Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Monday, 22 July 2024: Hurewicz and cohomology

1. Use the long exact sequence in homology of pairs to argue that

$$H_q(X) = H_q(X, \emptyset) = \begin{cases} \widetilde{H}_q(X) & q \neq 0\\ \widetilde{H}_q(X) \oplus \mathbb{Z} & q = 0 \end{cases}$$

2. Think about what's going on topologically in the Hurewicz theorem for the case $X = S^{\vee}S^1$. Here, the theorem says that $h: \pi_1(S^1 \vee S^1) \to \widetilde{H}_1(S^1 \vee S^1)$ is abelianization. Can you see this from the definition of the map h and the definition of CW-homology?

One can state the following relative version of the Hurewicz theorem: Let (X, A) be an (n-1)-connected pair $(n \ge 2)$ such that A is simply connected and non-empty. Then $H_i(X, A) = 0$ for $i \le n$ and there is an isomorphism $\pi_n(X, A) \cong H_n(X, A)$.

- 3. Show that this relative Hurewicz theorem in dimension n implies the non-relative one in dimension (n-1) by considering the pair (CX, X).
- 4. Define an *acyclic* space X to be a space where $H_q(X) = \mathbb{Z}$ and the homology groups in all non-zero dimensions are trivial.
 - (a) Show that the suspension of an acyclic space is also acyclic.
 - (b) Prove that the suspension of an acyclic CW complex X is contractible. (Hint: you will need to use a fact we proved last week: if X is simply connected, so is ΣX .
- 5. Let X be an n-dimensional CW complex containing a subcomplex Y which is homotopy equivalent to an n-sphere. Use the Hurewicz theorem to prove that the map $\pi_n(Y) \to \pi_n(X)$ is injective for $n \ge 2$.
- 6. Show that $\widetilde{H}_q(\bigvee_i X_i) \cong \bigoplus_i \widetilde{H}_q(X_i)$ from the corresponding facts for unreduced homology and homology of pairs.
- 7. Let $X \vee X \to X$ be the "fold map," sending each copy of X in the wedge to X via the identity. Argue that $\widetilde{H}_q(X) \oplus \widetilde{H}_q(X) \cong \widetilde{H}_q(X \vee X) \to \widetilde{H}_q(X)$ is the addition map.
- 8. We explored the chain complex below on Friday. Today, we'll take $Hom(-,\mathbb{Z})$ of the chain complex.

$$0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$$

- (a) For an abelian group G, define $\text{Hom}(G,\mathbb{Z})$ to be the set of group homomorphism $G \to \mathbb{Z}$. Verify that $\text{Hom}(G,\mathbb{Z})$ is always an abelian group.
- (b) Let $\alpha: G \to G'$ be a group homomorphism. Show that there is an induced homomorphism $\alpha^*: \operatorname{Hom}(G', \mathbb{Z}) \to \operatorname{Hom}(G, \mathbb{Z}).$

(c) Now apply $\operatorname{Hom}(-,\mathbb{Z})$ to each group and each map in the chain complex

$$0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$$

to find the associated *cochain complex*. (A "cochain complex" is just like a chain complex except that the differential d goes up in degree— $d^n: C^{n-1} \to C^n$. You can still take the homology of a cochain complex in the same way as a chain complex because you still have a $d \circ d = 0$ condition.)

(d) Calculate the homology of the cochain complex to find the cohomology of the chain complex.