Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Monday, 15 July 2024: Long Exact Sequences in Homotopy

- 1. Use the long exact sequence in homotopy to show that $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$ and $\pi_n(\mathbb{R}P^2) \cong \pi_n(S^2)$ for $n \geq 2$. Now find a similar identification for $\pi_n(\mathbb{R}P^m)$. What happens when m = 1?
- 2. We used the fact that $\pi_n(\Omega X) \cong \pi_{n+1}(X)$ to construct the long exact sequence of a fibration. However, as an exercise with using this long exact sequence, apply it to the fibration $\Omega X \to PX \to X$ to observe this isomorphism here.
- 3. Show that for $n \ge 2$,

$$\pi_n(X \lor Y) \cong \pi_n(X) \oplus \pi_n(Y) \oplus \pi_n(X \times Y, X \land Y).$$

When using the long exact sequence associated to a pair (X, A), you may find the following identification useful. Set J^n to be the subset of ∂I^n given by $\partial I^{n-1} \times I \cup I^{n-1} \times \{0\}$ (and set $J^0 = \{0\}$). Then we can write $\pi_n(X, A, *) = [(I^n, \partial I^n, J^n), (X, A, *),$ where this means maps and homotopies taking I^n to $X, \partial I^n$ to A and J^n to *. (These are known as "maps of triples.") You can then understand the map $\partial : \pi_n(X, A) \to \pi_{n-1}(A)$ as just restriction to $I^{n-1} \times \{1\}$. It really helps to draw a picture for n = 2 here!

4. Go back to last week's exercises and tackle any ones you didn't get a chance to think about.