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Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Monday, 22 July 2024: Hurewicz and cohomology

1. Use the long exact sequence in homology of pairs to argue that

Hq(X) = Hq(X, ∅) =

{
H̃q(X) q ̸= 0

H̃q(X)⊕ Z q = 0

2. Think about what’s going on topologically in the Hurewicz theorem for the case X = S∨S1. Here, the
theorem says that h : π1(S

1 ∨ S1) → H̃1(S
1 ∨ S1) is abelianization. Can you see this from the definition

of the map h and the definition of CW-homology?

One can state the following relative version of the Hurewicz theorem: Let (X,A) be an (n − 1)-connected
pair (n ≥ 2) such that A is simply connected and non-empty. Then Hi(X,A) = 0 for i ≤ n and there is an
isomorphism πn(X,A) ∼= Hn(X,A).

3. Show that this relative Hurewicz theorem in dimension n implies the non-relative one in dimension
(n− 1) by considering the pair (CX,X).

4. Define an acyclic space X to be a space where Hq(X) = Z and the homology groups in all non-zero
dimensions are trivial.

(a) Show that the suspension of an acyclic space is also acyclic.

(b) Prove that the suspension of an acyclic CW complex X is contractible. (Hint: you will need to use
a fact we proved last week: if X is simply connected, so is ΣX.

5. Let X be an n-dimensional CW complex containing a subcomplex Y which is homotopy equivalent to
an n-sphere. Use the Hurewicz theorem to prove that the map πn(Y ) → πn(X) is injective for n ≥ 2.

6. Show that H̃q(
∨

i Xi) ∼=
⊕

i H̃q(Xi) from the corresponding facts for unreduced homology and homology
of pairs.

7. Let X ∨X → X be the “fold map,” sending each copy of X in the wedge to X via the identity. Argue
that H̃q(X)⊕ H̃q(X) ∼= H̃q(X ∨X) → H̃q(X) is the addition map.

8. We explored the chain complex below on Friday. Today, we’ll take Hom(−,Z) of the chain complex.

0 → Z 0−→ Z 2−→ Z 0−→ Z → 0

(a) For an abelian group G, define Hom(G,Z) to be the set of group homomorphism G → Z. Verify
that Hom(G,Z) is always an abelian group.

(b) Let α : G → G′ be a group homomorphism. Show that there is an induced homomorphism
α∗ : Hom(G′,Z) → Hom(G,Z).
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(c) Now apply Hom(−,Z) to each group and each map in the chain complex

0 → Z 0−→ Z 2−→ Z 0−→ Z → 0

to find the associated cochain complex. (A “cochain complex” is just like a chain complex except
that the differential d goes up in degree—dn : Cn−1 → Cn. You can still take the homology of a
cochain complex in the same way as a chain complex because you still have a d ◦ d = 0 condition.)

(d) Calculate the homology of the cochain complex to find the cohomology of the chain complex.
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