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1 Spectral statistics of random graphs.
• Random d-regular and Erdős Rényi graphs.
• Expander and Ramanujan graphs.

2 Eigenvalue rigidity and eigenvector delocalization.
• Optimal rigidity for random d-regular graphs for d � 3.
• Completely delocalization for d � 3.
• Tracy-Widom distribution for d � N".
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• Local resampling for random d-regular graphs.
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• Noise dominating phenomenon.
• Comparison of local resampling with matrix Brownian motions.

5 Summary
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Random d-regular graph

Random d-regular graphs GN,d :

Uniform distribution on simple d-regular graphs with N vertices

• Denote by Aij = 1{i⇠j} the adjacency matrices and the normalized adjacency
matrices by H = (hij) = A/

p
d � 1

• d-regular graphs are highly correlated matrices.
• Denote the eigenvalues of H by �1 > �2 > · · · > �N . Notice that

�1 = d/
p
d � 1 with the eigenvector 1.

Erdős Rényi graphs
• Erdős-Rényi graphs G(N, d/N): each edge is selected with probability p = d/N

independently.
• Denote the normalized adjacency matrices with mean subtracted by H = (hij).

Then the matrix entries are independent and

E[hij ] = 0,E[h2
ij ] = 1/N.
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Expander Graph

An expander graph is a sparse graph that has strong connectivity properties.
Expander graphs have many applications in mathematics and computer science. We
will focus on spectral expander and in particular on the second largest eigenvalue.

Theorem (Alon-Boppana)

For every connected d-regular graph G, there exists an universal constant Cd ,

�2 > 2� Cd

diam(G) .

• The diameter of a d-regular graph on N vertices is at least O(logN). For a
sequence of d-regular graphs on N vertices, lim infN!1 �2 > 2.
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Random d-regular graph

Definition (Lubotzky-Phillips-Sarnak)

A connected d-regular graph on N vertices is called a Ramanujan graph if

max
|�i |<d/

p
d�1

|�i | 6 2.

• Ramanujan graphs are the best possible spectral expanders.
• Let p be a prime with p ⌘ 1(mod 4). Lubotzky, Phillips and Sarnak (1988) gave

explicit constructions of Ramanujan graphs with d = p + 1.
• Marcus, Spielman and Srivastava (2013) proved the existence of infinite families

of bipartite Ramanujan graphs, using the method of interlacing polynomials.
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Random d-regular graphs

The empirical eigenvalue distribution of the random d-regular graphs converges to
the Kesten-McKay distribution:

1
N

NX

i=1

��i ! ⇢d(x) =

✓
d

d � 1
� x2

d

◆ p
4� x2

2⇡

�2 0 2

d = 3
d = 5
d = 8
d = 200

⌘

• Kesten[1957]: d-regular tree. McKay[1981]: d-regular graphs.
• �1 = d/

p
d � 1 was not shown on the KM law.

• Kesten-McKay law becomes the semicircle law (with density ⇢sc) as d ! 1,
i.e., ⇢d ! ⇢sc as d ! 1.
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Random d-regular graphs

From numerical simulation, it was observed that the distribution of �2,�N is
well-modeled by TW , the Tracy-Widom � = 1 distribution (possibly up to a
constant shift).
TW can be characterized as the asymptotic distribution of the largest eigenvalue of
the Gaussian orthogonal ensemble (symmetric matrices with Gaussian distributions):

Conjecture (Miller-Noviko↵-Sabelli (2006))

The second largest eigenvalue of random d-regular graph with d � 3 satisfies

C1N
2/3(�2 � 2)� Cd ! TW .

Also asked in Sarnak (2004).

Extremal eigenvalues of random 3-regular graphs on 3000 vertices, and GOE.
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Known results for edge eigenvalues for fixed d

Theorem (Friedman (2004), Bordenave (2015))

Fix d > 3. For random d-regular graphs on N vertices, we have with probability
1� oN(1),

�2 = 2 + O(log logN/ logN)2)

There are many results on random surfaces using ideas parallel to random graphs.
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Main Results: Optimal rigidity estimate for fixed d

Theorem (Huang-McKenzie-Y, 2024 (Optimal rigidity estimate) )

Fix d > 3. Define the classical location �i of the i-th eigenvalue by

Z 2

�i

%d(x)dx =
i
N
, 2 6 i 6 N.

Then with probability 1� N�(1�oN (1)) eigenvalue rigidity holds:

|�i � �i | 6 N�2/3+o(1)(min{i ,N � i + 1})�1/3, 2 6 i 6 N.

