Exercises for PCMI Undergraduate Course 2024

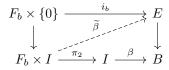
Anna Marie Bohmann and Chloe Lewis

Summer 2024

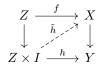
Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Friday, 12 July 2024: Fibrations and covers

- 1. For $n \ge 1$, define real projective space $\mathbb{R}P^n$ to be the quotient of S^n given by identifying each point with its antipode. That is, if $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| =\}$, then $\mathbb{R}P^n$ is given by identifying x with -x. Show that $\mathbb{R}P^1$ is homeomorphic to S^1 . For $n \ge 2$, $\mathbb{R}P^n \not\simeq S^n$ as we'll see below. Why doesn't your argument work for $n \ge 2$?
- 2. Suppose $p: E \to B$ is a fibration and let $F_b = p^{-1}(b)$ be the fiber over the point $b \in B$. Suppose we have a path $\beta: I \to B$ so that $\beta(0) = b$ and $\beta(1) = b'$. By definition, there is a lift $\tilde{\beta}$ that fits into the following diagram:



- (a) Use this lift to define a map $\tau[\beta]: F_b \to F_{b'}$, where $F_{b'}$ is the fiber over b'. This allows us to compare F_b and $F_{b'}$.
- (b) The definition of a fibration also allows us to show that if the path β is equivalent to another path α (via a based homotopy), then $\tau[\alpha]$ is homotopic to $\tau[\beta]$. Show that this means $\tau[\beta]$ is a a homotopy equivalence with homotopy inverse $\tau[\beta^{-1}]$. Hint: if c_b is the constant path, what is $\tau[c_b]$?
- (c) (Challenge!) See if you can show the assertion in the previous problem: that the homotopy class of $\tau[\beta]$ only depends on the equivalence class of β .
- 3. Let $f: X \to Y$ be any map. Let Y^I denote (unbased) maps $I \to Y$. Define $Nf = \{(x, \chi) \in X \times Y^I \mid \chi(1) = f(x)\}$ —that is, the space of pairs of a point in X and a path in Y that ends at f(x). Let $\nu: X \to Nf$ be given by $\nu(x) = (x, c_{f(x)})$ and $\rho: Nf \to Y$ be given by $\rho(x, \chi) = \chi(1)$. Show that $f = \rho \circ \nu$.
- 4. Let $p: X \to Y$ be a map and let Np be as in the previous question. Recall that the definition of p begin a fibration is that whenever we have maps f and h making the solid diagram commute



there is a lift \tilde{h} . Show that f is a fibration iff there is a map $s \colon Np \to X^I$ so that $s(x,\chi)(0) = x$ and $p \circ s(x,\chi) = \chi$. Hint: start by unpacking what it means for s to land in X^I so that you can make sense of the problem statement. Then note that we can identify the lift we're looking for with a map $Z \to X^I$.

- 5. A map $p: E \to B$ is a *cover* if it is surjective and each for each point $b \in B$, we can find a neighborhood V of b so that $p^{-1}(V)$ is an open set in E that is disjoint union sets each of which is homeomorphic to V when we apply p. For example, this is the case for our map $f: \mathbb{R} \to S^1$ from Monday's exercises.
 - (a) For a point $b \in B$ and a point $e \in p^{-1}(b)$, show that a path $q: I \to B$ with q(0) = b lifts uniquely to a path $I \to E$ starting at e. Moreover, equivalent paths lift to equivalent paths.
 - (b) Use this property to argue that a cover $E \to B$ is an example of a fibration.
- 6. Show that $S^2 \to \mathbb{R}P^2$ is a cover.