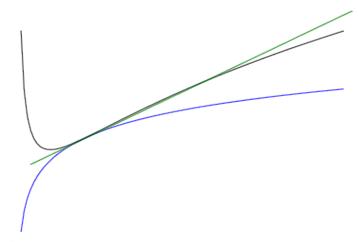
GEODESIC CONVEXITY



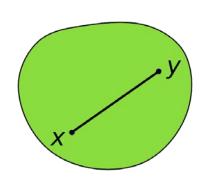
Nisheeth Vishnoi

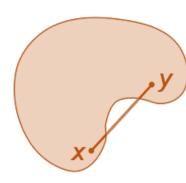
https://nisheethvishnoi.wordpress.com/convex-optimization/

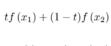
Institute for Advanced Study, June 7, 2018

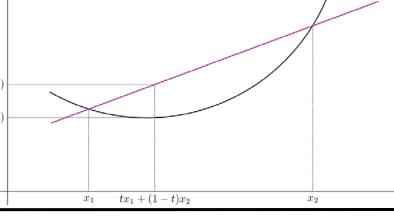
1

Convexity and Optimization









$$tf(x) + (1-t)f(y) \ge f(tx + (1-t)y) \qquad f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \qquad \nabla^2 f(x) \ge 0$$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

$$\nabla^2 f(x) \geq 0$$

For a convex function local minimum = global min.

Goal:
$$f(\hat{x}) \le f(x^*) + \varepsilon$$

$$\frac{dx}{dt} = -\nabla f(x)$$

$$x^{k+1} = x^k - \nabla f(x^k)$$

Newton-type methods

$$\frac{dx}{dt} = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x)$$

$$x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

Cutting plane methods

more later ...

Running Times: $T(n, \varepsilon, \|\nabla f\|, \kappa(\nabla^2 f), \|x^0 - x^*\|, t_{\text{grad}}, t_{\text{Hessian}}, \dots)$

Optimization Problems: Commutative and Non-Commutative

Given evaluation oracle to $p(x) \in \mathbb{R}_+[x_1, ..., x_m]$ and $\theta \in \mathbb{R}_+^m$

P1:
$$\inf_{x \in \mathbb{R}_{>0}^m} \log p(x) - \sum \theta_i \log x_i$$

Applications to discrete counting problems [Gurvits '04, SinghV. '14, StraszakV. '17a]

 $\log p(x)$ is not convex (sometimes concave) —not a convex optimization problem!

Given m $\ell \times n$ real-valued matrices B_1, B_2, \dots, B_m and a $\theta \in \mathbb{R}_+^m$

P2:
$$\inf_{X>0} \sum \theta_j \operatorname{logdet} (B_j X B_j^\top) - \operatorname{logdet} X$$

Applications to Brascamp-Lieb const. [SraV.Yildiz '18]; studied by [BCCT '05, GGOW+ '16+] Not a convex optimization problem either (rank 1 case as above)

Convexity vs Geodesic Convexity

Euclidean space

Calculus (differentiation / integration)

Straight Lines

Convex Sets

Convex functions

Local = Global

Algorithms for convex optimization

Smooth manifolds

Affine connections

Geodesics

Geodesically convex sets

Geodesically convex functions

Local = global

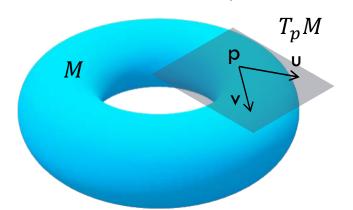
ŚŚ

Plan for the talk:

- a) Manifolds, Geodesics, Geodesic convexity
- b) Geodesic convexity of the applications
- c) An algorithm for P1

MANIFOLDS, GEODESICS, GEODESIC CONVEXITY

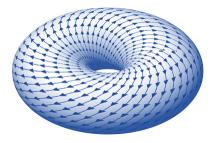
Manifolds, Calculus and Metrics



Smooth manifolds

 $\mathfrak{X}(M)$: vector fields over M

Curves



Euclidean Space: $D_X(f_1, ..., f_n)$ is just the directional derivative

Affine Connection: $\nabla: \mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$