In particular, with probability 1� N�(1�oN (1)),

|�2 � 2| 6 N�2/3+o(1)

Chen, Garza-Vargas, Tropp and Van Handel (preprint last week). For random
permutation models of d-regular graphs with even d � 4,

P(�2 � 2 + ") . 1
N

⇣d
"

⌘8
poly(log d , log ")
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Eigenvalue universality for d � N"

Theorem (Huang-Y(2023))

Let G be a random d-regular graph on N vertices with N" 6 d ⌧ N1/3, then

N2/3(�2 � 2) ! TW

The analogous statement holds for all edge eigenvalues, and in particular, the
smallest eigenvalue.

• The result states that in the range N" 6 d ⌧ N1/3, about 69% d-regular graphs
on N vertices are Ramanujan graphs, i.e., all nontrivial eigenvalues are bounded
in absolute value by 2.

• Similar results for N2/9 ⌧ d ⌧ N1/3 was proved by
Bauerschmidt-Huang-Knowles-Y (2019) and for d � N2/3 by He (2022).

• Eigenvalue distributions in the bulk are universal (i.e., bulk universality) and
were proved in Bauerschmidt-Huang-Knowles-Y (2016). Bulk universality turns
out to be easier than edge universality.

• N" can be replaced by poly(logN).
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Erdős-Rényi graphs

Theorem (Huang-Y 2023 (Erdos, Knowles, Yin, Lee, Schnelli, Landon))

Suppose that there is " > 0 such that d � N" (it can be relaxed to d � (logN)C ).
Then there is a scalar L = 2 + O(1/d) and a random variable

X = X̃ + lower order terms, X̃ =
1
N

X

ij

⇣
h2
ij � 1/N

⌘
⇠ gaussianp

Nd

such that

{N2/3(�i � L� X )}16i6k ! TW.

In particular,

Var(N2/3(�i � L)) ⇠ N4/3

Nd
+ O(1) =

N1/3

d
+ O(1) � 1 if d ⌧ N1/3

Hence Gaussian fluctuations dominate TW for d ⌧ N1/3 and TW dominates for
d � N1/3.
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Previous results on edge statistics for Erdős-Rényi graphs

• d � N2/3; Erdos-Knowles-Y-Yin [2011] proved that the leading behavior of
extremal eigenvalues are Tracy-Widom.

• d � N1/3; Lee-Schnelli [2016] proved that the leading behavior of extremal
eigenvalues are Tracy-Widom.

• N2/9 ⌧ d ⌧ N1/3; Huang-Landon-Y [2017]

X̃ + N�2/3⇠; X̃ ⇠ gaussianp
Nd

, ⇠ ⇠ Tracy-Widom law

• N"  d  N2/9; He-Knowles [2021] proved that the leading behavior of extremal
eigenvalues are Gaussian.

• (log logN)4 ⌧ d < b⇤ logN Alt-Ducatez-Knowles [2021] and
(logN)�c < d < (log logN)4 Hiesmayr-McKenzie [2023] proved that the leading
behavior are Poisson.

• N"  d  N2/9 ; Jaehun Lee [2021] proved that after subtracting a random
term �, the rigidity of extremal eigenvalues holds.
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Green’s function (resolvent) estimates

Stieltjes transform of a measure %:

m%(z) =

Z
%(x)dx
x � z

,

%(E) =
1
⇡

lim
⌘!0+

=[m⇢(E + i⌘)].

• The Stieltjes transform msc of the semicircle distribution satisfies a quadratic
equation

msc(z)
2 + zmsc(z) + 1 = 0.

• The Stieltjes transform mKM of the Kesten–McKay law satisfies

mKM(z) =
1

�z � d
d�1msc(z)

.

• The self-consistent equation for mKM is quite a bit more complicated.



16/33

Green’s function estimates

• Define the Green’s function G(z) = 1
H�z and z = E + i⌘.

• ⌘ specifies the spectral resolution.

ImmN := Im
1
N

TrG(z) =
1
N

NX

i=1

⌘
(�i � E)2 + ⌘2

.

E⌘�i

• ⌘ & N�1 is the optimal scale; below this scale, mN is random.
• Our goal is to prove that mN(z) ! mKM(z) up to the optimal scale. To this

end, we need to show that mN satisfies the self-consistent equation of mKM .
• mN(z) ! mKM(z) for ⌘ ⇠ O(1) is called the global law; for ⌘ & N�1 is called

the local law.
• Local law with an optimal error bound implies eigenvalue rigidity (Erods-Y-Yin).
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Theorem (Huang-McKenzie-Y (2024))

Fix d > 3. Then with probability 1� N�(1�oN (1)) we have

| 1
N

TrG(z)�mKM(z)| 6 No(1)

( 1
N⌘ , �2 6 E 6 2,

1p
+⌘

⇣
1

N⌘1/2 + 1
(N⌘)2

⌘
, |E | > 2,

for ⌘ � N�1+"
p

+⌘
where  = min{|E � 2|, |E + 2|}.

