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Convexity and Optimization

f.t'| T l[l f),:‘-z

tfC)+A-f=ftx+ 1A -0y) fO)=fC)+{VfG),y—x) Vf(x)>0

For a convex function local minimum = global min.

Goal: f(X) < f(x*) +¢

Gradient Descent % = —-Vf(x)

K1 = xk — 7f(xk)

dx -1
Newton-type methods ar —(sz(x)) Vf(x)

wh+1 =k _ (sz(xk))_l vf(x¥)

Cutting plane methods more later ...

Running Times: T(n, &, |IVfIl, k(V2f), ||x° — x*||, tgrad, thessian » )

Ushered in an TCS/ML revolution ...
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Optimization Problems: Commutative
and Non-Commutative

Given evaluation oracle to p(x) € R, [x4, ..., X;,] and 8 € R

inf logp(x) — ).0;log x;

m
xX€ERS,

Applications to discrete counting problems [Gurvits ‘04, SinghV. ‘14, StraszakV. "17a]

log p(x) is not convex (sometimes concave) —not a convex optimization problem!

Given m £ X n real-valued matrices By, By, ..., B, and a 8 € R}*

Inf ¥.6; logdet (B;XB/") — logdet X

Applications to Brascamp-Lieb const. [SraV.Yildiz ‘18]; studied by [BCCT '05, GGOW+ ‘16+]

Not a convex optimization problem either (rank 1 case as above)

Both problems are geodesically convex! :
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Convexity vs Geodesic Convexfry

Euclidean space Smooth manifolds

Calculus (differentiation / integration) Affine connections

Straight Lines Geodesics

Convex Sets Geodesically convex sets
Convex functions Geodesically convex functions
Local = Global Local = global

Algorithms for convex optimization 22

Plan for the talk:
a) Manifolds, Geodesics, Geodesic convexity
b) Geodesic convexity of the applications
c) An algorithm for P1
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MANIFOLDS,
GEODESIGCS,
GEODESIC CONVEXITY
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Mcmlfolds Calculus and Metrics

T,M  Smooth manifolds
U X(M) : vector fields over M

Curves TR

Euclidean Space: Dy (f1, ..., f,) is just the directional derivative

Affine Connection: V: X X X - X

vX,Y,Z € X(M), VfonM vu,u’,v € T,M,Vc €RR

Riemannian Metric Tensor: g, (u, v)

Linear in first term: Vy, vy Z = VyZ + fVyZ Symmetric: g,,(u, v) = g,(v,u)

Linear in second term: VyY + Z = VyY + VyZ |Bilinear: g,(u + cu',v) = g,(u,v) + cg, (', v)

Leibniz’s rule: Vy fY = fVxY + YDy f Positive definite: g,,(u,u) > 0,u # 0

Compuatibility: Dy (g(Y,Z2)) = g(VyY,Z) + g(Y,VxZ)  Torsion free: VyY — V, X = [X,Y]

Levi-Civita connection: Unique, torsion-free, affine-connection compatible with metric

6
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Examples

Manifold: Positive Orthant R" Manifold: Positive Definite Matrices ST}
Tangent Space: R™ Tangent Space: S
Riemannian Metric: For p € R, and Riemannian Metric: For P € S, and
u,v € R™ Uuves
U;v; — ~177p-1
gu,v) = (P "y, P lv) =Y 12‘ gW,V) =Tr PTUP™"V
Di
Hessian: Let f(p) = —Ylog p; Hessian: Let f(P) = —logdet P
Then g = Hessian of f Then g = Hessian of f
Levi-Civita Connection: At a point p Calculations of Levi-Civita get more
Ve €i = p; e complicated ...
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Geodesics: Two Views

Curves that take tangent vectors
“parallel” on the curve

Shortest curves between points

Sl = [ g,(v,v)dt

y = arginf S[v]
%

7 =0

0g,0,7) _ ddg, . 7)
dy dt ay

Euler-Lagrange Dynamics )
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Examples

Manifold: Positive Orthant R

Levi-Civita Connection: At a point p
Ve,8i = D; "€

Geodesic Equation: I,y = 0

Simplify (exercise):
Vi Vi = Vitvi!

Solve ODE:

dl '—dl
qr 08Yi = g 08Yi

Y; = a;y; for some «;

Vi = ,Bie“it for some $; > 0, a;

desic

Convexity: Nisheeth Vishnoi

Manifold: Positive Definite Matrices ST

Geodesic Equation:
0y (7,7) _ d ag, (4,1
dy dt Jdy

Simplify:

1 = C for some constant matrix C

YY"~
Solve:
y(t) = exp(tC) D

Geodesic between P, Q:

pi(p3qp~3) P2
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Geodesics Convexity

th e f:M — R is geodesically convex if for any
O™ Order geodesic y: [0,1] - M and Vt € [0,1]

Characterization flr@®) <@ -6)f[¥0) +t fF(r(1))

st e f:M — R is geodesically convex iff for any
1¥ Order p,q € M with geodesic joining them V4,

Characterization | ¢ + 10 (H®) < f(q)

e f:M — R is geodesically convex if for any

d
2" Order geodesic y:[0,1] - M and Vt € [0,1]
Characterization | @row) .
atz

If f is geodescially convex, then every local minimum is also a global minimum
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Geodesic Convexfry vs Non- -convexity

In(2)(x — 2) +In(2)?