Riemannian Metric Tensor: $g_p(u, v)$

 $\forall X, Y, Z \in \mathfrak{X}(M), \forall f \text{ on } M$

Linear in first term: $\nabla_{X+fY}Z = \nabla_XZ + f\nabla_YZ$

Linear in second term: $\nabla_X Y + Z = \nabla_X Y + \nabla_X Z$

Leibniz's rule: $\nabla_X f Y = f \nabla_X Y + Y D_X f$

 $\forall u, u', v \in T_p M, \forall c \in \mathbb{R}$

Symmetric: $g_p(u, v) = g_p(v, u)$

Bilinear: $g_p(u + cu', v) = g_p(u, v) + cg_p(u', v)$

Positive definite: $g_p(u, u) > 0, u \neq 0$

Compatibility: $D_X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$

Torsion free: $\nabla_X Y - \nabla_Y X = [X, Y]$

Levi-Civita connection: Unique, torsion-free, affine-connection compatible with metric

Examples

Manifold: Positive Orthant \mathbb{R}^m_+

Tangent Space: \mathbb{R}^m

Riemannian Metric: For $p \in \mathbb{R}_+^m$, and $u,v \in \mathbb{R}^m$

$$g(u,v) \coloneqq \langle P^{-1}u, P^{-1}v \rangle = \sum \frac{u_i v_i}{p_i^2}$$

Hessian: Let $f(p) = -\sum \log p_i$

Then g = Hessian of f

Levi-Civita Connection: At a point p

$$\nabla_{e_i} e_i = p_i^{-1} e_i$$
$$= 0 \text{ o.w.}$$

Manifold: Positive Definite Matrices \mathbb{S}_{++}^n

Tangent Space: \mathbb{S}^n

Riemannian Metric: For $P \in \mathbb{S}^n_{++}$, and $U, V \in \mathbb{S}^n$

$$g(U,V) \coloneqq \operatorname{Tr} P^{-1}UP^{-1}V$$

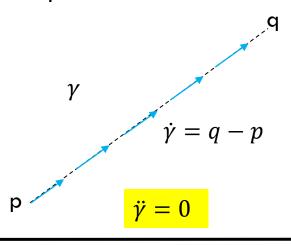
Hessian: Let $f(P) = -\operatorname{logdet} P$

Then g = Hessian of f

Calculations of Levi-Civita get more complicated ...

Geodesics: Two Views

Curves that take tangent vectors "parallel" on the curve

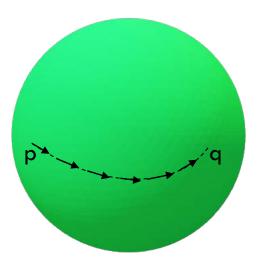


Shortest curves between points

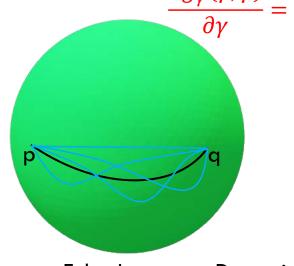
$$S[\nu] = \int g_{\nu}(\dot{\nu}, \dot{\nu}) dt \qquad q$$

$$\gamma = \underset{\nu}{\operatorname{arginf}} S[\nu]$$

$$\ddot{\gamma} = 0$$



$$\nabla_{\dot{\gamma}}\dot{\gamma}=0$$



Euler-Lagrange Dynamics

Examples

Manifold: Positive Orthant \mathbb{R}^m_+

Levi-Civita Connection: At a point p

$$\nabla_{e_i} e_i = p_i^{-1} e_i$$

Geodesic Equation: $abla_{\dot{\gamma}}\dot{\gamma}=0$

Simplify (exercise):

$$\forall_i \ \ddot{\gamma}_i = \dot{\gamma}_i^2 \gamma_i^{-1}$$

Solve ODE:

$$\frac{d}{dt}\log\dot{\gamma_i} = \frac{d}{dt}\log\gamma_i$$

 $\dot{\gamma_i} = \alpha_i \gamma_i$ for some α_i

$$\gamma_i = \beta_i e^{\alpha_i t}$$
 for some $\beta_i > 0$, α_i

Manifold: Positive Definite Matrices \mathbb{S}_{++}^n

Geodesic Equation:

$$\frac{\partial g_{\gamma}(\dot{\gamma},\dot{\gamma})}{\partial \gamma} = \frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial g_{\gamma}(\dot{\gamma},\dot{\gamma})}{\partial \dot{\gamma}}$$

Simplify:

 $\dot{\gamma}\gamma^{-1}=\mathcal{C}$ for some constant matrix \mathcal{C}

Solve:

$$\gamma(t) = \exp(tC) D$$

Geodesic between P, Q:

$$P^{\frac{1}{2}}\left(P^{-\frac{1}{2}}QP^{-\frac{1}{2}}\right)^{t}P^{\frac{1}{2}}$$