Estimates on matrix elements Gij(z) with non-optimal error bounds were previously
proven by Huang-Y (2023).
Denote the eigenvector by uj . Then

ImGaa(z) =
X

j

⌘
(�j � E)2 + ⌘2

|uj(a)|2

ImGaa(z)  C =) |uj(a)|2  ⌘, with the optimal ⌘ & N�1.

Definition: An eigenvector is completely delocalized if kuik21 = O((logN)C/N).
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Global and local laws (⌘ ⌧ 1) for d regular graphs: d scale ⌘

Dumitriu-Pal [2009] (logN)C (logN)�1

Tran-Vu-Wang [2010] � 1 d�1/10

Anatharaman-Le Masson⇤ [2013] fixed (logN)�c

Geisinger [2014] fixed (logN)�1

Brooks–Lindenstrauss [2013]⇤; eigenvector fixed (logN)�c

Huang-Y⇤⇤ (2015-2023); complete delocalization d � 3 N�1

* Proof does not use randomness, but uses some local tree-like conditions.

** Earlier papers also with Knowles and Bauerschmidt.
• Most random matrix methods were invented for Wigner matrices and are more
suitable when there are lots of edges. Sparsity makes it harder to apply random
matrix methods.
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Some ideas of the proof

Local geometric structure of random regular graphs:

In a random d-regular graph, up to radius R = c logd N, with high probability:

Most R-neighborhoods have
no cycles.

All R-neighborhoods have few
cycles.
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A Self-consistent Equation

Entries of the Green’s function can be interpreted as sum over weighted path:

G(z) = (z � H)�1 =
1
z
+

H
z2

+
H2

z3
+

H3

z4
+ · · ·

The i , j-th entry

Gij(z) = (z � H)�1
ij = sum over weighted paths from i to j .

To compute Goo , we need to sum over weighted paths from o to itself.

j j j
i i i� � �

Weight = G(�)
jj � G(i)

jj

neglibible

o o o

Sum over all the paths leaving from j and coming back at j , which are the same as
all the paths from j to itself outside T . We can approximate Goo by the Green’s
function of T with extra weights at boundary vertices.
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A self-consistent equation

G (i)
jj = Green’s function with the i vertex removed and Q = 1

Nd

P
i⇠j G

(i)
jj .

To compute G (i)
jj , we can approximate it by the Green’s function of a neighborhood of

j (with vertex i removed) with extra weights Q at boundary vertices.

j j

i i

Q

Q Q

Q
G(i)

jj G(i)
jj

Let Y`(Q) be the Green’s function at the root vertex of a (d � 1)-ary tree of depth `
with boundary weight Q. Then we have the fact msc = Y`(msc) for all ` . If we can
prove that

Q =
1
Nd

X

i⇠j

G (i)
jj ⇡ Y`(Q),

then together with the stability of this equation, we get Q ⇡ msc(z).
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Ideas of the Proof: 1. Local resampling

Our goal is to bound E[|Q � Y`(Q)|2p] for any fixed integer p.

How to resolve the dependence of matrix entries of d-regular graphs?

Simple Switching

Replace two randomly sampled edges {v1, v2}, {v3, v4} by {v1, v4}, {v2, v3}:

v1 v2

v3 v4

v1 v2

v3 v4

Uniform random d-regular graph is invariant under simple switching.

McKay [1981] introduced simple switchings to the random regular graph.
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The resolvent expansion for local resampling

• Let H and eH be the adjacency matrices of the original and the switched graphs.
• Denote ⇠ := eH � H, which is a 4⇥ 4 matrix of a simple switching.
• The resolvent identity implies

eG(z)� G(z) =
1

H̃ � z
� 1

H � z
= �G(z)⇠G(z) + · · ·

• By our convention, ⇠ ⇠ 1p
d�1

and it is barely smaller than one.
• This expansion is di�cult to use for small d .
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Generalized local resampling

• Generalized local resampling switches the d(d � 1)`�1 boundary edges of T with
independently uniformly sampled edges in the remaining of the graph.

� �

• The law of the (d-regular) graphs is invariant under the generalized switching.
• A = adjacency matrix of the local tree; B = the switching matrix. Schur’s formula:

M =

✓
A� z B
B⇤ D � z

◆
, (M�1)II = [A� z � B(D � z)�1B⇤]�1.
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Generalized local resampling

• A = adjacency matrix of the local tree; B = the switching matrix. Schur formula:

M =

✓
A� z B
B⇤ D � z

◆
, (M�1)II = [A� z � B(D � z)�1B⇤]�1.