In(x)?

In(2)? + 21n(2) In (g)

e” sin x
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Geodesic Convexity of logp(x)

Tj

Theorem: Given p(x) = Yrer Czx" € Ry[xq, ..., X ] where X = [ cpm X;” and

F c 2T}, logp(x) is geodesically convex

Geodesic: y(t) := (B et%1, ..., B,et¥m) for real vectors B € RT" and a € R™

Second Order Convexity: log p(x) is geodesically convex if for any geodesic y(t)

d*logp(y(t))
>
d t?

vt € [0,1], 0

First derivative:
dlogp (¥(1)) _ B _ Teer Crda, DY (©)°
dt p ZTeF c:y(t)®

Second derivative:

d?logp (¥(1)) _ p

>
d t? p 0

<p>2 _ ZT,TIEF(<aJ 7) — (q, T'))ZCTCT,)/(t)T)/(t)T'

E (ZTeF Cry(t)T)Z
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Geodesic Conve;(l’ry of Brc:scc:mp Lieb

Givenm £ X n real-valued matrices By, By, ..., B, and a 8 € R}"

)1(r>11; 2.0, logdet (BJ-XB]-T) — logdet X Theorem(s) [SraV.Yildiz ‘18]: Geodesically
convex and computes BL-constant!

Geodesic: Given PD matrices P and Q, the geodesic between them
1o 1 1\t 1
y(t) == P2 (P 2QP 2) P2

Simple Fact: log det X is geodesically linear
vt € [0,1], logdet(y(t)) = (1 —t)logdetP + tlogdetQ

Theorem [AndoKubo ‘79]: If T(X) is a strictly positive linear operator, then log det T(X) is
geodesically convex

By taking positive combinations, enough to show: T;(X) = B]-XB]-T is a strictly positive
linear map for j € [m] if £360; =n and dim(R") = Zje[m] 6;dim(B;R™)

Proof: Assume T;(X) is not strictly positive linear. Then for some X € S%,, there exists v € R?
T
such that v' T;(X)v < 0. Thus, (B v) X(B/v) < 0. Thus, (B v) = 0 and dim(B;R™) < ?.

Consequently

n = dim(R"™) = X jcm 9 dim(B;R" ) < Y. jem) 0jf = n — contradiction!
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ALGORITHM FOR P1
(RANK ONE BL)



Ellipsoid Method

OPT = yierﬂlgfm logp(e”) — X60,y; = yier]gmf )
Reduce to Feasibility: Given A4, check if OPTis< A+ cor> A
Assume ||[y*|| <R, f € [-M, M]

Ellipsoid Algorithm:
 Start with an ellipsoid E, that contains y*
* At kth step, let Ej, be the ellipsoid centered at yk
 IFf(y*) < A DONE
e ELSE
* use evaluation oracle for p to get Vf(y*)
* Epp1 2E.n{y: {y -y ,Vf(y")) <0}
e Stop when the radius of the ellipsoid becomes < ¢eR/M

Invariant: If f(y*) < Athen y* € Ej, for all k
Proof: Convexity of f implies (y* — y*,Vf(y*)) + f(y*) < f(3*) < A
Since f(v*) > A, (y* —y*, Vf(y*)) <0

Running Time:.poly(m, &g, ty s, 10g %) 15
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Bounding R and Mz
inf logp(e”) — X.6;y;
yER
sup Y crq.log=" >M<m
q q-

SeF
q — prob. distribution over F

Pz
The expectation of q is 6

Bounding R?: As 0 comes close to the boundary, y* must blow up. By how much?

Theorem [SinghV. "14, StraszakV. "17b]: If the unary complexity of all facets of the
polytope is polynomial in m then, R < poly(m) — includes all combinatorial polytopes

Entropy interpretation seems important to obtain the bit complexity bounds
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Summary and Challenges

* Some non-convex problems can be geodesically convex — find a metric!

* Geodesics and their study is a highly developed area in math and physics
*  Working with geodesics may comes at additional costs

* Polynomial time algorithm for Brascamp-Lieb constant for rank >12

* Entropy interpretation of Brascamp-Lieb for rank >12

* Understanding functions that are geodesically convex?

* Develop more methods for geodesic convex optimization?

* Sampling from geodesically convex densities?

Thanks! Questions?
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