{\mathrm{H}}_{i}\left(\operatorname{lk}\left(X\left[A_{1}\right], B_{1}\right)\right) \rightarrow \tilde{\mathrm{H}}_{i}\left(\operatorname{lk}\left(X[A], B_{1}\right)\right) \rightarrow \ldots \tag{6}
\end{align*}
$$

$\mathbf{P}(\mathbf{k}, \mathbf{m}) \Rightarrow \mathbf{P}(\mathbf{k}+\mathbf{1}, \mathbf{m}-\mathbf{1}): \quad$ Suppose X satisfies $P(k, m)$ and let $B_{1} \subset$ $A_{1} \subset V$ such that $|V|-\left|A_{1}\right|=k+1$ and $\left|B_{1}\right| \leq m-1$. Choose a $v \in V-A_{1}$ and let $A=A_{1} \cup\{v\}, B=B_{1} \cup\{v\}$. Let $i \geq d$, then by the assumption on X, both the second and the fourth terms in (6) vanish. It follows that $\tilde{\mathrm{H}}_{i}\left(\operatorname{lk}\left(X\left[A_{1}\right], B_{1}\right)\right)=0$ as required.
$\mathbf{P}(\mathbf{k}+\mathbf{1}, \mathbf{m}-\mathbf{1}) \Rightarrow \mathbf{P}(\mathbf{k}, \mathbf{m})$: Suppose X satisfies $P(k+1, m-1)$ and let $B \subset A \subset V$ such that $|V|-|A| \leq k$ and $|B|=m$. Choose a $v \in B$ and let $A_{1}=A-v, B_{1}=B-v$. Let $i \geq d$, then by the assumption on X, both the first and the third terms in (6) vanish. It follows that $\tilde{\mathrm{H}}_{i}(\operatorname{lk}(X[A], B))=0$ as required.

Proof of Proposition 3.1: Let X be a complex on n vertices. Then (i) is equivalent to $P(n, 0)$, while (ii) is equivalent to $P(0, n)$. On the other hand, $P(n, 0)$ and $P(0, n)$ are equivalent by Claim 3.2.

Proof of Theorem 1.2: By induction it suffices to consider the $r=2$ case. Let X, Y be complexes on V with $\mathrm{L}_{\mathbb{K}}(X)=a, \mathrm{~L}_{\mathbb{K}}(Y)=b$, and let $k>a+b$. Then for any $\sigma \in Y$ and for any i, j such that $i+j=k$, either $i>a$ hence $\tilde{\mathrm{h}}_{i-1}(X[\sigma])=0$, or $j>b$ which by Proposition 3.1 implies that $\tilde{\mathrm{h}}_{j-1}(\operatorname{lk}(Y, \sigma))=0$. By Theorem 1.1 it then follows that $\tilde{\mathrm{h}}_{k-1}(X \cap Y)=0$. Therefore

$$
\begin{equation*}
\mathrm{L}_{\mathbb{K}}(X \cap Y) \leq \max _{S \subset V}\left(\mathrm{~L}_{\mathbb{K}}(X[S])+\mathrm{L}_{\mathbb{K}}(Y[S])\right)=\mathrm{L}_{\mathbb{K}}(X)+\mathrm{L}_{\mathbb{K}}(Y) \tag{7}
\end{equation*}
$$

Next, let $k \geq \mathrm{L}_{\mathbb{K}}(X)+\mathrm{L}_{\mathbb{K}}(Y)+1$. Then by (7) and the Mayer-Vietoris sequence

$$
\rightarrow \tilde{\mathrm{H}}_{k}(X) \oplus \tilde{\mathrm{H}}_{k}(Y) \rightarrow \tilde{\mathrm{H}}_{k}(X \cup Y) \rightarrow \tilde{\mathrm{H}}_{k-1}(X \cap Y) \rightarrow
$$

it follows that $\tilde{\mathrm{H}}_{k}(X \cup Y)=0$. Hence

$$
\mathrm{L}_{\mathbb{K}}(X \cup Y) \leq \max _{S \subset V}\left(\mathrm{~L}_{\mathbb{K}}(X[S])+\mathrm{L}_{\mathbb{K}}(Y[S])+1\right)=\mathrm{L}_{\mathbb{K}}(X)+\mathrm{L}_{\mathbb{K}}(Y)+1
$$

Acknowledgment: We thank Jürgen Herzog for his comments concerning the commutative algebra aspects of this work.

References

[1] N. Alon, G. Kalai, J. Matousek, R. Meshulam, Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math. 29 (2002), 79-101.
[2] A. Björner, Topological methods, in Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, Eds.) , 1819-1872, NorthHolland, Amsterdam, 1995.
[3] J. Eckhoff, Helly, Radon and Carathéodory type theorems, in Handbook of Convex Geometry (P.M. Gruber and J.M. Wills Eds.), North-Holland, Amsterdam, 1993.
[4] D. Eisenbud, The Geometry of Syzygies, Graduate Texts in Mathematics 229, Springer Verlag, New York, 2005.
[5] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, in Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171-223. Lecture Notes in Pure and Appl. Math., Vol. 26, Dekker, New York, 1977.
[6] G. Kalai, R. Meshulam, A topological colorful Helly theorem. Adv. Math. 191(2005), 305-311.
[7] N. Terai, Alexander duality theorem and Stanley-Reisner rings, in Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998). Sūrikaisekikenkyūsho Kōkyūroku No. 1078 (1999), 174-184.
[8] N. Terai, Eisenbud-Goto inequality for Stanley-Reisner rings, in Geometric and combinatorial aspects of commutative algebra (Messina, 1999) 379-391, Lecture Notes in Pure and Appl. Math., 217, Dekker, New York, 2001.
[9] V. A. Vassiliev, Topological order complexes and resolutions of discriminant sets. Publ. Inst. Math. (Beograd) 66(80) (1999), 165-185.
[10] V. A. Vassiliev, Topology of plane arrangements and their complements, Russian Math. Surveys 56(2001), 365-401.
[11] G. Wegner, d-Collapsing and nerves of families of convex sets, Arch. Math. (Basel) 26(1975) 317-321.