Geodesics Convexity

Oth Order Characterization

- $f: M \to \mathbb{R}$ is geodesically convex if for any geodesic $\gamma: [0,1] \to M$ and $\forall t \in [0,1]$
- $f(\gamma(t)) \le (1-t)f(\gamma(0)) + t f(\gamma(1))$

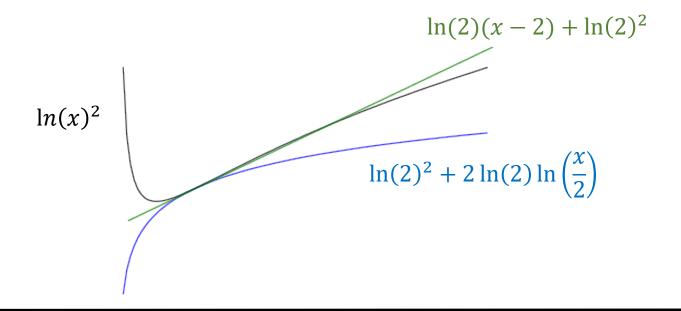
1st Order Characterization

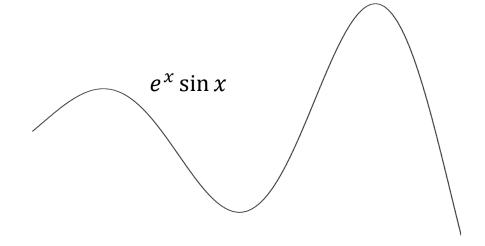
- $f: M \to \mathbb{R}$ is geodesically convex iff for any $p, q \in M$ with geodesic joining them γ_{pq} ,
- $f(p) + \dot{\gamma}_{pq}(f)(p) \le f(q)$

2nd Order Characterization

- $f: M \to \mathbb{R}$ is geodesically convex if for any geodesic $\gamma: [0,1] \to M$ and $\forall t \in [0,1]$
- $\bullet \ \frac{d^2 f(\gamma(t))}{d t^2} \ge 0$

Geodesic Convexity vs Non-convexity





Geodesic Convexity of log p(x)

Theorem: Given $p(x) = \sum_{\tau \in \mathcal{F}} c_{\tau} x^{\tau} \in \mathbb{R}_{+}[x_{1}, ..., x_{m}]$ where $x^{\tau} = \prod_{j \in [m]} x_{j}^{\tau_{j}}$ and $\mathcal{F} \subset \mathbb{Z}_{\geq 0}^{m}$, $\log p(x)$ is geodesically convex

Geodesic: $\gamma(t) \coloneqq (\beta_1 e^{t\alpha_1}, \dots, \beta_m e^{t\alpha_m})$ for real vectors $\beta \in \mathbb{R}_+^m$ and $\alpha \in \mathbb{R}^m$

Second Order Convexity: $\log p(x)$ is geodesically convex if for any geodesic $\gamma(t)$

$$\forall t \in [0,1], \qquad \frac{d^2 \log p(\gamma(t))}{d t^2} \ge 0$$

First derivative:

$$\frac{d \log p (\gamma(t))}{d t} = \frac{\dot{p}}{p} = \frac{\sum_{\tau \in F} c_{\tau} \langle \alpha, \tau \rangle \gamma(t)^{\tau}}{\sum_{\tau \in F} c_{\tau} \gamma(t)^{\tau}}$$

Second derivative:

$$\frac{d^2 \log p \left(\gamma(t)\right)}{d t^2} = \frac{\ddot{p}}{p} - \left(\frac{\dot{p}}{p}\right)^2 = \frac{\sum_{\tau, \tau' \in F} (\langle \alpha, \tau \rangle - \langle \alpha, \tau' \rangle)^2 c_\tau c_{\tau'} \gamma(t)^\tau \gamma(t)^{\tau'}}{\left(\sum_{\tau \in F} c_\tau \gamma(t)^\tau\right)^2} \ge 0$$

Geodesic Convexity of Brascamp-Lieb

Given m $\ell \times n$ real-valued matrices B_1, B_2, \dots, B_m and a $\theta \in \mathbb{R}^m_+$

$$\inf_{X > 0} \sum \theta_j \operatorname{logdet} \left(B_j X B_j^{\mathsf{T}} \right) - \operatorname{logdet} X$$

Theorem(s) [SraV.Yildiz '18]: Geodesically convex and computes BL-constant!