• Recall the semicircle consistent equation msc(z) = � 1
z+msc (z)

. If A ! 0 and

B(D � z)�1B⇤ ! 1
N

Tr(D � z)�1 ⇠ m(z), (⇤)

then Schur’s formula (after averaging over the center of resampling) converges to
the semicircle equation.

• For Wigner or ER graphs, the entries of B are independent and (*) is easy. But the
entries are correlated for d-regular graphs.

• In addition, mKM satisfies a di↵erent equation if d is fixed.
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A new formula for generalized local resampling

• The Woodbury formula

G̃ � G = (H � z + UCU)�1 � (H � z)�1 = �GU(C�1 + UGU)�1UG .

Here G̃ is the Green’s function of the switched graph, U is the projection onto
the switching and boundary edges (of T ) and C is the matrix of the switching in
the finite dimensional space of switching edges.

• The right hand side depends only on G while Schur’s formula involves some
other quantities on the right hand side.

• The middle term on the right hand side involves only UGU which is the
projection of the original Green’s function onto the switching and boundary
edges.

• Heuristically, UGU can be approximated by the Green’s function on the forest
consists of T and switching edges (which is basically just the Green’s function
on a tree).
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Multi (iterative) local resampling: an example

• Local resampling exchanges the boundary edge {`↵, a↵} and a randomly
sampled edge {b↵, c↵} with {`↵, c↵}, {a↵, b↵}.

• Recall our goal is to bound E[|Q � Y`(Q)|2p].
• The law of G (i)

oo is the same as the law of eG (i)
oo for the switched graph.

• Schur and Woodbury formulas imply

eG (i)
oo � Y`(Q) = c1

X

↵

(G (b↵)
c↵c↵ � Q) + c2

X

↵

G
(b↵b� )
c↵c� + high order terms.

• Using this formula in one (Q � Y`(Q))-factor in |Q � Y`(Q)|2p, we choose an
edge {b↵, c↵} and preform a generalized local resampling centered at {b↵, c↵}.

• Each time we apply a resampling, we gain a factor (d � 1)�`/2.
• Iterate this procedure K times until we gain (d � 1)�K`/2 ⌧ (N⌘)�1.
• Note that local resampling a↵ects all quantities in any expression and the whole

procedure is much more complicated.
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Example of Iterated Sampling Procedure

• We start with the term G (i)
oo , which depends explicitly on a single edge (o, i).

• After performing one switch, our function now depends on the edges (b↵, c↵),
which were randomly selected in the graph, and randomly switched with edges
(l↵, a↵) at some fixed distance ` from o.

• We then perform another switch around a new edge (b↵, c↵), replacing the
dependence on this edge with new randomly selected edges (b↵2 , c↵2).
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Edge universality ( i.e., the TW law) for d � N"

• Noise dominating phenomenon at the edge: Define the matrix Brown motion

dHt =
1p
N
dB(t)� Htdt Bij(t) : symm. indep. BM;

Ht ⇠ e�t/2H0 +
p
1� e�tGOE ⇠

p
1� tH0 +

p
tGOE in law.

If the edge eigenvalue fluctuation for H0 = H is O(N�2/3+"), then the edge
statistics of Ht with t ⇠ N�2/3+" is given by TW possibly up to a shift
(Landon-Y[2017], Adhikari-Huang[2018], ....).

• Edge universality follows by comparing the edge statistics of H and Ht .
• For random d-regular graphs, this is di�cult. We compared a (constraint)

matrix Brown motion with the local resampling dynamics when d � N".
• The resampling is an expansion in 1p

d�1
. New ideas will be needed for fixed d .

• Edge universality for Wigner matrices were proved long before bulk universality
by trace method. But edge universality can be much harder for two reasons:

1 There can be (random) shifts at the edges.
2 It takes time O(N�2/3+") to reach edge universality while only O(N�1+") for the

bulk universality.

• Noise dominating phenomenon is of fundamental importance in large data
principal component analysis .
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Summary

Summary

• Eigenvalue rigidity was proved for all eigenvalues of random d-regular graphs
with d � 3.

• The fluctuations of �2 is of order N�2/3+" for d � 3.

• TW law was proved for d � N".

• TW law (and the bulk university) for d � 3 is still open.

• For Erdős-Rényi graphs, there is a Gaussian fluctuation of order 1p
Nd

in addition

to the TW fluctuation of order N�2/3. This implies a transition from TW to
Gaussian at d = N1/3.

• Eigenvector complete delocalization was proved for d-regular graphs with d � 3.

• Random matrix methods also yield results on eigenvector statistics and quantum
unique ergodicity for random graphs.
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