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Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Friday, 19 July 2024: Chain complexes and homology

1. Compute the homology of each chain complex below:

(a) ... ! Z ! Z ! ... ! Z ! Z ! 0 where every di↵erential dn is the zero map.

(b) ... ! Z ! Z ! ... ! Z ! Z ! 0 where every di↵erential dn is the identity map.

(c) 0 ! Z d1�! Z ! 0 where d1 is multiplication by 2.

(d) 0 ! Z d2�! Z� Z d1�! Z ! 0 where d2(1) = (1, 1) and d1(a, b) = a� b.

(e) 0 ! Zhxi � Zhyi d2�! Zhai � Zhbi � Zhci d1�! Z ! 0 where d2(x) = d2(y) = a + b � c and
d1(a) = d1(b) = d1(c) = 0.

2. For a CW-complex X, the map dn : Cn(X) ! Cn�1(X) in the cellular chain complex of X can also be
described in terms of “degree.”

(a) Show that a group homomorphism � : Z ! Z is entirely determined by �(1).

(b) Show that the (unbased) homotopy class of a map f : Sn ! S
n is entirely determined by f⇤(id),

where f⇤ : ⇡n(Sn) ! ⇡n(Sn). This integer is called the degree of the map f .

(c) Observe that a choice of k-cell in X
k comes with a map S

k�1 ! X
k�1 and a surjection X

k
/X

k�1 !
S
k.

(d) Given an n-cell enj with map S
n�1 ! X

n�1 and an n�1 cell en�1
i with surjection ⇡i : Xn�1

/X
n�2 !

S
n�1, we have a composite

S
n�1 ! X

n�1 ! X
n�1

/X
n�2 ⇡i�! S

n�1
.

Let the degree of this map be aji 2 Z. Try to convince yourself that the map dn : Cn(X) ! Cn�1(X)
can be specified by sending the generator of Cn(X) corresponding to e

n
j to the sum

P
i aji[i], where

[i] is the generator of Cn�1(X) corresponding to e
n�1
i .

3. Using either the description of dn from the previous question or the description from lecture, calculate
H⇤(S2) where we give S

2 the CW complex structure with two 0-cells, two 1-cells, and two 2-cells.

4. Calculate the homology of RP 2 using the CW complex structure you found yesterday.

5. A map of chain complexes C⇤ ! D⇤ consists of maps fq : Cq ! Dq for each q 2 Z such that this diagram
commutes

Cq Dq

Cq�1 Dq�1

fq

dq dq

fq�1

(One often writes f � d = d � f , leaving the subscripts implicit.) Show that such a map induces a map
f⇤ : Hn(C⇤) ! Hn(D⇤) on homology in each degree.
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