Geodesic: Given PD matrices P and Q, the geodesic between them

$$\gamma(t) := P^{\frac{1}{2}} \left(P^{-\frac{1}{2}} Q P^{-\frac{1}{2}} \right)^t P^{\frac{1}{2}}$$

Simple Fact: $\log \det X$ is geodesically linear

$$\forall t \in [0,1], \quad \log \det(\gamma(t)) = (1-t) \log \det P + t \log \det Q$$

Theorem [AndoKubo '79]: If T(X) is a strictly positive linear operator, then $\log \det T(X)$ is geodesically convex

By taking positive combinations, enough to show: $T_j(X) = B_j X B_j^{\mathsf{T}}$ is a strictly positive linear map for $j \in [m]$ if $\ell \sum \theta_j = n$ and $\dim(\mathbb{R}^n) = \sum_{j \in [m]} \theta_j \dim(B_j \mathbb{R}^n)$

Proof: Assume $T_i(X)$ is not strictly positive linear. Then for some $X \in \mathbb{S}^n_{++}$, there exists $v \in \mathbb{R}^\ell$ such that $v^\top T_i(X)v \leq 0$. Thus, $\left(B_i^\top v\right)^\top X\left(B_i^\top v\right) \leq 0$. Thus, $\left(B_i^\top v\right) = 0$ and $\dim(B_i\mathbb{R}^n) < \ell$.

Consequently

$$n = \dim(\mathbb{R}^n) = \sum_{j \in [m]} \theta_j \dim(B_j \mathbb{R}^n) < \sum_{j \in [m]} \theta_j \ell = n$$
 – contradiction!

ALGORITHM FOR P1 (RANK ONE BL)

Ellipsoid Method

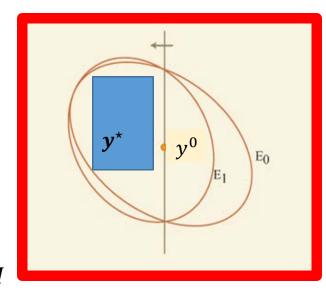
OPT =
$$\inf_{y \in \mathbb{R}^m} \log p(e^y) - \sum \theta_i y_i = \inf_{y \in \mathbb{R}^m} f(y)$$

Reduce to Feasibility: Given A, check if **OPT** is $\leq A + \varepsilon$ or > A

Assume $||y^*|| \le R, f \in [-M, M]$

Ellipsoid Algorithm:

- Start with an ellipsoid E_0 that contains y^*
- At kth step, let E_k be the ellipsoid centered at y^k
 - IF $f(y^k) \leq A$, DONE
 - ELSE
 - use evaluation oracle for p to get $\nabla f(y^k)$
 - $E_{k+1} \supseteq E_k \cap \{y: \langle y y^k, \nabla f(y^k) \rangle \le 0\}$
- **Stop** when the radius of the ellipsoid becomes $\leq \varepsilon R/M$



Invariant: If $f(y^*) \leq A$ then $y^* \in E_k$ for all k

Proof: Convexity of f implies $\langle y^* - y^k, \nabla f(y^k) \rangle + f(y^k) \leq f(y^*) \leq A$

Since $f(y^k) > A$, $\langle y^* - y^k, \nabla f(y^k) \rangle < 0$

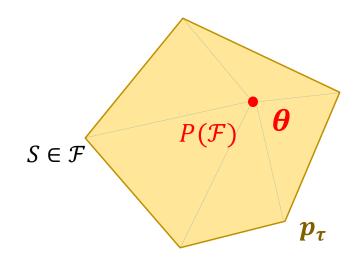
Bounding R and M?

$$\inf_{y \in \mathbb{R}^m} \log p(e^y) - \sum \theta_i y_i$$

$$\sup_{q} \sum_{\tau \in \mathcal{F}} q_{\tau} \log \frac{p_{\tau}}{q_{\tau}}$$

$$\Rightarrow M \leq m$$

- oxdot $oldsymbol{q}$ prob. distribution over $oldsymbol{\mathcal{F}}$
- \square The expectation of q is θ



Bounding R?: As θ comes close to the boundary, y^* must blow up. By how much?

Theorem [SinghV. '14, StraszakV. '17b]: If the unary complexity of all facets of the polytope is polynomial in m then, $R \leq \operatorname{poly}(m)$ – includes all combinatorial polytopes

Entropy interpretation seems important to obtain the bit complexity bounds

Summary and Challenges

- Some non-convex problems can be geodesically convex find a metric!
- Geodesics and their study is a highly developed area in math and physics
- Working with geodesics may comes at additional costs
- Polynomial time algorithm for Brascamp-Lieb constant for rank >1?
- Entropy interpretation of Brascamp-Lieb for rank >1?
- Understanding functions that are geodesically convex?
- Develop more methods for geodesic convex optimization?
- Sampling from geodesically convex densities?